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Abstract

Background: Advances in sequencing technology have boosted population genomics and made it possible to
map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS
variability by combining transcription factor binding maps generated by ENCODE, modENCODE, our previously
published data and other sources with genomic variation data for human individuals and Drosophila isogenic lines.

Results: We introduce a metric of TFBS variability that takes into account changes in motif match associated with
mutation and makes it possible to investigate TFBS functional constraints instance-by-instance as well as in sets
that share common biological properties. We also take advantage of the emerging per-individual transcription
factor binding data to show evidence that TFBS mutations, particularly at evolutionarily conserved sites, can be
efficiently buffered to ensure coherent levels of transcription factor binding.

Conclusions: Our analyses provide insights into the relationship between individual and interspecies variation and
show evidence for the functional buffering of TFBS mutations in both humans and flies. In a broad perspective,
these results demonstrate the potential of combining functional genomics and population genetics approaches for
understanding gene regulation.

Background
Gene expression is tightly controlled by transcription
factors (TFs) that are recruited to DNA cis-regulatory
modules (CRMs). Many TFs have well-documented
sequence preferences for their binding sites (transcrip-
tion factor binding sites (TFBSs)) [1]. However, in con-
trast to the startling simplicity of the amino acid code,
the ‘regulatory code’ at CRMs has a more ambiguous
relationship between sequence and function. Chromatin
immunoprecipitation (ChIP) coupled with genome-wide
analyses have made it possible to map TF binding posi-
tions globally in vivo, which in some cases can serve as
good predictors of CRM transcriptional outputs [2-4].
At the same time, these analyses often cannot explain
the exact rules underlying TF binding to a given
sequence, and functional prediction based on sequence
alone has had limited success, in particular in mamma-
lian systems [5].

Evolutionary analyses across species have proven to be
a powerful approach in elucidating the functional con-
straints of DNA elements, in particular protein-coding
genes, but are less interpretable in the context of CRM
architecture [6,7]. In part, this is due to the fact that
CRMs often have a ‘modular’, rather than ‘base-by-base’,
conservation that may escape detection by conventional
alignment-based approaches [8]. Moreover, conservation
in DNA binding profiles can be detected even without
apparent DNA sequence constraint [9]. Even at the level
of individual TFBSs, differences in sequence may be
hard to interpret - as such differences, for example, may
reflect evolutionary ‘fine-tuning’ to species-specific fac-
tors to preserve uniform outputs rather than signifying a
lack of functional constraint [6,10-12].
A complementary way to analyze the relationship

between sequence and function is to explore intra-spe-
cies (that is, polymorphic) variation of functional ele-
ments. Variation at DNA regulatory elements is
relatively common and at least a fraction of it falls
directly at TFBSs [13,14]. While some regulatory var-
iants have been associated with major changes in
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transcription factor binding [15-17], gene expression
[18,19] and disease phenotypes [20], many others do not
result in apparent aberrations in function. This differ-
ence in itself suggests that analyzing TFBS variability in
the context of the same species may lead to insights
into cis-regulatory logic. For example, high tolerance of
a binding site to deleterious variation may indicate that
such variation is effectively ‘buffered’, either at the level
of the same regulatory module or elsewhere in the
system.
Until recently, large-scale population genomics studies

of metazoan TFBSs were unthinkable because of the
limited number of available genotypes and global TF
binding profiles. However, advances in sequencing tech-
nology have paved the way for high-throughput efforts,
such as the human 1000 Genomes project [21] and Dro-
sophila Genetic Reference Panel (DGRP) [22], that are
making available an increasing number of individual
genomes originating from the same population. Com-
bining these data with the binding maps of dozens of
TFs in both species generated by the Encyclopedia of
DNA Elements (ENCODE) for human [23], and mod-
ENCODE and other published sources in Drosophila
[2,24-30] has provided an unprecedented resource for
analyzing TFBS functional constraints.
Here we use three different approaches to take advan-

tage of variation data in this context. First, we analyze
TFBSs position-by-position to confirm that the levels of
variation are generally consistent with TFBSs functional
constraints predicted by their position weight matrix
(PWM) models and highlight some intriguing excep-
tions. Next, we draw inspiration from Haldane’s [31]
and Muller’s [32] genetic load model to devise a metric
of TFBS variation that takes into account the loss of
PWM match score associated with a mutation and
makes it possible to investigate per-instance TFBS func-
tional constraints. Finally, we take advantage of per-indi-
vidual binding maps for a human transcription factor
(CTCF) to highlight the ‘buffering’ of genetic variation
at TFBSs at the level of binding, particularly in evolutio-
narily conserved regions.

Results
We aim to analyze TFBS functional constraints using
the binding data generated by the ENCODE, modEN-
CODE and published sources. Prior to these global ana-
lyses, however, we first examined the relationship
between binding sites’ match to consensus, their conser-
vation and variation using three well-characterized Dro-
sophila TFs, Twist (Twi), Biniou (Bin) and Tinman
(Tin), which have large numbers of TFBSs whose gen-
eral occupancy is predictive of specific spatio-temporal
activity [2]. The discovered PWMs for these TFs from
both in vitro and in vivo studies are good predictors for

their binding [2] and their binding sites show an appre-
ciable level of variation, presumably much of which is
deleterious but not lethal. For these TFs, 24 to 28% of
the bound sites overlapped with SNPs identified by the
DGRP [22] in 162 isogenic lines of Drosophila melano-
gaster (hereafter we refer to variation across these lines
as ‘individual variation’). As expected, variation at the
same sequences detected outside of TF-bound regions
(that is, at potentially random motif matches) was even
higher, with 35% of them containing known SNPs
(Fisher test, P < 1e-50 compared to the bound sites).
Focusing on the TF-bound instances of Twi, Bin and

Tin motifs, we first analyzed sequence variation at each
motif position across 12 Drosophila species (Figure 1a)
and across D. melanogaster individuals (Figure 1b). As
expected, TF-bound motifs both are conserved across
evolutionary distance and show depressed levels of var-
iation across individuals compared to either their
respective flanking regions (Figure 1a,b), reshuffled
motifs, unbound motifs or the third bases of Gly codons
considered to be evolutionarily neutral (Figure S1A in
Additional file 1). Based on these observations, we con-
clude that the quality and genetic diversity of the DGRP
make it suitable for global analyses of TFBS variation
and these data are unlikely to elicit a prohibitive bias.
PWMs are an established way of representing the

sequence preferences of TFBSs, with PWM match
scores reflecting the similarity of a given sequence to
the hypothetical ‘ideal’ binding site for a given TF [33].
To study the relationship between PWM scores and var-
iation, we compared the variation properties of Twi, Bin
and Tin motifs at three score ranges (’strong’, ‘medium’
and ‘weak’ scoring). Weaker (that is, potentially ‘less
optimal’) motifs generally showed higher levels of indivi-
dual variation (Figure 1c), as further confirmed using
only the strongest scoring sites from each bound region
to reduce the contribution of non-functional motif
matches (Figure S1B in Additional file 1). This result is
consistent with the expectation that selection would pre-
dominantly work towards increasing TFBSs’ match to
consensus [34]. We revisit this question more formally
later in the study.
As well as looking across the entire PWM, we can

consider each motif position in turn. Consistent with
previous findings for other TFs in yeast [35] and Droso-
phila [36], cross-species variation at Twi, Bin and Tin
motif positions strongly anti-correlated with their infor-
mation content (Figure 1a; Figure S2 in Additional file
1). Variation across individuals also anti-correlated with
positional information content (Figure 1d), confirming
the general link between evolutionary conservation and
population diversity [37]. There are, however, some
interesting exceptions. For example, positions 6, 7 and
12 of the Twi motif are less varied in the population
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Figure 1 Position-wise variation properties of three well-characterized developmental TFs from Drosophila melanogaster. (a)
Interspecies diversity at bound motif positions and motif flanks. Diversity is expressed as 1-phastcons scores [64] per position across 15 insect
species normalized to these scores for the scrambled versions of the same motifs detected within the respective TF-bound regions. TF ‘binding
logo’ representations of motif PWMs are shown below each plot. (b) Within-species diversity at bound motif positions and motif flanks,
expressed as genetic diversity (D) [78] per position across 162 isogenic lines of D. melanogaster from the DGRP normalized to the same metric
for the scrambled versions of the motifs detected within the respective TF-bound regions. Asterisks indicate positions showing significantly
reduced variation compared to the scrambled motifs (relative diversity <1; permutation test P < 5e-3). TF ‘binding logo’ representations of motif
PWMs are shown below each plot. The non-normalized versions of the same plots, including both TF-bound and all instances of these motifs
and their scrambled versions, are shown in Figure S1 in Additional file 1. (c) Within-species diversity per motif position across the three score
ranges labeled grey to red in the increasing order: weak (Twi and Tin, 3 to 5; Bin, 5 to 8), medium (Twi and Tin, 5 to 7; Bin, 8 to 10) and strong
(Twi and Tin, >7; Bin, >10). (d) Inverse correlation between individual variation at motif positions (x-axis) and positional information content
according to motifs’ PWM (y-axis). Variation is expressed in the same terms as in (b). Numbers beside the dots indicate motif positions; r is the
Pearson’s correlation coefficients for each TF. The same plots for cross-species variation are shown in Figure S2 in Additional file 1.
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than would be expected from their information content
(Figure 1d, left panel). These positions correspond to
the ‘spacer’ region of the CANNTG E-box consensus
motif recruiting basic helix-loop-helix (bHLH) proteins,
for which specific sequence preferences were documen-
ted depending on specific dimerization partners [38].
Similarly, we found the first two positions of the Bin
motif to be highly constrained despite their very low
information content (Figure 1d, middle panel), suggest-
ing that these positions may also be subject to specific
restrictions depending on the cis-regulatory context of
each motif instance. From this analysis we conclude that
PWMs that have a strong correlation between informa-
tion content and cross-species conservation are likely to
be good descriptors of TF sequence binding preferences
in a population context.
We now turn to the human (ENCODE [23]) and Dro-

sophila datasets (combined from modENCODE and
other studies [2,24-30]), selecting for analysis those TFs
for which position-wise conservation across species gen-
erally correlated with PWM information content. This
initial filtering was done to ensure that PWMs included
in the analysis reflected the global sequence constraints
of these TFs’ binding sites and could therefore be used
to compare such constraints across TFBS instances, as
presented below. Additional filtering criteria were used
to ensure sufficient statistical power (in particular with
respect to the total number of sites showing variation)
and specificity of the analysis, resulting in the final data-
set of 15 Drosophila and 36 human motifs (see Materials
and methods and Supplementary note on TF selection
in Additional file 1 for details). As before, we used
DGRP data [22] to assess individual variation at Droso-
phila TFBSs, while for the humans we used Central Eur-
opean (CEU) genotypes sequenced as part of the 1000
Genomes Pilot Project [21] (using a Yoruban population
instead of CEU yielded consistent results; not shown).
Similar to our findings for the three Drosophila TFs, we
observed reduced levels of individual variation at func-
tional binding sites compared to reshuffled motif
matches and flanking regions for other Drosophila fac-
tors as well as human TFs (Figure 2a). Notably, the sig-
nificance of this effect was similarly high in Drosophila
and humans, despite the fact that the SNP frequency
differed approximately 11-fold (2.9% versus 0.25%,
respectively), as closely reflected by the 7.5-fold differ-
ence in the number of varying TFBSs. This is consistent
with the overall differences in the total number of SNPs
detected in these two species, likely resulting from their
different ancestral effective population sizes [39]. We
also observed a significant anti-correlation between var-
iation frequency at motif positions and their information
content in both species (Figure 2b).

So far we have been aggregating TFBSs position-by-
position, which limits the scope of questions that could
be addressed using these data. This has prompted us to
devise a constraint metric that could be computed for
individual motif instances and compared between het-
erologous TFBS subsets defined on the basis of their
biological properties. The results presented above con-
firm the expected model that the deleterious effect of
TFBS variation depends on how much it perturbs the
motif consensus. Therefore, we proposed to express the
deleterious effect of TFBS mutations in terms of ‘muta-
tional load’, a known population genetics metric that
combines the frequency of mutation with predicted phe-
notypic consequences that it causes [31,32] (see Materi-
als and methods for details). We adapted this metric to
use the reduction in PWM score associated with a
mutation as a crude but computable measure of such
phenotypic consequences. For example, the load of a
motif instance for which no variation is observed equals
zero, while the load of a motif instance with a common
mutation mapping to it that results in a severe loss of
PWM match score is close to 0.5 (see Figure 3a for
real-life examples). As would be expected for a metric
quantifying deleterious effects, motif load showed a
monotonic decreasing distribution in both flies and
humans (Figure S3 in Additional file 1).
We do not assume that TFBS load at a given site

reduces an individual’s biological fitness. Rather, we
argue that binding sites that tolerate a higher load are
less functionally constrained. This approach, although
undoubtedly a crude one, makes it possible to consis-
tently estimate TFBS constraints for different TFs and
even different organisms and ask why TFBS mutations
are tolerated differently in different contexts. Conceptual
and statistical considerations associated with TFBS load
are discussed at length in Materials and methods; here
we will only outline several major points. First, since
binding events limited to minor alleles are likely to be
overlooked by a single-genome ChIP analysis, we com-
pute the decrease in PWM match score relative to the
major and not the highest-scoring allele as in the ‘clas-
sic’ genetic load metric. In addition, since we focus on
the deleterious effects of variation, we have assumed
that mutations yielding increased PWM match scores
have a load of zero. We avoided the use of negative load
values for these ‘gain-of-score’ mutations, as it is possi-
ble that such mutations will often be near-neutral, while
in some cases they may even be deleterious.
Most of the analyzed TFBSs have no detected varia-

tion, in particular in human, and therefore a zero load.
This affects the statistical power, making it challenging
to examine many TFs one-by-one. However, analyzing
the data globally for all included TFs in each organism
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has allowed us to identify a number of significant
trends, as presented below. Technically, the high pro-
portion of sites with no detected variation also leads to
a considerable zero-inflation of TFBS load distributions,
which violates the assumptions of conventional signifi-
cance tests. Therefore, instead we estimate significance
by using permutation tests, as further described in
Materials and methods. For the same reason, we also
chose to present average (more precisely, trimmed
mean) TFBS load values in many comparative analyses
as a metric that reflects both the frequency of variation
(that is, zero versus non-zero load) and the intensity of
its effect (that is, the distribution of non-zero load).

We first asked whether motif load would be able to
detect the expected link between evolutionary and indi-
vidual variation. We used a published metric, branch
length score (BLS) [40], to characterize the evolutionary
conservation of a motif instance. This metric utilizes
both a PWM-based model of the conservation of bases
and allows for motif movement. Reassuringly, muta-
tional load correlated with BLS in both species, with
evolutionarily non-conserved motifs (BLS = 0) showing
by far the highest degree of variation in the population
(Figure 3b). At the same time, approximately 40% of
human and fly TFBSs with an appreciable load (L > 5e-
3) still mapped to reasonably conserved sites (BLS > 0.2,

Figure 2 Individual variation of the binding sites for 15 Drosophila and 36 human TFs selected for this study. (a) Distributions of
position-wise diversity at motif positions (red), scrambled motifs and motif flanks at the TF-bound regions of Drosophila (left panel) and human
(right) TFs; P-values are from Kruskal-Wallis non-parametric significance tests. (b) Violin plots (a combination of boxplots and two mirror-image
kernel density plots) showing the correlation between individual variation and information content per motif position for the bound instances of
Drosophila (left) and human (right) TFs included in this study (top, red) and their scrambled versions detected within the same bound regions
(bottom, grey); P-values are from Wilcoxon two-sample non-parametric significance tests.
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approximately 50% percentile in both organisms),
demonstrating that score-reducing mutations at evolu-
tionarily preserved sequences can be tolerated in these
populations.
Earlier in the study we have shown evidence that

‘weaker’ motifs (that is, those with a poorer PWM
match) are more prone to variation, suggesting that they
are less functionally constrained. Weaker sites have

many more possible variants with similar match scores,
while mutations at stronger sites are less likely to pre-
serve their match. Motif load is based on the decrease
in PWM score associated with mutations and not
sequence variation per se and is therefore more ‘pro-
tected’ from this bias. Using this metric, we confirmed
our original findings, suggesting that TFBSs with higher
PWM scores are generally more functionally constrained

Figure 3 Motif mutational load of Drosophila and human TFBSs located within different genomic contexts. (a) Examples of mutational
load values for individual instances of four human TFs (ranging from high to very low) showing different combinations of parameters that are
combined in this metric: the reduction of PWM match scores at the minor allele (’ΔPWM score’) and the number of genotypes within the
mutation in the population (minor allele frequency (MAF)). (b) Relationship between phylogenetic conservation and motif mutational load for D.
melanogaster (left) and human (right) TFs included in this study. Conservation is expressed as per-instance branch length scores (BLSs) for each
instance computed against the phylogenetic tree of 12 Drosophila species. The average load for D. melanogaster-specific sites (BLS = 0) is shown
separately as these have an exceptionally high motif load. (c) Relationship between motif stringency and motif load in Drosophila (left) and
humans (right). Motif stringency is expressed as scaled ranked PWM scores grouped into five incremental ranges of equal size (left to right), with
average motif load shown for each range. (d) Relationship between distance from transcription start site (TSS) and motif load in Drosophila (left)
and humans (right) for all analyzed TFs excluding CTCF (top) and for CTCF alone (bottom), with average motif load shown for each distance
range. (b-d) Average motif load is computed excluding a single maximum value to reduce the impact of outliers. The P-values are from
permutation tests, in which permutations are performed separately for each TF and combined into a single statistic as described in Materials and
methods.
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compared to ‘weaker’ sites (Figure 3c). The fraction of
detected sites mapping to bound regions remained simi-
lar across the whole analyzed score range, suggesting
that this relationship is unlikely to be an artifact of
higher false-positive rates at ‘weaker’ sites (Figure S4A
in Additional file 1). This global observation, however,
does not rule out the possibility that a weaker match at
some sites is specifically preserved to ensure dose-speci-
fic TF binding. This may be the case, for example, for
Drosophila Bric-à-brac motifs, which exhibited no corre-
lation between motif load and PWM score (Figure S4B
in Additional file 1), consistent with the known dosage-
dependent function of Bric-à-brac in embryo patterning
[41].
We then used motif load to address whether TFBSs

proximal to transcription start sites (TSSs) are more
constrained compared to more distant regulatory
regions. We found this to be the case in human, but not
Drosophila (Figure 3d; see Discussion). CTCF binding
sites in both species were a notable exception, tolerating
the lowest mutational load at locations 500 bp to 1 kb
from TSSs, but not closer to the TSS (Figure 3d, bottom
panel), suggesting that the putative role of CTCF in
establishing chromatin domains [42] is particularly
important in proximity of gene promoters.
We then considered the genome-wide properties of

the mutational load metric. Recombination rates are dis-
tributed unevenly along Drosophila chromosomes (Fig-
ure 4a, dashed lines) [22,43]; however, we did not
observe an association between the TFBS load and local
recombination rates (Figure 4a; Figure S5 in Additional
file 1). Rather, the analysis of selected ‘high-load hot-
spots’ (average load per 100 kb window >5e-3) revealed
regions in which motifs with deleterious variation
mapped in close proximity to other motifs for the same
TF (see Figure 4b for examples). This suggested that
TFBS mutations may be partially ‘buffered’ by neighbor-
ing motifs. Consistent with this model, we found that
motifs for at least four Drosophila TFs tolerated a signif-
icantly lower load when present as ‘singletons’ compared
to sites with two motifs (Figure 4c), particularly for evo-
lutionarily conserved instances. Interestingly, TFs whose
binding sites had a higher mean load generally had
more motifs per ChIP region (Figure 4d), raising the
possibility that a higher number of motifs may allow a
TF to tolerate a higher load. The PWM scores of vari-
able motifs were similar to those of ‘constant’ motifs in
their proximity (Figure 4e); it is unlikely, therefore, that
these variable motifs are non-functional a priori.
To gain further insight into the functional effects of

TFBS mutations, we used a dataset that mapped human
CTCF binding sites across four individuals from [16]
(see Materials and methods for more details). TFBS
mutations detected in this dataset often did not result in

a significant loss of binding, with approximately 75% of
mutated sites retaining at least two-thirds of the binding
signal. This was particularly prominent at conserved
sites (BLS >0.5), 90% of which showed this ‘buffering’
effect (Figure 5a). To address whether buffering could
be explained solely by the flexibility of CTCF sequence
preferences, we analyzed between-allele differences in
the PWM score at polymorphic binding sites. As
expected, globally CTCF binding signal correlated with
the PWM score of the underlying motifs (Figure S6A in
Additional file 1). Consistent with this, alleles with
minor differences in PWM match generally had little
effect on the binding signal compared to sites with lar-
ger PWM score changes (Figure 5b), suggesting that the
PWM model adequately describes the functional con-
straints of CTCF binding sites. At the same time, we
found that CTCF binding signals could be maintained
even in those cases where mutations resulted in signifi-
cant changes of PWM score, particularly at evolutiona-
rily conserved sites (Figure 5c). A linear interaction
model confirmed that the effect of motif mutations on
CTCF binding was significantly reduced with increasing
conservation (Figure 5d; interaction term P = 2.9e-2).
These effects were not due to the presence of additional
CTCF motifs (as 96% of bound regions contained only a
single motif), while differences between more and less
conserved sites could not be explained away by differ-
ences in the PWM scores of their major alleles (not
shown). A CTCF dataset from three additional indivi-
duals generated by a different laboratory [44] yielded
consistent conclusions (Figure S6B-D in Additional file
1), suggesting that our observations were not due to
overfitting.
Taken together, CTCF binding data for multiple indi-

viduals show that mutations can be buffered to maintain
the levels of binding signal, particularly at highly con-
served sites, and this effect cannot be explained solely
by the flexibility of CTCF’s sequence consensus. We
asked whether mechanisms potentially accountable for
such buffering would also affect the relationship
between sequence and binding in the absence of muta-
tions. Training an interaction linear model across the
whole set of mapped CTCF binding sites revealed that
conservation consistently weakens the relationship
between PWM score and the binding intensity (P =
1.9e-7; Figure 5e). Thus, CTCF binding to evolutionarily
conserved sites may generally have a reduced depen-
dence on sequence.

Discussion
Deciphering the cis-regulatory ‘logic’ of gene regulation
is one of the biggest challenges genomics faces today.
Understanding the functional constraints of regulatory
elements across species has been the focus of much
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Figure 4 Evidence for the ‘buffering’ of deleterious TFBS variation by neighboring homotypic motifs in Drosophila. (a) Distributions of
average motif load per 100 kb window along Drosophila chromosome 2R and chromosome X (yellow; see Figure S5 in Additional file 1 for
other chromosomes). Recombination rate distributions along the chromosomes (dashed lines) are from [22] (and are near-identical to an earlier
analysis [43]); note that there is no apparent correlation between these two parameters. Regions of high average motif load marked with
asterisks are further examined in (b). Average motif load is computed excluding a single maximum value to reduce the impact of outliers. (b)
Examples of motif arrangement at regions that fall within 100 kb windows having high average motif load (L >5e-3). Motifs with no detected
deleterious variation (L = 0) are colored grey, and those with non-zero load pink (low load) to red (high load). Asterisks refer to similarly labeled
peaks from (a). Note that most high-load motifs found in these regions have additional motifs for the same TF in their proximity. (c)
Distributions of average load across ranges of phylogenetic conservation for motifs with a single match within a bound region (’singletons’, blue)
versus those found in pairs (’duplets’, red). For equivalent comparison, a random motif out of the duplet was chosen for each bound region and
the process was repeated 100 times. Results are shown for the four TFs for which appreciable differences between ‘singletons’ and ‘duplets’
were detected. Phylogenetic conservation is expressed in terms of branch length score (BLS) ranges, similarly to Figure 2b. The P-value is from a
permutation test for the sum of average load differences for each range between ‘singleton’ and ‘duplet’ motifs. Average load was computed
excluding a single maximum value. (d) Relationship between the average load per TF and the average number of motifs per bound region.
Average load was computed excluding a single maximum value; r is Pearson’s correlation coefficient and the P-value is from the correlation test.
(e) The difference in motif score between motif pairs mapping to the same bound regions: the one with the highest load versus one with a
zero load (’constant’; left) or in random pairs (right). These results suggest that the major alleles of motifs with a high load are generally not
‘weaker’ than their non-varying neighbors (the P-value is from the Wilcoxon test).
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Figure 5 Evidence for the ‘buffering’ of variation at conserved CTCF binding sites. (a) Proportion of homozygous polymorphic CTCF
binding sites with ‘buffered’ levels of ChIP signal depending on the sites’ evolutionary conservation (less conserved, BLS <0.5; more conserved,
BLS ≥0.5). Sites at which the minor variant retained at least two-thirds of the major variant’s signal were considered as ‘buffered’. The P-value is
from the Fisher test. Major and minor variants were defined on the basis of the global allele frequency data from [75,76]. (b) Differences in the
CTCF binding signal (Δ ChIP signal) at homozygous polymorphic sites that show either ‘low’ (left) or ‘high’ (right) disparity in absolute motif
match scores (Δ motif score) between the variants (<1 or >1, respectively). The ChIP signals are sign-adjusted relative to the direction of PWM
score change. Site-specific signals from multiple individuals with the same genotype, where available, were summarized by mean. The P-value is
from the Wilcoxon test. (c) Genotype-specific differences in the CTCF ChIP signal across individuals between homozygous polymorphic sites with
appreciable differences in absolute PWM match scores (Δ motif score >1) at less conserved (BLS <0.5, left) and more conserved (BLS >0.5, right)
CTCF motifs. The ChIP signals are sign-adjusted relative to the direction of PWM score change. Site-specific signals from multiple individuals with
the same variant, where available, were summarized by mean. The P-value is from the Wilcoxon test. (d) An interaction linear model showing
that interspecies motif conservation (expressed by branch length scores) reduces the effect of motif mutations on CTCF binding. Shown are the
effect plots predicting the relationship between the change of PWM score (at the minor versus the major variant) and the change of the
associated ChIP signal at three hypothetical levels of evolutionary conservation: BLS = 0 (low; left); BLS = 0.5 (medium; middle); and BLS = 1
(high; right). Major and minor variants were defined on the basis of the global allele frequency data from [75,76]. (e) An interaction linear model
showing that interspecies motif conservation (BLS) reduces the effect of motif stringency on the binding signal. Shown are the effect plots
predicting the relationship between motif scores and ranked ChIP signal at three hypothetical conservation levels: BLS = 0 (low; left); BLS = 0.5
(medium; middle); and BLS = 1 (high; right). (f) A schematic illustrating the observed effect of binding site mutations on CTCF binding signal at
two polymorphic CTCF sites - one poorly conserved (BLS = 0.03, left) and one highly conserved (BLS = 0.84, right) - that have similar motif
match scores (14.9 and 14.2, respectively). Sequences of higher- (top) and lower-scoring alleles (bottom) are shown on the figure. Mutations
resulting in a similar loss of score (down to 12.5 and 11.8, respectively) resulted in a 53% loss of CTCF binding signal at the non-conserved site
(left, compare the amplitudes of top (blue) to bottom (red) curves), in contrast to a mere 6% at the conserved site (right).
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‘evo-devo’ research, leading to many exciting insights,
such as the preservation of CRM function without a
base-to-base preservation of sequence [9-11] and the
impact of protein-protein interactions [45]. Variation
across individuals presents a snapshot of ‘evolution in
action’, giving access to potentially suboptimal alleles
without having to resort to artificial perturbation, and
are a promising resource for population functional
genomics studies as well as more formal association
analyses. Such ‘pop-fun’ approaches will complement
the insights obtained from ‘evo-devo’ studies.
Here we have used three different approaches to

investigate TFBS functional constraints based on varia-
tion data. In the first one, using position-by-position
comparisons, we have found that variability at TFBS
positions generally correlates with information content,
consistent with previous findings based on cross-species
comparisons in Drosophila and human for other TFs
[35,36] and population studies in yeast [18]. It should be
noted that the majority of PWMs used in this study
have been derived from comparing the sequences across
all binding sites in one genome detected by genome-
wide ChIP studies. Variation analyses look at sequence
diversity in a different ‘dimension’: that is, across indivi-
duals at a particular point in the genome for each given
binding site. That these two dimensions generally corre-
late with each other (and often also with in vitro bio-
chemical data such as SELEX and protein binding
microarrays [46,47]) has been a reassuring confirmation
of the general validity of PWM models to describe the
sequence ‘code’ for the analyzed TFs. This, in turn, is an
important prerequisite for using PWM scores to com-
pute TFBS mutational load, a per-instance metric that
combines the penetrance of a motif mutation with the
loss of the PWM match it causes.
Cis-regulatory variation is accountable for serious

deleterious effects, and yet it is common [14,20]. Under-
standing TFBS functional constraints is therefore inter-
esting for at least two reasons. First, it may shed light
on the regulatory architecture of the genomes. For
example, our finding that CTCF motifs tolerate the low-
est load a short distance away from TSSs underlines the
importance of chromatin architecture at the distal ends
of promoter regions. In addition, TFBS constraints are
indicators of how the system deals with noise in cis-reg-
ulatory networks, and the variation analyses presented
here support such phenomena as homotypic redundancy
[48]. Interestingly, it was previously shown that homoty-
pic clustering does not affect Drosophila TFBS turnover
rate in the phylogenetic context [36], but the dynamics
of selection inside a population need not correspond to
that observed between species. For example, retaining
multiple instances of neighboring homotypic sites in a
given species may in itself bear the selective advantage

to provide robust buffering to variation and other
perturbations.
Genetic load, the concept that lies at the foundation of

our constraint metric, was initially put forward by J Hal-
dane [31] and HJ Muller [32], primarily in the context
of the debate on hard versus soft selection. Here, how-
ever, we use this metric outside of such context and
fully acknowledge that this is a crude, albeit computable
parameter. We do not imply that a high TFBS load
weakens the fitness of the individual bearing it, as would
be the case in the ‘classic’ application of this concept.
Rather, we take advantage of this concept to inquire
why this probably does not occur - that is, why muta-
tions at TFBSs are tolerated differently in different geno-
mic contexts, likely without causing a significant
reduction of an individual’s fitness.
There is no doubt that mutational load is an imperfect

metric. More sophisticated models linking fitness to the
PWM score have been developed for cross-species phy-
logenetic analyses [49,50] and their adaptation to popu-
lation studies, although likely not straightforward, would
be interesting to explore in the future. In addition, we
know that the basic assumption of PWM models - that
the frequency of nucleotide N at motif position K is
proportionate to its positive impact on the binding affi-
nity - does not always hold and even when it does, the
amplitude of this effect may not be fully consistent
across the TFs. Differences between motif sequences at
different genomic locations may reflect TFBS optimiza-
tion for a specific context rather than a lack of con-
straint. It was shown, for example, that differences at
just two positions of the glucocorticoid receptor motif
affect the choice of binding partners [51], while different
k-mers of the apparently degenerate RACRYNNNN-
NACG motif in yeast are associated with the regulatory
regions of genes with different functions [52]. It is possi-
ble, therefore, that some mutations resulting in a loss of
PWM match are, in fact, beneficial rather than deleter-
ious and may be indicative of positive selection that was
recently shown to occur at a fraction of Drosophila
TFBSs by He et al. [12]. However, in line with the
assumption of He et al., we believe that the predomi-
nant direction of positive selection would be towards
increasing PWM scores, and such mutations will have a
zero load according to our definition.
These limitations, however, are universal for the pro-

blem of modeling functional constraints based on
sequence alone. The predictive power of PWMs is prob-
ably comparable with our ability to predict the impact
of mutations on RNA and protein structure. The rapidly
increasing bulk of genotyping data will increase the sta-
tistical power of these analyses, but only experimental
validation of the effects of TFBS mutations can give a
definitive answer. This is why direct analyses of TF
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binding across individuals hold much promise. Using
multi-individual CTCF binding maps [16,44], it was
reassuring to confirm that the loss of CTCF binding
associated with a TFBS mutation is generally propor-
tionate to its impact on motif PWM match. But perhaps
more importantly, using these data has allowed us to
observe that this relationship does not always hold, sug-
gesting that variation at many sites, and in particular the
most evolutionarily conserved ones, can be efficiently
buffered at the binding level. We do not know the exact
nature of these buffering mechanisms, and whether their
prevalence at highly conserved sites is evolutionarily dri-
ven or is merely a side effect of the increasing complex-
ity of regulatory networks [53,54]. It can be expected
that such buffering effects would be, at least in part, due
to interactions with heterologous proteins. Given the
multifaceted functions of CTCF, it is very likely that
such interactions will involve different partners, depend-
ing on specific regulatory context. Studies of more ‘spe-
cialized’ TFs may therefore be more appropriate to
address these questions. For example, analyses of indivi-
dual variation at human NF�B [15] and yeast Ste12 [17]
pinpointed candidate interaction partners that affect the
binding in the absence of mutations at the analyzed
TF’s own binding sites. We attempted to use the NF�B
data to ask the reverse question, that is, look for factors
that may help maintain the binding when mutations at
conserved TFBSs are present; unfortunately, the number
of such cases was extremely low, prohibiting this analy-
sis. It is possible that mutations at conserved NF�B sites
are poorly tolerated, implying that they are less effi-
ciently ‘buffered’. However, studies involving a larger
number of individuals and/or using organisms with
higher variation rates, such as Drosophila, will be
required to adequately address this question.
Theoretically, TFBS mutations can be buffered at many

different levels - starting from the motif itself that may
‘absorb’ a number of mutations due to a permissive con-
sensus, to the level of CRMs (for example, homotypic
motifs and protein interaction partners), cis-regulated
genes (involving possible ‘backup’ by shadow enhancers
[55]) as well as further along the regulatory network [56]
- which may potentially explain the apparent redundancy
that is often observed in the network architecture, both
at the level of cooperative TF binding to enhancers and
multiple ‘cross-talking’ pathways [57]. Consistent with
previous observations at individual CRMs [58], our
observations suggest that much variation is buffered
immediately in cis, via the redundancy of TFBS consen-
sus sequences, neighboring homotypic motifs or other
factors preserving regulator binding (or at least the over-
all CRM output). If true, this model may explain two of
our preliminary observations that we initially found puz-
zling: that the levels of tolerated load did not significantly

vary depending on the functional annotation of regulated
genes (not shown) and that candidate Drosophila enhan-
cers with seemingly very deleterious mutations at Bin,
Tin and Twi binding sites were still able to drive reporter
gene expression in vitro (Figure S7 in Additional file 1).
It is clear, however, that this phenomenon requires
further investigation, perhaps drawing more input from
the biology of individual TFs. Finally, it is worth noting
that a number of disease-causing mutations are located
in regulatory regions, and presumably are either not buf-
fered or inappropriately buffered. A well-studied example
of this is the regulatory mutations in Pax6 regulatory
regions associated with neurodevelopmental abnormal-
ities [59]. In addition, the majority of genome-wide asso-
ciation studies do not implicate a protein-coding variant
[20]. To fully understand these diseases we must gain a
more complete knowledge of how variation impacts reg-
ulatory function.

Conclusions
Integrating genome-wide TF binding profiles with indi-
vidual variation data in Drosophila and humans, we
show that TFBSs are functionally constrained and yet
mutations at them can be tolerated, providing evidence
for possible ‘buffering’ effects. Beyond their direct biolo-
gical implications, these results highlight the potential of
integrating functional genomics and population genetics
approaches for understanding cis-regulatory function.

Materials and methods
Data sources and basic analysis
Motif discovery data were from the modENCODE and
ENCODE repositories [23,24,60,61], with the exceptions
of Bin, Tin and Twi that were from Zinzen et al. [2].
Drosophila ChIP data were from Zinzen et al., modEN-
CODE and other published sources [2,24-30]; human
ChIP data were from ENCODE [23] (see Tables S1 and
S2 in Additional file 2 for details). CTCF multi-indivi-
dual data were from [16,44]. EPO alignments for 12
mammals were from Ensembl [62,63]; phastcons scores
[64] and multiz alignments for 12 Drosophila species
were from Flybase [65,66]. Drosophila variation data
were from the DGRP [22], additionally filtered as
described below. Human variation data were from the
1000 Genomes Pilot Project [21]. Motif matches were
detected using patser [67] (in case of overlapping
matches, only the strongest-scoring motif was included)
and overlaps with ChIP regions (’bound’ motifs) were
called using bedTools [68]. Analysis was performed in
R, Python and Perl with Ensembl API.

Filtering of DGRP data
DGRP SNPs were additionally filtered according to the
following criteria: ε ≤ 0.02 (per SNP); p × ε ≤ 0.01 (per
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allele); coverage ≥ 3 (per allele); median coverage ≤20
(across strains); number of strains with detected homo-
zygous alleles ≥100; number of strains with calls scored
as ‘heterozygous’ ≤5%. The combination of these filters
removed 31.3% low-confidence SNPs and increased the
overlap with the SNPs detected by the Drosophila Popu-
lation Genomics Project [69] based on a subset of the
same Drosophila lines (not shown).

Motif selection for the analysis
For each modENCODE and ENCODE TF, a single com-
bination of motif and cell type was chosen based on
appreciable enrichments at TF-bound versus unbound
regions, the total numbers of TF-bound motifs and a cor-
relation between per-position evolutionary conservation
and information content. Motif PWM score thresholds
for human TFs were determined using TFM_PVALUE (P
= 4e-8) [70], consistent with the thresholds used in
ENCODE integrative analyses [23]. For Drosophila TFs,
thresholds were defined based on balancing the number
of detected instances and motif enrichment at bound
compared to unbound regions. Near-identical PWMs
were removed based on Pearson correlation analyzed
with STAMP [71,72]. See Supplementary note on TF
selection in Additional file 2 for more detail. The proper-
ties of selected motifs are listed in Tables S1 and S2 in
Additional file 2. PWMs are listed in the data/motifs.txt
files at [60] and [61], respectively. The positions,
sequences, PWM scores and variation properties of all
TFBSs included in this study are listed in Additional file
3 (Drosophila) and Additional file 4 (human).

Position-wise motif analysis
Reshuffled PWMs were generated by ten per-position
permutations of the ‘real’ PWMs. Reshuffled motif
matches were detected within the 200 bp proximity of
real TF binding sites at the same PWM score thresholds
as the real motifs. Position-wise variation data obtained
for each permuted motif instance was then ‘de-
reshuffled’ to match the positions of the real PWM to
compute the total diversity per permuted motif position.
For human motifs, the score thresholds used elsewhere
in the study resulted in very low numbers of reshuffled
motif instances detected near the corresponding TF
binding sites. To overcome this, analyses in Figure 2
used slightly relaxed score thresholds for both real and
reshuffled human motifs, adjusted such that the total
number of motif instances detected with the 10
reshuffled PWMs was at least 1.5-times higher than the
number of real instances for each TF.

Branch length score
BLS calculation was reimplemented in Perl for distribu-
ted computation on an LSF compute farm according to

[40], allowing for a 50 bp motif movement either way
along the alignment and a drop of motif score ≤1.
Branch lengths are given relative to 12 eutherian mam-
mals or 12 Drosophila species, respectively. Tree lengths
were computed using Ensembl API.

TFBS mutational load
We defined motif mutational load as:

L =
w0 −

∑
wipi

w0

where w0 is the PWM score of the major allele, and wi

and pi are the score and frequency of each allele, respec-
tively. Classically, genetic load is expressed with respect
to the maximum observed value (w0 = wmax). However,
we have instead chosen to express it relative to the
major allele (w0 = wmaj). The main reason for this is
that, in the absence of ChIP data for each individual or
isogenic line, TFBSs whose minor alleles have a higher
PWM score than the major allele are subject to a signif-
icant ascertainment bias. Indeed, only TF-bound TFBS
instances are included in the analysis, and we are much
more likely to detect TFBSs as ‘bound’ when their
weaker major alleles are also strong enough to ensure
TF binding. Additionally, for reasons explained in the
main text, we have postulated that TFBSs with stronger-
scoring minor alleles have a zero load irrespective of fre-
quency. Using the human data presented an additional
challenge of interpreting heterozygous genotypes. Since
the immediate phenotypic trait associated with TFBS’s
match to consensus (that is, TF binding) occurs in cis,
we have taken the decision to consider each human
allele separately. We did not focus exclusively on homo-
zygous genotypes, as this approach would further reduce
the statistical power of the analysis that was already lim-
ited by the low variation rates in the human genome.

Significance testing of TFBS load
Significance testing on TFBS load data was non-trivial,
as their distributions are sparse (especially in the case of
human data), with the majority of TFBSs having a load
of zero. In statistical terms, these data present a case of
zero-inflation, in which the observed zeros are a mixture
of missing data (that is, mutations that are not observed
due to a limited number of available genotypes) and
‘real’ zeroes (mutations that never occur because their
deleterious effect is prohibitively strong). To overcome
this problem, we have initially used generalized additive
models (gam) based on zero-inflated distributions of the
response variable (ZAGA for Drosophila and BEINF0
for human implemented in the R package gamlss [73];
not shown). However, gam P-values may be difficult to
interpret, especially when the model includes random
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effects [73] (in our case, the TF identity). We have
therefore eventually turned to permutation tests, per-
muting motif load values separately for each TF to
avoid bias associated with specific properties of indivi-
dual factors. To test the significance of trends, we used
a permutation statistic based on [74]: the dot product of
the normalized data vector X and the index vector (1,...,
N), where N is the length of X.

CTCF per-individual ChIP analysis
The analysis was based on lymphoblastoid lines, for
which genotypes were available from the 1000 Genomes
Pilot Project [21]. We focused on the CTCF-binding
data from McDaniell et al. [16] (Gm12892, Gm19239,
Gm19238 and Gm19240) and confirmed the results
using an independently generated dataset (Gm12872,
Gm12873 and Gm12874) [44] processed through quan-
tile normalization using the R/Bioconductor package
preprocessCore. The remaining two datasets from [16]
(Gm12878 and Gm12891) were excluded due to highly
inconsistent overall binding score distributions. Global
major allele data were from [75,76]; assuming all refer-
ence alleles as major gave consistent results (not
shown). Interaction models were plotted using the R
package effects [77]. The sequences, PWM scores and
ChIP binding signals for all TFBSs included in these
analyses are listed in Additional files 5 (individuals from
[16]) and 6 (individuals from [44]).

Additional material

Additional file 1: Supplementary figures S1 to S7 and
Supplementary note. Figure S1: individual variation of bound and
unbound Twi, Bin and Tin motifs. Figure S2: relationship between cross-
species variation and information content at Twi, Bin and Tin motifs.
Figure S3: general distributions of TFBS load in Drosophila and human.
Figure S4: additional information for the analysis of TFBS load relative to
PWM match score. Figure S5: distributions of TFBS load along Drosophila
chromosome arms. Figure S6: additional information on the per-
individual analysis of CTCF binding. Figure S7: naturally occurring
mutations at mesodermal TFBSs do not affect in vitro CRM activity.
Supplementary note: selection of TF binding motifs for the analysis.

Additional file 2: Tables S1 and S2. A two-sheet Excel file listing the
properties of Drosophila (Table S1) and human (Table S2) TFs included in
this study.

Additional file 3: Drosophila TFBS instances included in this study
and their variation properties. A plain text table listing the position,
sequence, PWM match score, branch length score (BLS), mutational load
(L), distance from the nearest TSS and, when detected, the count and
PWM score of the alternative allele for Drosophila TFBSs included in this
study.

Additional file 4: Human TFBS instances included in this study and
their variation properties. A plain text table listing the position,
sequence, PWM match score, branch length score (BLS), mutational load
(L), distance from the nearest TSS and, when detected, the count and
PWM score of the alternative allele for human TFBSs included in this
study.

Additional file 5: CTCF binding and TFBS variation properties for
four individuals from McDaniell et al. A plain text table listing the

position, sequence properties and ChIP binding signals at CTCF binding
sites with detected variation in four individuals from [16].

Additional file 6: CTCF binding and TFBS variation properties for
three individuals from Maurano et al. A plain text table listing the
position, sequence properties and ChIP binding signals at CTCF binding
sites with detected variation in three individuals from [44].
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