Juschke et al. Genome Biology 2013, 14:r133
http://genomebiology.com/2013/14/11/r133

Genome Biology

RESEARCH Open Access

Transcriptome and proteome quantification of
a tumor model provides novel insights into
post-transcriptional gene regulation

Christoph Jischke', llse Dohnal?, Peter Pichler?3, Heike Harzer', Remco Swart*, Gustav Ammerer?,
Karl Mechtler' and Juergen A Knoblich'”

Abstract

Background: Genome-wide transcriptome analyses have given systems-level insights into gene regulatory
networks. Due to the limited depth of quantitative proteomics, however, our understanding of post-transcriptional
gene regulation and its effects on protein-complex stoichiometry are lagging behind.

Results: Here, we employ deep sequencing and the isobaric tag for relative and absolute quantification (iTRAQ)
technology to determine transcript and protein expression changes of a Drosophila brain tumor model at near
genome-wide resolution. In total, we quantify more than 6,200 tissue-specific proteins, corresponding to about 70%
of all transcribed protein-coding genes. Using our integrated data set, we demonstrate that post-transcriptional gene
regulation varies considerably with biological function and is surprisingly high for genes regulating transcription. We
combine our quantitative data with protein-protein interaction data and show that post-transcriptional mechanisms
significantly enhance co-regulation of protein-complex subunits beyond transcriptional co-regulation. Interestingly,
our results suggest that only about 11% of the annotated Drosophila protein complexes are co-regulated in the brain.

potential subunits.

Finally, we refine the composition of some of these core protein complexes by analyzing the co-regulation of

Conclusions: Our comprehensive transcriptome and proteome data provide a valuable resource for quantitative
biology and offer novel insights into understanding post-transcriptional gene regulation in a tumor model.

Background

Eukaryotic gene expression involves transcription,
mRNA processing and decay, translation, and protein
modification and degradation. Each of these steps is
tightly regulated to ensure the proper function and sta-
bility of the biological system [1]. While genome and
transcriptome data have accumulated rapidly since the
advent of microarray and deep-sequencing technologies,
the limited depth of quantitative proteomics has inhibited
similar progress in post-transcriptional gene regulation.
Therefore, transcript levels are still routinely used as the
only measure for gene expression in high-throughput
approaches. Several studies, however, have reported a low
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correlation between transcript and protein levels [2-6],
highlighting the importance of post-transcriptional pro-
cesses as well as the limited predictive value of transcripts
for protein expression. Hence, a better understanding of
genetic information processing requires consideration of
quantitative information at every step of gene expression
control.

Recently, studies have begun to address this prob-
lem systematically by acquiring large-scale quantitative
mRNA and protein data from bacteria [7,8], yeasts [9-11]
and cell lines [12,13]. For complex tissues of higher organ-
isms, however, such information is still rare. Quantitative
analyses are either restricted to a few hundred genes due
to limited proteome coverage [5,14] or they focus on cul-
tured cell lines that might have lost properties of their
tissue of origin over time [12,13,15-17].

We therefore set out to address this problem using a
complex neural tissue in wild-type state and tumor state.
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The Drosophila brain arises from neural stem cells called
neuroblasts that undergo repeated rounds of asymmetric
cell division giving rise to self-renewing neuroblasts and
terminally differentiating neurons [18-20]. In homozygous
brain tumor (brat) mutants, some neuroblast divisions
become symmetric leading to the formation of excess neu-
roblasts at the expense of neurons. This causes an uncon-
trolled expansion of the neuroblast pool and results in the
formation of a large brain tumor [21-23]. These tumors
can be transplanted into host flies, where they become
aneuploid and undergo metastasis [24]. Normally, tumor
formation is lethal during larval development, but hypo-
morphic mutants can survive until adulthood, and the
flies harbor large proliferating neuroblast tumors in their
brains. The simple cytology of the developing Drosophila
brain and the reproducibility of tumor formation have
made brat mutants a well-studied example for stem-cell-
derived tumor formation.

Here, we performed an in-depth integrative analysis
of transcript and protein expression data from a com-
plex metazoan tissue, comparing Drosophila brain tumor
(brat) versus wild-type heads. Using relative protein quan-
tification with mass spectrometry (isobaric tag for relative
and absolute quantification (iTRAQ)) [25], we determined
relative expression levels for more than 6,200 proteins,
corresponding to about 70% of all transcribed protein
coding genes.

By investigating transcript—protein correlations, namely
the change of correlation between the normal and tumor-
ous state, we identify biological processes that are strongly
regulated by post-transcriptional mechanisms. Further-
more, we demonstrate that the stoichiometric expression
of protein-complex subunits is controlled by a two-tiered
mechanism involving co-expression on the mRNA level
followed by post-transcriptional fine-tuning. Surprisingly,
our data suggest that co-regulation of protein-complex
subunits is the exception and not the rule. Finally, our
comprehensive data set provides a valuable resource for
quantitative systems-level analyses.

Results and discussion

About 60% of protein-coding transcripts are expressed in
wild-type and brat fly heads

To obtain sufficient amounts of material for transcriptome
and proteome analyses we established a workflow to col-
lect large numbers of homozygous brat mutant fly heads
(Figure 1A). Homozygous mutant female flies exhibited a
tumor penetrance of 100%, and the median adult survival
time was reduced to 10 days (Figure 1B).

For transcriptome analysis, total RNA samples from
brat and wild-type female fly heads were prepared in bio-
logical triplicates, analyzed by strand-specific paired-end
mRNA sequencing and quantified by mapping the reads
to the Drosophila genome. The average expression levels
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(measured as fragments per kilobase of transcript per
million mapped fragments (FPKM)) showed a bimodal
distribution with most genes following a normal distribu-
tion centered at approximately 12 FPKM, and a minor-
ity forming a ‘shoulder’ to the left of the distribution
(Figure 2A). Transcripts in the left shoulder with FPKM
< 1 were shown to occur in less than one copy per cell
and to have functions not typical for the cell type [26].
Hence, we excluded these very low abundant, presumably
non-functional, transcripts from our analysis.

We found that transcript expression correlated well
between wild-type and brat samples (Pearson correla-
tion coefficient r = 0.85, Figure 2B) indicating that
the tumors maintain many characteristics of the cor-
responding wild-type tissue. In total, we were able to
quantify transcripts from 8,333 of the 13,781 anno-
tated protein-coding Drosophila genes in both wild-type
and brat mutant heads. On average 82% of all anno-
tated transcripts were expressed in adult female fly
heads for each second-level Kyoto Encyclopedia of Genes
and Genomes (KEGG) category [27] (Figure 2C). The
highest absolute mRNA expression levels were found
in the categories ‘Energy Metabolism’ and ‘Translation’,
which agrees well with recent data from fission yeast
[11], and in the category ‘Sensory System’, consis-
tent with the specific functions of the analyzed tissue
(Figure 2D).

Quantification of approximately 70% of the brain tumor
proteome

In a pilot proteomic study, brat and wild-type fly head
samples were labeled in duplicate with 4-plex iTRAQ [25],
separated by two-dimensional liquid chromatography and
measured by online tandem mass spectrometry. We quan-
tified expression changes of 68,391 peptides with 8,017
unique sequences, corresponding to 1,311 unique proteins
at a protein false discovery rate (FDR) of 5%. We refer to
this first data set as iTRAQ #1.

Taking the number of quantified protein-coding
transcripts as an estimate for the total number of
expressed proteins, we set out to increase the proteome
coverage of our iTRAQ analysis. For this, we opti-
mized the proteomics workflow by employing digestion
with two proteases, high-resolution two-dimensional
chromatography with extensive fractionation, com-
bined collisional-induced dissociation (CID)/higher
energy C-trap dissociation (HCD) and electron transfer
dissociation (ETD)/HCD fragmentation [28], and mul-
tiple search engines using Protein Discoverer (Thermo
Fisher Scientific). In all further analyses and discus-
sion we refer to this as the optimized iTRAQ data set
(iTRAQ #2).

Each sample was digested separately with two spe-
cific proteolytic enzymes, trypsin and LysC, and
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Figure 1 Sample preparation workflow. (A) Breeding scheme for generation of homozygous mutant fly heads. Fly eggs were collected over 2
days. On the third day, heterozygous offspring were killed by heat shock. Adult female flies were collected 1 to 3 days after pupal eclosion and
snap-frozen and their heads were isolated. (B) Kaplan—Meier survival plot of homozygous brat mutant (red) versus control flies (green). The tumor
penetrance is 100% reducing the median adult survival time to 10 days. Data were pooled from three independent experiments with 170 brat and

labeled in duplicate with 4-plex iTRAQ. Trypsin-
and LysC-digested samples were fractionated by
high-resolution strong cation exchange (SCX) chro-
matography with a two-dimensional gradient into 85
and 118 fractions, respectively, and then analyzed by
liquid chromatography-tandem mass spectrometry (LC-
MS/MS) on a LTQ-Orbitrap Velos (Figure 3A). Protein
quantification of technical iTRAQ replicates correlated
very well (r = 0.99, Additional file 1: Figure S1A).

To confirm the iTRAQ data, we quantified 34 pro-
teins by selected reaction monitoring (SRM) [29], an
alternative label-free protein quantification method. We
observed a high technical and biological reproducibility
of iTRAQ and SRM protein quantification (r = 0.83,
Additional file 1: Figure S1B and r = 0.73, Additional
file 1: Figure S1C, respectively). In addition, a comparison
of iTRAQ and SRM measurements showed that the level
of regulation appeared higher for SRM than for iTRAQ.
This is in agreement with previous observations report-
ing an underestimation of protein expression changes
(‘ratio compression’) for iTRAQ [30,31]. To account for
this effect, we performed correlation analyses between the
different data sets using rank correlations.

In total, we were able to determine the relative expres-
sion of 278,763 peptides (FDR < 1.6%) containing 65,742
unique sequences, with 166,615 (60%) of the peptides
from trypsin-digested and 112,148 (40%) from LysC-
digested samples. The trypsin and LysC samples were
largely complementary in their contribution of unique
peptides for quantification (Additional file 1: Figure S1D).

The peptide sequences mapped unambiguously to 6,277
FlyBase-annotated protein-coding genes at a protein FDR
of 5%. The FDR of the integrated data set was lower since
we combined the proteome with transcriptome data and
performed correlation analyses only for genes with both

quantitative protein and transcript data available. Expres-
sion changes for 75% of the proteins were determined
in both trypsin- and LysC-digested samples (Additional
file 1: Figure S1E), and showed good reproducibility (r =
0.7, Additional file 1: Figure S1F). We found that 18%
of the proteins were exclusively quantified in the trypsin
sample and 7% in the LysC sample.

For 93% (5,840 of 6,277) of all quantified proteins we
were able to quantify the corresponding transcripts as
well, and the correlation between mRNA and protein
expression changes was very similar to a previous study
in cell lines (Spearman’s rank correlation p = 0.61 versus
p = 0.58 to 0.63 in [12]). Considering that 8,333 protein-
coding genes were expressed in the samples according to
transcriptome analysis, we have quantified 70% (5,840 of
8,333) of all expressed proteins. Therefore, our data rep-
resent one of the most complete quantitative proteomics
analyses of a complex tissue comparing two physiological
states.

High quantitative proteome coverage for Kyoto
Encyclopedia of Genes and Genomes pathways and
abundant transcripts

To further evaluate the quality of our data, we corre-
lated proteome coverage with expression levels, physico-
chemical properties and annotated functions. Using the
codon adaptation index as a predictor for expression levels
[32], we found increased coverage for proteins predicted
to be more abundant (Additional file 2: Figure S2A). Fur-
thermore, we observed increased coverage for proteins
encoded by more abundant transcripts. For mRNAs with
FPKM > 10, for example, we obtained a protein cover-
age of more than 82% (Figure 3B). As shown previously
[33], we detected a higher proteome coverage for larger
proteins since they generally produce a larger number
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Figure 2 Transcriptome analysis. (A) Distribution of the raw FPKM data (green). Transcripts with FPKM > 1 (dashed gray line) are considered
expressed and functional. The majority of transcripts have FPKM values of about 12. (B) Absolute transcript levels in brat and wild-type samples
correlate well. (C) About 82% of all KEGG-annotated transcripts are expressed in fly heads. For each functional category the number of annotated
(dark gray) and quantified transcripts (light gray) are shown together with the percentage of quantified transcripts (red). (D) Box-and-whisker plot
of the average transcript abundance (FPKM) in different KEGG categories. FPKM, fragments per kilobase of transcript per million mapped fragments;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Proteome analysis. (A) Optimized mass spectrometry workflow for quantitative proteomics using 4-plex iTRAQ. (B) Proteome coverage
of expressed transcripts. The red line indicates the percentage of quantified proteins in each bin of detected transcripts. Transcripts with FPKM > 1
are considered expressed (dashed gray line, see also Figure 2A). (C) Proteome coverage of different KEGG categories. For each functional category
the number of annotated (dark gray), expressed (light gray) and quantified proteins (white) are shown together with the percentage of quantified
proteins (red). (D) Box-and-whisker plot of protein expression changes between wild-type and brat samples in different functional categories. FPKM,
fragments per kilobase of transcript per million mapped fragments; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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of different peptides upon digestion (Additional file 2:
Figure S2B). Only extremely hydrophobic proteins were
under-represented and covered by less than 50%, presum-
ably due to reduced solubility during sample preparation
(Additional file 2: Figure S2C), whereas protein cover-
age was higher than 60% for the full range of isoelectric
points (Additional file 2: Figure S2D). Most importantly,
our analysis quantified on average 86% of the expressed
proteins within each second-level KEGG pathway cate-
gory with only five categories covered by less than 70%
(Figure 3C). Thus, all biological pathways are well repre-
sented and our data are a good representation of the entire
expressed proteome.

DNA replication and damage repair pathways are
upregulated in tumors

To identify deregulated biological processes in the tumors,
we performed functional pathway enrichment analyses for
transcript and protein level changes using a z-value cut-off
of 2. The set of pathways over-represented in upregu-
lated transcripts and proteins largely overlapped (KEGG-
term enrichment analysis of upregulated transcripts and
proteins: Tables 1 and 2, respectively). As expected for
proliferating tumor tissue, the KEGG pathway ‘DNA repli-
cation’ was strongly enriched among proteins upregulated
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in brat (Table 2). Surprisingly, however, this list also con-
tained multiple terms associated with DNA damage repair
like ‘Mismatch repair’, ‘Nucleotide excision repair’ and
‘Base excision repair’ (Table 2), and proteins in the KEGG
category ‘Replication and repair’ were most highly upreg-
ulated in the tumors (Figure 3D). Although genomic insta-
bility does not cause brain tumor formation in Drosophila
[34], our results suggest that the DNA damage reported
for brat tumors upon transplantation [24] might already
be present in the primary tumor.

Hydrophobic proteins tend to be downregulated in the
tumors

Our comprehensive data set of protein expression changes
between wild-type and brat samples allowed us to test
for correlations with specific primary sequence features
(Figure 4). Protein expression changes neither correlated
with molecular weight (0 = 0.02) nor isoelectric point
(p = 0, data not shown). However, hydrophobic pro-
teins were preferentially downregulated in the tumor (p =
—0.25, P = 1.3x107%, Figure 4A). A possible explana-
tion is that brat mutant neuroblasts fail to differentiate
into neurons and hence do not upregulate the multitude
of transmembrane proteins required for mature neuronal
function [23,35,36].

Table 1 Kyoto Encyclopedia of Genes and Genomes based enrichment analysis of upregulated transcripts

Kyoto Encyclopedia of Genes Enrichment Pvalue Adjusted
and Genomes pathway P value
Replication and repair 184 13x 1073 2,05 x 10730
Genetic information processing 4.19 192 x 1072° 152 % 107%
DNA replication 21 6.03 x 107"/ 318 x 1071°
Nucleotide excision repair 155 669 x 10712 264 x 10710
Mismatch repair 226 533 x 107" 168 x 1077
RNA transport 6.87 1.16 x 10710 3.05 x 1077
Transcription 53 121 x107° 272 x 1078
Translation 359 941 x 107° 1.86 x 1077
Pyrimidine metabolism 6.56 827 x 107~/ 145 % 107
Basal transcription factors 10 961 x 10~/ 152 % 107
Non-homologous end-joining 31.8 275 x 107° 395 x 107
Homologous recombination 13.2 268 x 107 0.000353
Base excision repair 1.9 469 x 107 0.00057
Ribosome biogenesis in eukaryotes 5.05 7.07 x 107> 0.000798
Spliceosome 418 0.00014 0.00148
Progesteron-mediated oocyte maturation 6.5 0.000292 0.00271
Endocrine system 6.5 0.000292 0.00271
Nucleotide metabolism 345 0.000361 0.00317
Organismal systems 333 0.00158 0.0131
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Table 2 Kyoto Encyclopedia of Genes and Genomes based enrichment analysis of upregulated proteins
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Kyoto Encyclopedia of Genes Enrichment P value Adjusted
and Genomes pathway P value
Replication and repair 195 6.32 x 1072 999 x 10~
DNA replication 343 217 x 1072 172 x 10722
Nucleotide excision repair 19.2 558 x 10712 294 x 10710
Homologous recombination 288 1.09 x 10710 432 % 1077
Mismatch repair 272 1.87 x 10710 589 x 107
Base excision repair 226 125%x 1078 329 x 1077
Genetic information processing 2.56 163 x 1077 369 x 1076
Pyrimidine metabolism 8.09 404 x 10~/ 798 x 1070
Non-homologous end-joining 323 7.04 x 1073 0.00124
Nucleotide metabolism 426 0.000125 0.00198
Progesterone-mediated oocyte maturation 7.35 0.00056 0.00737
Endocrine system 7.35 0.00056 0.00737
Purine metabolism 354 0.00373 0.0453
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Figure 4 Correlation of sequence features with changes in protein expression. (A) Protein hydrophobicity negatively correlates with protein
level change. (B) Length of the coding sequence does not affect protein expression changes. (C) Lengths of the 3" and (D) 5" UTRs negatively
correlate with protein upregulation. CDS, coding sequence; UTR, untranslated region.
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Shorter 3’ and 5’ UTRs correlate with protein upregulation
While protein level changes did not correlate with the
length of coding sequences (p = 0.02, Figure 4B), we
detected a very low but significant negative correlation
with the length of the 3’ and 5’ untranslated regions (3’
UTR: p = —0.1, P = 2.1x107 %5, Figure 4C; 5 UTR: p =
—0.13, P = 2.3x10723, Figure 4D). To determine if up-
and downregulated proteins were differentially affected by
UTR length, we divided the pool of quantified proteins
into two subsets: downregulated and upregulated relative
to the median, and analyzed the correlation for these sub-
sets separately. Interestingly, only upregulated proteins
with shorter UTR length were more highly upregulated
(3 UTR: p = —0.12, P = 1.8x10719; 5 UTR: p = —0.11,
P = 3.5x107°), whereas downregulated proteins did not
have a significant correlation with UTR length. On aver-
age, transcripts with shorter UTRs are expected to have
less binding sites for regulatory factors like miRNAs and
RNA-binding proteins, and thus, are less susceptible to
post-transcriptional control. Our observation is consis-
tent with data showing that 3’ UTR shortening increases
mRNA stability and protein expression, and leads to onco-
gene activation in cancer cells [37,38]. Interestingly, our
data suggest that this effect might occur not only for 3’
UTRs but also for 5 UTRs.

Genes involved in transcription are strongly regulated by
post-transcriptional control

Next, we considered whether mRNA abundance had
an effect on the expression change of proteins in the
tumor. Interestingly, we observed a negative correla-
tion of wild-type transcript abundance with protein level
change (p = —0.29, P = 25x10718, Additional
file 3: Figure S3A), whereas the opposite was not the
case: transcript levels in the tumor did not correlate
with protein level change (Additional file 3: Figure S3B).
Our results indicate that proteins encoded by transcripts,
which are lowly expressed in wild-type samples, have
an increased propensity for being upregulated in the
tumors.

Quantification of both mRNA and protein level changes
allowed us to test the contribution of post-transcriptional
mechanisms to the proteome alterations that occur in brat
brain tumors. For this, we compared how well changes in
protein levels correlate with changes in the corresponding
transcripts. Overall protein and mRNA changes corre-
lated similarly to a previous analysis in human cell lines
(p = 061 versus p = 0.58 to 0.63 in [12]). Surpris-
ingly, when investigating the different biological pathways
individually, we found that the correlations were highly
variable. We used random sampling to control for the
different number of genes in each KEGG category to iden-
tify categories that deviate significantly from the global
correlation (Table 3 and Figure 5).
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Table 3 Biological pathways exhibiting significant
alterations in post-transcriptional regulation

Kyoto Encyclopedia of
Genes and Genomes pathway

Correlation p Significance?

Metabolism

Energy metabolism 0.23 Hxx
Lipid metabolism 049 *
Nucleotide metabolism 0.75 *

Genetic information processing

Transcription 0.16 Frx
Translation 045 *xX
Folding, sorting and degradation 046 Hx
Cellular processes

Transport and catabolism 0.39 Hoex

2Different biological pathways show considerable variability in their correlation
of transcript-to-protein level changes. The statistical significance of the
deviation from the global correlation (p = 0.61) was estimated by random
sampling, controlling for the number of quantified proteins in each pathway
(*P < 0.05;** P < 0.01;*** P < 0.001).

For KEGG pathways involved in ‘Metabolism’, the
correlations did not show a clear trend. The correla-
tion was very high for ‘Nucleotide metabolism’ (p =
0.75,N = 105, Figure 5A), indicating that changes of
transcript expression cause corresponding changes in pro-
tein expression and, hence, only minor alterations in the
post-transcriptional regulation occur between wild-type
and tumor samples. In contrast, the correlation was low
for ‘Energy metabolism’ (p = 0.23, N = 107, Figure 5B).
Here, however, transcript and protein expression lev-
els were relatively constant and therefore no conclusions
about changes in post-transcriptional regulation were
possible.

The KEGG subcategories for ‘Genetic information pro-
cessing’ generally showed significantly lower correlations.
The correlation was low for ‘Translation’ (p = 0.45,N =
298, Figure 5C) and lowest for genes regulating “Tran-
scription’ (p = 0.16, N = 150, Figure 5D). To control
for the particular spread of mRNA and protein regula-
tion, respectively, we compared the correlation of “Tran-
scription’ genes to randomly sampled genes exhibiting
similar spreads and found that the observed correlation
was significantly lower than what would be expected
by chance (data not shown). Thus, proteins involved in
transcriptional processes are particularly well controlled
on a post-transcriptional level, and changes of mRNA
expression provide only limited insight into changes of
protein expression. This is important to consider when
performing quantitative research on the regulation of
transcription: our data indicate that quantifying only
mRNA expression might not always suffice to reflect the
situation at the protein level.
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energy metabolism, (C) translation and (D) transcription. N is the number of quantified gene products in each category. The insets on the lower left
side of each panel show histograms of correlation coefficients that were generated by random sampling (sample size N). The observed correlation
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Co-regulation of protein complexes is enhanced
post-transcriptionally

Most proteins exert their biological functions as part
of supramolecular assemblies and complexes, and much
progress has been made in identifying these protein com-
plexes on a global scale [39-41]. While transcripts coding
for protein-complex subunits tend to be co-expressed
[42-44], co-regulation on the protein level has not been
shown for large-scale data sets. This is important since
a high degree of variation in subunit stoichiometries
has been demonstrated for nuclear complexes, for exam-
ple, see [45]. Also, little is known about the individual
contributions of transcriptional and post-transcriptional
mechanisms ensuring stoichiometric protein expression
ratios.

We therefore used our quantitative transcriptome and
proteome data to investigate the co-regulation of protein-
complex subunits. As a reference, we used all pro-
tein interactions and complexes identified by affinity

purification of tagged proteins coupled with mass spec-
trometry and defined by the Drosophila protein interac-
tion map (DPiM) [39]. Expression changes of transcripts
and proteins were mapped onto the interaction network
and visualized with Cytoscape [46]. Using this integrated
protein interaction network (Figure 6 and Additional
file 4), we observed a clustering of co-regulated genes
into distinct areas corresponding to different protein
complexes.

To confirm this co-regulation quantitatively, we deter-
mined the similarity of regulation between pairs of genes
A and B by calculating the absolute difference of their
z-transformed log,-fold expression changes d4_p. Over-
all, we found that interacting proteins within a com-
plex exhibited significantly higher co-regulation (that is,
smaller d4_p) than randomized protein pairs (Figure 7A).
We observed a qualitatively similar effect for the tran-
scripts (Additional file 5: Figure S5), but the co-regulation
was significantly stronger at the protein than at the
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Figure 6 Global protein interaction map integrated with mRNA and protein expression changes. Visualization of mRNA and protein
expression changes for all Drosophila protein interaction map clusters [39] using Cytoscape. Clustered proteins tend to be co-regulated. The centers
of the nodes indicate protein expression changes and the borders of the nodes mRNA expression changes. Blue represents downregulation, red
represents upregulation and the color intensity is proportional to the level of regulation. Transcripts and proteins not quantified are shown in gray.
Protein interactions are depicted as light green lines and their thickness is proportional to the interaction strength. See Additional file 4 for details.
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mRNA level (Figure 7B). Taken together, our data indi-
cate that despite co-regulation of complex subunits on
the transcript level, significant fine-tuning of protein stoi-
chiometry occurs post-transcriptionally.

Only 11% of protein complexes exhibit significant subunit
co-regulation
In general, it is assumed that protein-complex subunits
are co-regulated and maintain stable stoichiometric com-
positions. However, the distinction between permanent
and transient complexes based on mRNA co-expression in
yeast [44] and the discovery of variable subunit composi-
tions for some nuclear complexes [45] indicate that there
are exceptions to this rule.

To determine if the co-regulation we observed on the
global level is due to co-regulation of all or of only a subset
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of protein complexes, we set out to identify the individual
complexes that were co-regulated between wild-type and
brat samples. For this, we compared the co-regulation of
subunits of annotated protein complexes with randomly
assembled ‘complexes’. Surprisingly, we found that only
23 of 274 complexes were co-regulated on the transcript
level. On the protein level, however, co-regulation was
stronger and we identified 31 complexes exhibiting signifi-
cant co-regulation (Figure 7C), supporting our conclusion
for the post-transcriptional adjustment of protein stoi-
chiometries and the higher importance of protein versus
mRNA expression control.

The low fraction of co-regulated complexes (11% on the
protein level) indicates that either co-regulation is not a
general feature of all protein complexes, or, more likely,
that most complexes found in one biological system/state
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Figure 7 Post-transcriptional improvement of complex subunit co-regulation. (A) Subunits of annotated protein complexes (red) are
significantly more co-regulated than random protein pairs (green). (B) Subunits of protein complexes are significantly more co-regulated on the
protein level (red) than on the transcript level (light red). The random protein pairs are indicated in dark green, random transcript pairs in light green.
(€) Matrix of P values of significantly co-regulated protein complexes (DPiM) [39] at the mRNA level and at the protein level. The complexes are
numbered according to DPiM since several of them have neither names nor known biological functions. The individual complex members are listed
in Additional file 4. The color intensity indicates increasing significance. P values were determined by the Kolmogorov-Smirnov test (KS-test) and
corrected for multiple testing. DPiM, Drosophila protein interaction map.
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do not necessarily exist in other systems/states or exhibit
different subunit compositions [45]. In addition, different
molecules of a protein could be subunits of different
protein complexes at a time.

As all annotated complexes were isolated from cultured
cells of late embryonic origin (S2R+ cells) [39], and, since
they exhibited high co-regulation in adult brain tissue, we
propose to classify them as permanent core complexes of
Drosophila. Complexes like the proteasome (DPiM #4),
the SNAP/SNARE complex (DPiM #7), the eukaryotic ini-
tiation factor 3 complex (elF3, DPiM #24) and the ATP
synthase complex (DPiM #25) fall into this category, both
at the mRNA level and at the protein level, whereas the
exosome (DPiM #41), the prefoldin complex (DPiM #42),
the TCP-1 ring complex or chaperonin-containing TCP-
1 complex (TRiC/CCT, DPiM #32) and the minichro-
mosome maintenance complex (MCM, DPiM #60) are
exclusively co-regulated on the protein level.

Given this high variability, we would like to suggest an
extension of the concept of permanent and transient com-
plexes introduced by [44] because higher organisms are
characterized by having different tissue types and specific
developmental programs. In this situation, many more
complexes have to be characterized as dynamic or tran-
sient, since they might only occur at specific times, places
or physiological states during an organism’s lifetime.

Characterization of individual complexes in a tumor based
on subunit co-regulation

In total, our analysis defined 31 co-regulated core com-
plexes (Figure 7C). From those, we selected a subset of
well-known complexes and manually re-analyzed their
annotated subunit composition as well as their potential
for tumorigenesis taking into account expression changes
at the mRNA level and at the protein level.

The elF3 complex (DPiM #24, Figure 8A) is essential
for the assembly of the translation initiation machin-
ery, namely the recruitment of initiator Met-tRNAi and
mRNA to the 40S ribosome, and the subsequent scanning
for the AUG start codon [47]. Aberrant mRNA and pro-
tein levels of eIF3 subunits have been detected in a wide
variety of solid tumors and cancer cell lines, and eIF3 over-
expression can promote malignant transformation (see
[48] and references therein). We found eIF3 mildly but
consistently upregulated in brain tumors at the transcript
as well as at the protein level.

The ATP synthase complex (DPiM #25, Figure 8B) is
involved in the oxidative phosphorylation pathway and
employs the electrochemical gradient at the inner mito-
chondrial membrane for generating ATP from ADP. The
downregulation of oxidative phosphorylation is a well-
known metabolic hallmark of cancer cells, called the
Warburg effect [49,50]. In the brat tumors, ATP syn-
thase was downregulated both at the transcript level and
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protein level. Interestingly, the glycolytic enzyme L-lactate
dehydrogenase (ecdysone-inducible gene L3, ImpL3 in
Drosophila) was about twofold upregulated suggesting
that Drosophila tumors might provide a suitable model for
analyzing the causal relationships of the Warburg effect
with cancer progression. Knockdown of this enzyme has
been shown to increase mitochondrial respiration and to
attenuate tumor growth [51,52].

The MCM complex (DPiM #60, Figure 8C) functions as
a replicative helicase. It unwinds duplex DNA and enables
fork progression during DNA replication [53]. We found
all six complex members strongly upregulated both at
the transcript level and at the protein level. Coaffinity
purification identified an additional member of the MCM
complex, the previously uncharacterized protein CG3430
[39]. Our data show the co-regulation of CG3430 with the
other six MCM complex members, hence supporting this
assignment.

The exosome complex (DPiM #41, Figure 8D) is
required for 3’—5" RNA processing and turnover [54]. All
its subunits were upregulated; however, the upregulation
was generally stronger on the mRNA level than on the
protein level. Together with the observation that the exo-
some subunits are significantly co-regulated at the protein
but not the transcript level (Figure 7C), this suggests,
that post-transcriptional mechanisms might be involved
in regulating exosome expression. It has been shown that
the exosome interacts and co-localizes with the essen-
tial elongation factor Spt6 at active chromatin, indicating
that the exosome might exert its pre-mRNA surveillance
function co-transcriptionally [55]. Our data support this
interaction by demonstrating the co-regulation of Spt6
with the exosome.

The TRiC/CCT complex (DPiM #32, Figure 8E) is
an essential, ATP-dependent chaperonin consisting of
two identical stacked rings with eight paralogous sub-
units per ring. It interacts with about 10% of newly
synthesized cytosolic proteins and prevents the accu-
mulation of toxic aggregates [56,57]. Guruharsha et al.
identified six of the eight known TRiC/CCT complex
members plus three weakly connected proteins (CG3313,
shd, viaf), whereas the remaining two core subunits,
CCTy and Tcp-1¢, were assigned to the DPiM clusters
#8 and #28, respectively [39]. According to our mRNA
and protein data, however, the co-regulation of CCTy
and Tcp-1¢ was most consistent with them belonging
to the TRiC/CCT complex (Figure 8F). For the three
weakly associated proteins, we were not able to detect
CG3313 nor shd, but viaf was co-regulated with the
other complex members. Consistent with the upregu-
lation of the TRiC/CCT complex in brain tumors, we
have previously shown that tissue-specific knockdown of
subunits by RNAIi leads to under-proliferation or death
of neuroblasts [58].
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The TRiC/CCT complex is recruited to nascent chains
by the multisubunit chaperone complex prefoldin (DPiM
#42, Figure 8G) allowing co-translational folding of
proteins [57]. Three new subunits have been proposed for
the prefoldin complex: CG8617, CG9542 and CG10252
[39]. We were not able to identify CG8617 nor CG10252
on the protein level, and CG9542 exhibited a strong

downregulation unlike the behavior of the established
complex members. Therefore, we propose that these pre-
foldin interaction partners are cell-type-specific subunits
of the complex and are most likely not an integral part of
the prefoldin complex in adult female fly heads.

Taken together, we have shown that co-regulation
data at the mRNA level and at the protein level provide
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valuable additional information for protein-complex
assignment, especially if protein-complex data is to be
used for different experimental systems.

Conclusions

We have compiled a comprehensive data set of tissue-
specific expression changes that occur in a tumor model
both on the transcriptome and on the proteome level
(Additional file 6). In our integrative analysis we use
this data set and demonstrate the impact of post-
transcriptional gene regulation for different biological
processes and protein complexes.

To achieve iTRAQ quantification for 70% of all
expressed protein-coding genes in a complex tissue,
we employed: (1) digestion with two proteases to pro-
duce largely non-overlapping peptides, (2) high-resolution
chromatography and fractionation to reduce sample com-
plexity and (3) different mass spectrometry fragmentation
techniques to obtain optimal quantitative information.
This protocol is in principle applicable to clinical samples,
since it does not require in vivo labeling. Our data set cov-
ers 86% of the expressed proteins in the Drosophila head
annotated to distinct biological pathways (Figure 3C).

At the global level, we provide evidence for a gen-
eral regulatory function of the transcript UTRs, that is,
shorter 3" and 5" UTRs lead to increased protein upregu-
lation. This finding indicates that regulatory elements in
the UTRs ensure proper protein expression control and
that transcripts with longer UTRs are less prone to mis-
expression, potentially due to the dampening presence of
binding sites for RNA-interacting proteins or miRNAs.

Overall, alterations in transcript and protein expression
are well correlated. However, distinct biological processes
show highly different correlations. This suggests that post-
transcriptional regulation strongly affects some processes
like transcription whereas other processes like nucleotide
metabolism are barely affected (Figure 5). The differential
effects of post-transcriptional regulation in wild-type and
tumor tissue should be taken into account when analyz-
ing transcriptome data and, in addition, might offer new
directions for targeted tumor treatment.

By integrating our data set with protein-complex infor-
mation [39], we have compiled one of the first systems-
level networks for the dynamics of protein complexes
(Figure 6). By statistically investigating the co-regulation
of protein-complex subunits we show that complex sto-
ichiometry is ensured by both transcriptional and post-
transcriptional contributions, and that co-regulation on
the protein level is more stringently controlled than on the
mRNA level. The function of many complexes critically
depends on the proper stoichiometric presence of all sub-
units, and the consequences of the misexpression of any
one subunit can range from wasting energy to dominant
negative effects and diseases. Therefore, this two-tiered
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mechanism is important for controlling the relative abun-
dance of protein-complex subunits. Surprisingly, however,
we find that only a small fraction of protein-complex sub-
units is co-regulated in the Drosophila brain suggesting
that complexes exhibit high degrees of context-dependent
dynamics.

The analysis of our integrative network shows that sev-
eral protein complexes are consistently deregulated in
tumors, and we find preliminary evidence for alterations
reminiscent of the Warburg effect (Figure 8B). We provide
examples for which the co-regulation of potential protein-
complex subunits contributes valuable additional infor-
mation for assigning subunits to the correct complexes.
Since large-scale protein interaction analyses are usually
performed in cell culture systems, our approach could be
used to re-evaluate this information in a tissue-specific
context.

In summary, besides providing a valuable resource for
further system-wide studies and quantitative biology, our
data offers novel insights into characteristic alterations
of tumor gene expression and post-transcriptional gene
regulation.

Materials and methods

Sample preparation

All Drosophila stocks were maintained and crossed at
22°C according to standard procedures. The brat allele
brat*9%928 was acquired from the Bloomington Drosophila
Stock Center (Indiana) and balanced over CyO, P{hs-hid}
to allow us to select homozygous mutant offspring using
a heat shock. For transcriptome and proteome analysis,
adult female flies that were 1 to 3 days old were collected
manually (wild-type control and bratk*928), Flies were
transferred into 15 ml conical tubes and snap-frozen in
liquid nitrogen. Heads were separated by vigorously shak-
ing and vortexing the tubes for 30 s and then applying
the mixture to a stack of sieves (800, 590, 355 um mesh
openings) submerged in liquid nitrogen. The isolated
heads were transferred into microfuge tubes and stored
at —80°C for further analysis. Fly heads were ground to
a powder using a mortar and pestle cooled with liquid
nitrogen.

Transcriptome sequencing

Total RNA was isolated from adult fly heads by TRIzol
purification (Invitrogen), and genomic DNA was removed
using gDNA eliminator columns from the RNeasy Mini
Kit (Qiagen) following the manufacturer’s instructions.
RNA quality was assessed by spectrophotometry (Nan-
oDrop, Thermo Fisher Scientific) and on a Bioana-
lyzer (Agilent). The RNA was enriched for poly(A)+
mRNA (Dynabeads mRNA purification kit, Invitrogen),
fragmented and subjected to first-strand cDNA synthe-
sis (based on a protocol by [59]). After second-strand
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c¢DNA synthesis, double-stranded cDNA was purified
and quantified. The library was prepared using a modi-
fied protocol from Illumina with NEBNext DNA sample
Prep Reagent kits (NEB). Double-stranded cDNA was
end-repaired, poly(A) was added and adapters were lig-
ated to DNA fragments. After size selection (200 to
600 bp), and UDGase-treatment for strand specificity,
adapter-modified DNA fragments were enriched by PCR.
Next, 76-base paired-end sequencing was performed on a
Genome Analyzer IIx (Illumina).

The strand-specific paired-end reads were screened
for ribosomal RNA by alignment (maximum of three
mismatches) against known rRNA sequences (RefSeq)
using Bowtie [60]. The insert statistics were esti-
mated by aligning the remaining reads uniquely to the
transcriptome and calculating the mean insert length
and standard deviation. The rRNA-subtracted paired-
end reads were aligned with TopHat [61] against the
Drosophila melanogaster genome (release 5). Introns of
30 to 150,000 bp were allowed based on FlyBase statis-
tics. Maximum multihits was set to 1, and microexon-
search was enabled. Additionally, a gene model was
provided as gene transfer format (GTF) file (Ensembl
BDGP5.25.60). Aligned reads in valid pairs were sub-
jected to FPKM estimation using Cufflinks [62,63]. Bias
detection and correction were performed in this step. Fur-
thermore, only those fragments compatible with Ensembl
annotation (BDGP5.25.60) were allowed and counted
towards the number of mapped hits used in the FPKM
denominator.

The transcriptome data have been deposited in the
NCBI Gene Expression Omnibus and are accessible
through GEO Series accession number GSE51412.

Protein digestion and peptide iTRAQ labeling

Fly-head powder was resuspended in 8 M urea/0.1 M
triethylammonium bicarbonate (TEAB) and centrifuged
to remove insoluble material. Proteins in the super-
natant fraction were precipitated by the addition of
ice-cold acetone and incubated at —80°C overnight.
After centrifugation, pellets were resuspended in
iTRAQ dissolution buffer (0.5 M TEAB) containing 1%
RapiGest (Waters), and the protein concentration was
determined using the BCA Protein Assay Kit (Pierce).
Cysteine residues were reduced and alkylated using
tris-(2-carboxyethyl)phosphine (TCEP) and methyl
methanethiosulfonate (MMTS) according to the instruc-
tions for the iTRAQ labeling kit (Applied Biosystems).
Samples were digested with trypsin or LysC at 37°C for
16 h and labeled separately with iTRAQ 4-plex reagents
according to the manufacturer’s instruction, using 100
ug peptides for each label. A duplicate labeling strategy
was pursued, that is, each sample was labeled with two
different tags.
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Two-dimensional fractionation of labeled peptides
Labeled peptides from four samples were combined, acid-
ified with formic acid (FA), lyophilized, resuspended in
5 mM sodium phosphate buffer (pH 2.7) containing 15%
acetonitrile (ACN), and injected onto a Polysulfoethyl-A
3 pm (PolyLC), 25 cm x 1 mm inner diameter (i.d.) col-
umn. Separation was performed on an UltiMate nano LC
system (Dionex, Thermo Fisher Scientific) at a flow rate
of 50 pl/min using the following gradient: 20 min 100%
A, followed by a linear gradient to 10% B/50% C in 80
min, 25% B/50% C in 10 min, 50% B/50% C in 5 min
and maintained for a further 15 min, then within 5 min
to 100% A for column re-equilibration (A: 5 mM sodium
phosphate buffer, 15% ACN, pH 2.7; B: 5 mM sodium
phosphate buffer, 0.5 M NaCl, 15% ACN, pH 2.7; C: 5 mM
sodium phosphate buffer, 15% ACN, pH 6.0). One-minute
fractions were collected and fractions with a low peptide
content were pooled. Samples were concentrated in a vac-
uum centrifuge concentrator to remove ACN and diluted
in 0.1% trifluoroacetic acid (TFA). Reversed phase sep-
aration was performed on an UltiMate 3000 RSLCnano
high performance liquid chromatography (HPLC) system
(Dionex, Thermo Fisher Scientific). After injection, sam-
ples were concentrated and desalted on a trapping column
(AcclaimPepMap 3 pm, 100 A, 2 cm x 75 pm i.d.) using
0.1% TFA at a flow rate of 5 pl/min as a loading solution,
and then separated on an analytical column (Acclaim-
PepMap 2 pm, 100 A, 25 cm x 75 pum i.d.) using a linear
gradient from 2% to 25% B in 175 min, then to 90% B in
5 min, maintained for 5 min, then within 2 min to 100%
A for column re-equilibration (A: 2% ACN/0.1% FA; B:
80% ACN/10% trifluoroethanol/0.08% FA) at a flow rate
of 275 nl/min. The HPLC was directly coupled online
to a LTQ-Orbitrap Velos instrument (Thermo Fisher Sci-
entific) via a nanoelectrospray source (Proxeon, Thermo
Fisher Scientific).

Shotgun mass spectrometry
The LTQ-Orbitrap Velos instrument was operated in pos-
itive ionization mode. The source voltage was set to 2.0 kV,
transfer tube temperature was 250°C and the S-lens radio
frequency (RF) level was set to 68%. A mass spectrome-
try (MS) survey scan was performed in the Orbitrap from
a mass-to-charge ratio (m/z) of 350 to 2,000 at a resolu-
tion of 60,000. The automatic gain control (AGC) target
value was set to 1,000,000 ions and the maximum fill time
was 500 ms. The lock mass option was enabled using
the dimethylcyclosiloxane background ions (protonated
[(CH3)2SiOlg; m/z = 445.120025) for internal calibration.
The MS survey scan was followed by 12 data-dependent
scans.

The six most abundant ions excluding singly charged
ions were selected for fragmentation. For each selected
precursor ion, two tandem mass spectra were obtained:
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one spectrum was acquired in the ion trap for maximum
sensitivity of identification and the other spectrum was
acquired in the Orbitrap at a resolution of 7,500 (AGC
target 100,000, maximum fill time 250 ms) for precise
quantification. The strategy is analogous to the previ-
ously described method, which combined a CID spectrum
acquired from the ion trap with a HCD spectrum acquired
from the Orbitrap [28]. However, for samples digested
with trypsin a CID spectrum was recorded in the ion trap,
while for samples digested with LysC an ETD spectrum
was recorded using the ion trap. For CID spectra, the
AGC target was set to 6,000 ions, maximum fill time was
200 ms, activation time was 10 ms, normalized collision
energy was 35%, and multistage activation was activated
using the following neutral loss m/z list: 32.6, 49.0 and
98.0. For ETD spectra, the AGC target was set to 10,000
ions, maximum fill time was 200 ms, supplemental acti-
vation was enabled, and the reaction time was set to 120
ms for doubly charged precursor ions and 80 ms for triply
charged precursor ions, reduced in a charge-dependent
manner for higher charged precursor ions. Reagent ion
target was 300,000 ions with a maximum fill time of 80
ms for ETD, and the reagent ion source chemical ioniza-
tion (CI) gas pressure was tuned whenever indicated to
ensure adequate fluoranthene signal. For HCD spectra, a
stepped collision energy was employed with two steps at
42% and 58% normalized collision energy to permit both
identification and quantification.

To fragment peptides close to the apex of the elution
signal, the chromatography feature was activated using
a correlation of 0.8 and an expected peak width of 10
s. In all cases, one microscan was recorded. The isola-
tion window was 2.4 m/z for spectra recorded in the ion
trap and 1.6 m/z for spectra recorded in the Orbitrap to
minimize interference with iTRAQ quantification by pre-
cursor ions with similar 7/z. To avoid oversampling, the
m/z values of precursor ions selected for fragmentation
were subsequently excluded for 180 s using a dynamic
exclusion window of £5 ppm, with the early expiration
feature deactivated. Database searches were performed
on both ion trap and Orbitrap tandem mass spectra for
identification while quantification was based on iTRAQ
reporter ions extracted from Orbitrap tandem mass spec-
tra. Measurements were started with SCX fractions sepa-
rated from one another by 10 min of elution time during
strong cation exchange separation. Subsequently, adja-
cent SCX fractions were measured using exclusion lists
of peptides identified in adjacent SCX fractions to max-
imize proteome coverage. The exclusion lists were based
on a retention time window of 2 min before and 4 min
after the retention time of the peptide identified in the
adjacent SCX fraction, the exact theoretical m/z of the
identified peptide and a tolerance window +7.5 ppm. To
make efficient use of the exclusion lists, monoisotopic
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precursor selection was enabled and preview mode was
deactivated.

The mass spectrometry proteomics data have been
deposited with the ProteomeXchange Consortium [64]
via the PRIDE partner repository [65] with the data set
identifier PXD000478.

Data analysis

Data generated by LC-MS/MS analysis were searched
against a database containing a translation of all open
reading frames in FlyBase (r5.25) [66] and common con-
taminants, concatenated to a reversed decoy database so
that the FDR could be estimated using the target-decoy
strategy [67]. Proteome Discoverer (version 1.3.0.211,
Thermo Fisher Scientific) was used as a search engine
interface for Mascot [68], Sequest [69], X!-Tandem
[70] and ZCore [71]. Oxidation of methionine was
set as dynamic modification, and methylthio (C) and
iTRAQ4plex label (K, N-terminus) as static modifications.
The minimal peptide length was set to seven amino acids,
and a maximum of two missed cleavages was allowed for
trypsin- and LysC-digested samples. To allow for an inte-
grative analysis of transcriptome and proteome data, pro-
tein level changes were determined using only peptides
that mapped unambiguously to one gene. Peptides that
could be derived from proteins encoded by different gene
models (‘shared peptides’) were excluded [72]. Further-
more, only peptides that showed less than a twofold differ-
ence between duplicate iTRAQ channels were included in
the analysis. Peptide identifications from different search
engines were combined using a modified version of the
combined FDR score [73]. Reporter ion intensities were
corrected for isotope impurities in the iTRAQ labels. To
account for the error structure and stabilize the variance
of the reporter ion intensities, a variance stabilizing trans-
formation was applied [74]. Protein ratios were calculated
as the 20% trimmed mean from the median-centered pep-
tide ratios [74]. Proteins were filtered for a maximum FDR
of 5% [75].

Selected reaction monitoring assays

To validate iTRAQ quantification using an indepen-
dent label-free method, SRM assays were performed on
selected proteins. Suitable peptides were selected from
either the iTRAQ data set or the Peptide Atlas [76]
or were predicted in silico. The selection process was
aided by MRM Pilot Software (AB Sciex). In addition,
three peptides each from four different proteins (fructose-
bisphosphate aldolase [UniProt:P07764], heat shock pro-
tein 70 kDa [UniProt:P11147], enolase [UniProt:P15007]
and phosphoglycerate kinase [UniProt:Q3KN29]) that
were found unregulated in the iTRAQ data set were
used to normalize the runs from wild-type and brat
samples. Unlabeled protein extracts were separated by
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one-dimensional reversed-phase nanoHLPC on an Ulti-
mate 3000 (Thermo Fisher Scientific). Samples were
loaded onto a trapping column (PepMap C18, 5 pm, 100
A, 5 mm x 0.3 mm i.d.) using 0.1% TFA at a flow rate
of 20 pl/min and desalted for 20 min. Peptides were sep-
arated on a 250 mm x 75 pm id. analytical column
(PepMap C18, 3 um, 100 A) at a flow rate of 300 nl/min
by applying the following gradient: in 130 min from 0
to 100% B, in 30 min to 100% C, held for 5 min at
100% C before re-equilibration with 100% A (A: 5% ACN,
0.1% FA; B: 30% ACN, 0.1% FA; C: 80% ACN, 10% 2,2,
2-trifluoroethanol, 0.08% FA). The nanoLC was directly
coupled to a QTRAP4000 hybrid triple quadrupole/linear
ion-trap instrument (Applied Biosystems). Transitions
were validated via MS2 spectra and the best two to three
transitions per peptide were selected for quantification.
Peptides that could not be verified by MS2 were synthe-
sized in-house on a Syro Peptide Synthesizer (MultiSyn-
tech) and used as standards to determine retention time
and optimal transitions. For quantification runs, 2 pg of
unlabeled protein extract was injected and the mass spec-
trometer was operated in SRM mode without acquisition
of MS2 spectra. Transitions were monitored either with
a fixed dwell time of 100 ms for candidate proteins and
50 ms for normalization peptides, or by scheduled SRM.
Peak area integration was done with the MultiQuan 1.0
software (Applied Biosystems).

Bioinformatics

All statistical analyses were performed using the R pro-
gramming language [77]. Primary sequence features like
codon adaptation index, molecular weight and isoelec-
tric point were calculated using EMBOSS applications
[78]. Hydrophobicity was calculated according to [79]. For
every gene, the longest FlyBase-annotated 5’ UTR, coding
sequence and 3’ UTR were used. The hypergeometric test
was applied for KEGG enrichment analysis and corrected
for multiple testing.

To determine if the correlations between transcript and
protein level changes for different biological pathways
were significantly different from the global correlation,
random sampling experiments were performed with the
sample size matching the number of proteins quantified
in each pathway. For every pathway, a skew-normal distri-
bution was fitted to the Spearman correlation coefficient
distribution of 10,000 random samples and the P value
was estimated [80].

To control for the different spread of regulation in dif-
ferent pathways on the transcript or protein level, the
gene list was rank-ordered according to transcript or
protein level change, respectively, and random samples
were drawn out of the 20 closest neighbors of each gene
in the pathway under investigation, thereby maintaining
the pathway-specific range of regulation. The correlation
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coefficients of 10,000 random samples were calculated
and a skew-normal distribution was fitted to estimate the
P value.

Transcript and protein level changes were expressed as
logy-fold changes and z-transformed. For co-regulation
analysis, transcript and protein z values were quantile
normalized. Co-regulation between two genes A and B
was expressed as the absolute difference between their
normalized z values d4_pg, with small values indicat-
ing co-regulation. This value measured the co-regulation
of complex subunits irrespective of their stoichiometric
composition. We define a protein complex as consisting
of at least three different subunits, and we distinguish
two categories of protein—protein interactions: random
protein pairs that generally do not interact and inter-
acting proteins that are members of the same protein
complex.

List of abbreviations

ACN, acetonitrile; AGC, automatic gain control; bp, base
pair; CDS, coding sequence; CID, collisional-induced dis-
sociation; DPiM, Drosophila protein interaction map;
elF3, eukaryotic initiation factor 3; ETD, electron trans-
fer dissociation; FA, formic acid; FDR, false discovery
rate; FPKM, fragments per kilobase of transcript per mil-
lion mapped fragments; HCD, higher energy C-trap dis-
sociation; iTRAQ, isobaric tag for relative and absolute
quantification; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LC-MS/MS, liquid chromatography-tandem
mass spectrometry; MCM, minichromosome mainte-
nance complex; miRNA, microRNA; PCR, polymerase
chain reaction; rRNA, ribosomal RNA; SCX, strong cation
exchange; SRM, selected reaction monitoring; TEAB,
triethylammonium bicarbonate; TRiC/CCT, TCP-1 ring
complex or chaperonin-containing TCP-1 complex; UTR,
untranslated region.

Additional files

Additional file 1: Figure S1.iTRAQ reproducibility. (A) Technical
reproducibility of iTRAQ protein quantification. (B) Technical reproducibility
between iTRAQ and label-free SRM protein quantification. Error bars
indicate standard deviations. (C) Reproducibility of protein level changes
between biological replicates measured with SRM and iTRAQ. Error bars
indicate standard deviations. (D) Venn diagram showing the number of
quantified unique peptides in the trypsin- and LysC-digested samples. The
samples were largely complementary: only 16% of the quantified peptides
were identical. (E) Venn diagram showing the number of quantified
proteins from the trypsin and LysC samples. This shows that 75% of the
proteins were quantified in both samples. (F) Correlation of iTRAQ protein
quantification using either trypsin- or LysC-digested samples.

Additional file 2: Figure S2. Analysis of proteome coverage. For each bin
the number of annotated (dark gray), expressed (light gray) and quantified
proteins (white) are shown together with the percentage of quantified
proteins (red). (A) Proteome coverage is higher for proteins predicted by
the codon adaptation index to be more abundant. The blue line indicates
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the percentage of quantified proteins from all annotated protein. (B)
Proteome coverage is higher for larger proteins. (C) Proteome coverage is
lower for very hydrophobic proteins. (D) Proteome coverage is higher than
60% for all isoelectric points.

Additional file 3: Figure S3. Correlation of protein level change with
transcript abundance. Correlation of protein level change with transcript
abundance in (A) wild-type and (B) brat samples.

Additional file 4: Cytoscape protein interaction network. Cytoscape
file containing log,-fold expression changes on mMRNA and protein levels
combined with DPiM protein interaction data. The centers of the nodes
indicate protein expression changes and the borders of the nodes mRNA
expression changes. Blue represents downregulation, red represents
upregulation and the color intensity is proportional to the level of
regulation. Transcripts and proteins not quantified are shown in gray.
Protein interactions are depicted as light green lines and their thickness is
proportional to the interaction strength.

Additional file 5: Figure S5. Complex co-regulation. Protein-complex
co-regulation on the mRNA level. Transcripts encoding subunits of
annotated protein complexes (red) are significantly more co-regulated
than random pairs (green).

Additional file 6: Data set of transcriptome and proteome changes.
Complete data set of transcript and protein quantification data, containing
FlyBase gene number, gene name, protein level change (log,-fold change),
standard deviation of log; protein level change, number of quantified
spectra, transcript level change (log,-fold change), brat FPKM, control
FPKM, standard deviation of brat FPKM and standard deviation of control
FPKM. Since a double-labeling approach was performed, each quantified
spectrum contains two reporter ions from both brat and control samples.
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