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Abstract

diagnostic implications.

Background: Understanding the fundamental mechanisms of tumorigenesis remains one of the most pressing
problems in modern biology. To this end, stem-like cells with tumor-initiating potential have become a central
focus in cancer research. While the cancer stem cell hypothesis presents a compelling model of self-renewal and
partial differentiation, the relationship between tumor cells and normal stem cells remains unclear.

Results: We identify, in an unbiased fashion, mRNA transcription patterns associated with pluripotent stem cells.
Using this profile, we derive a quantitative measure of stem cell-like gene expression activity. We show how this
189 gene signature stratifies a variety of stem cell, malignant and normal tissue samples by their relative plasticity
and state of differentiation within Concordia, a diverse gene expression database consisting of 3,209 Affymetrix
HGU133+ 2.0 microarray assays. Further, the orthologous murine signature correctly orders a time course of
differentiating embryonic mouse stem cells. Finally, we demonstrate how this stem-like signature serves as a proxy
for tumor grade in a variety of solid tumors, including brain, breast, lung and colon.

Conclusions: This core stemness gene expression signature represents a quantitative measure of stem cell-
associated transcriptional activity. Broadly, the intensity of this signature correlates to the relative level of plasticity
and differentiation across all of the human tissues analyzed. The fact that the intensity of this signature is also
capable of differentiating histological grade for a variety of human malignancies suggests potential therapeutic and

Background

There have been numerous investigations into the relation-
ship between normal organogenesis programs and malig-
nancy, particularly with respect to the stem cell properties
of self-renewal and pluripotentiality [1-3]. At the molecular
level, certain malignant tumors and developing tissues have
been shown to exhibit shared transcription factor activity,
regulation of chromatin structure, signaling characteristics
and gene expression characteristics [4]. Likewise, enrich-
ment patterns of well-characterized gene sets have been
observed to be similar in stem cells and breast cancers,
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bladder cancers and poorly differentiated glioblastomas [5].
In addition, a variety of stem cell populations have been
identified that are specific to individual tissues, yet share
some of the same gene expression characteristics of
embryonic stem (ES) cells [6]. However, multiple contro-
versies continue to circulate around the role of particular
genes in stem cells versus differentiated tissues (for exam-
ple, N-cadherin [7]), and the extent to which the activation
of various stem cell-like programs and pathways occurs
across various tissues and diseases.

The cancer stem cell hypothesis asserts a model of
tumorigenesis that may tie some of these observations
together [8]. By implying a hierarchical organization of
tumor growth that closely reflects normal tissue develop-
ment, the hypothesis simultaneously accounts for the high
degree of functional heterogeneity observed in solid
tumors [9,10], as well as the fact that only a small fraction
of malignant cells retain tumor-initiating potential [8].
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Under these assumptions, expression profiles derived from
resected tumor samples (comprising both the cancer stem
cells and their differentiated progeny) should broadly
resemble those of the normal tissue of origin, with a
degree of stem cell like activity also apparent.

Originally identified in hematopoietic cancers, leukemic
stem cells were observed to express several markers
(CD34"CD38") in common with normal stem cells [11].
Subsequently, analogous models have been developed for
a number of solid tumors, primarily through the identifica-
tion of a small population (typically <5%) of tumor cells
that were unique both in their expression of a set of speci-
fic surface markers as well as their ability to induce pheno-
copies of their original tumors in xenograft and transplant
models [12-19].

Although the cancer stem cell model and the experi-
mental approach to identifying cancer stem cell popula-
tions have been replicated across a variety of tissues, the
molecular signatures derived from the proliferative cells
have varied widely. As yet, the extent to which there exist
any molecular fingerprints commonly attributable to mul-
tiple types of cancer stem cells remains unclear. While
some have been observed to express a subset of the
embryonic stem cell-associated genes (POUSF1, NANOG),
the degree to which these trends may be broadly apparent
is unknown [20].

The increasing volume of evidence supporting a perva-
sive connection between cancer and stem cells suggests
significant therapeutic implications. As opposed to current
therapies that are evaluated based on their ability to
reduce the overall size of a tumor, regimens that target
cancer stem cells may have more success in preventing
long-term recurrence [8]. Molecular signatures that are
capable of grading pluripotentiality and proliferative
potential represent an important step in designing such
regimens and guiding therapeutic procedures.

Indeed, gene expression signatures derived from breast
cancer stem cells have been shown to separate patients
with early-stage breast cancer into high-risk and low-risk
groups [21]. Similarly, gene expression signatures have
been used to identify cell-sorted acute myeloid leukemia
(AML) samples enriched for leukemic stem cells, and leu-
kemic stem cell expression signatures have been shown to
correlate with patient survival [22,23]. Diverse malignant
tissue samples have been shown to exhibit a broadly simi-
lar trend within a large gene expression database, but no
specific connection has been made in this context to stem
cell-like activity [24]. However, identifying an unbiased
transcriptional measure of ‘stemness’ conserved across
embryonic and adult stem cells, and relating that signature
to malignancy, has remained a challenge [6,25,26]. Under-
standing the mechanisms of tumor proliferation and the
relationship of those mechanisms to stem cell pluripo-
tentcy may yield especially important insights into the
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origins and treatment of germ cell tumors, and embryonal
carcinomas in particular, which have been previously
demonstrated to express the hallmark ES regulators [27].

Here, we present a comprehensive analysis of a diverse
compilation of gene expression samples that reveals a
robust multidimensional continuum from ES/induced
pluripotent stem cells to fully differentiated tissues. Our
results indicate that, within this functional genomic land-
scape, cancers display a combination of stem cell-like
programming and tissue-specific signatures. We derive a
shared molecular measure of pluripotentiality that may
help bridge the gap between disparate tissue-specific can-
cer stem cell populations, reflecting their shared prolif-
erative potential. In addition, we demonstrate that our
differentiation and pluripotentiality-centric view of gene
expression correlates with classical grading systems for a
variety of solid tumors, suggesting that our results may
form a quantitative axis with practical relevance to perso-
nalized medicine.

Results

Identifying a stem cell gene set

Our first goal was to identify a set of genes whose expres-
sion profiles represent a tightly conserved core of tran-
scriptional programming among stem cells. We call this
set of genes the stem cell gene set (SCGS). We derived
the SCGS from a high-quality database called Concordia,
representing a significant subset of the NCBI's Gene
Expression Omnibus (GEO) [28]. Concordia was con-
structed using a combination of automated textual par-
sing, human curation and normalization methods (see
Materials and methods).

In order to identify a set of genes with highly specific
stem cell expression intensities, we used this curated
database to identify all of the stem cell samples in our
dataset. We then applied a standard signal processing
tool, a finite impulse response filter (FIR) [29], to identify
those genes with the most highly conserved expression
intensities among the stem cell samples. That is, those
genes with a range of expression intensities among the
stem cell samples that was most distinct from the non-
stem cell samples scored the highest (see Materials and
methods).

In contrast to a standard ¢-test, this approach does not
require us to define a specific ‘control’ phenotype against
which we test for separation, a poorly defined task when
comparing against such a diverse database. Moreover,
this method identifies genes with expression levels that
are highly specific in the stem cell samples, allowing for
the diverse population of non-stem cell samples to
express these genes at simultaneously higher and lower
levels (something for which a ¢-test cannot directly
account). For example, the gene DBCI exhibits a highly
specific range of expression across the stem cell samples,
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and ranked highly (among the top 0.5% of all genes) in its
ability to localize the stem cell samples by the described
method. However, the non-stem cell samples demon-
strate both higher and lower expression levels of this
gene (Figure 1), causing a standard Student’s ¢-test (treat-
ing all non-stem cell samples as the control group) to
rank this gene at only the 24.6% strongest among all
genes.

We verified the ability of the SCGS to capture a
nuanced measure of stem cell-like gene expression activ-
ity by demonstrating the accurate clustering of a series
of developing ES cell populations in mouse (see below).
This analysis also shows the concordance between the
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SCGS transcriptional profile and cellular state of
differentiation.

Previous studies have examined the expression patterns
of literature-curated gene sets relating to ES-like activity
among a variety of malignancies [5]. In contrast, we have
constructed a gene set in silico that reflects only those
transcriptional signals with the greatest ability to localize
the stem cell samples within the spectrum of human
tissues and diseases.

The 189 genes comprising the SCGS can be found
in Tables s1 to s4 in Additional file 1. A variety of FIR
thresholds were evaluated according to the ability of the
implied gene sets to differentiate between stem cell
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Figure 1 Distribution of DBC1 expression intensities across the entire database. The distributions of rank-normalized gene expression
intensities for gene DBCT are shown for the stem cell samples as well as the non-stem cell samples. The non-stem cell samples clearly exhibit
expression both higher and lower than the stem cell samples, while the stem cell samples are relatively specific in their range of expression.
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samples and the other phenotypes in the dataset via an
analysis of variance (ANOVA). The genes presented
here represent a set capable of simultaneously separating
the pluripotent, multipotent, progenitor, malignant and
normal samples, while also retaining tissue-specific
features (for example, clearly separating normal blood,
neural and epithelial tissues). An animation demonstrat-
ing the effect of varying the number of top-ranking
stem genes included in the SCGS is included in
Additional file 2.

Comparison to previously published stem gene sets
Several previous attempts have been made to identify the
genes responsible for maintaining pluripotency by analyz-
ing the expression patterns of germ cell tumors. Sperger
et al. [30] performed differential expression analyses
between control differentiated cells and ES cells and a
variety of germ cell tumors to identify genes with higher
expression in pluripotent stem cells. Our approach differs
in that we analyzed the expression of only stem cells
rather than cultured tumor cell lines. Further, we place no
stipulation on differential expression with respect to a
fixed control group, but rather focus in on the genes with
the greatest ability to characterize the stem cells within a
broad spectrum of the human transcriptional landscape.
Skotheim et al. [31] and Almstrup et al. [32] take similar
approaches, identifying the genes that characterize an
assortment of germ cell tumors. Figure 2 shows the over-
lap of the SCGS with these previously identified stem gene
sets.

Stem-like signature stratifies a diverse expression
database by pluripotentiality and malignancy

Via principal component analysis (PCA), we examined the
transcriptional profile of the SCGS across the entire col-
lection of normal tissues, cancers and stem cells assembled
from GEO. Performing PCA across only the SCGS genes
(including all samples in the data set) allowed us to mea-
sure the extent to which the specific transcriptional activ-
ity observed in the stem cell population was apparent in
each of the other phenotypes.

This analysis revealed a striking trend apparent in the
first two principal components (PCs) of the gene set; most
importantly, PC1 captured a measure of cellular pluripo-
tency, while PC2 reflected the broad transcriptional differ-
ences between hematopoietic, neural and epithelial tissues.
These trends are demonstrated in Figure 3. Each panel
highlights in color the PCA region occupied by a particu-
lar normal tissue population (red) and its associated malig-
nancies (green), as well as any related precursor cells
(orange), immortalized cell line samples (cyan), multipo-
tent (blue) and pluripotent stem cells (magenta) (PCA was
computed jointly across all samples; each cancer is high-
lighted individually for clarity). The pluripotent stem cells
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included in this analysis were a combination of both ES
cells and induced pluripotent stem cells. The locations of
all other samples in the data set are shaded gray to provide
context.

The dominant characteristic of PC1 is its ability to
separate the pluripotent stem cells from the normal tis-
sue samples (for example, the normal tissues shown in
Figure 3 - blood, breast, brain, colon, shaded red, consis-
tently lie on the extreme left side of the plots, whereas
the pluripotent stem cells, shaded magenta, lie on the
extreme right). Moreover, PC1 apparently reflects a
finer-grained continuum of cellular potency: the multipo-
tent stem cells are clustered near the pluripotent stem
cells, with the hematopoietic progenitors (the only pro-
genitors in our dataset) slightly farther away (Figure 3a).

Further, the hematopoietic, neural and epithelial can-
cers (shaded green in Figure 3a-d) contained in our data
all clustered directly between the stem cell populations
and their associated normal non-malignant samples. This
suggests that the SCGS captures a kernel of stem cell-like
transcriptional activity that is concurrently apparent in a
variety of malignancies. These findings build on previous
observations that genes associated with stem cell-like
activity demonstrate differential expression in a variety of
epithelial cancers with respect to their normal tissue
counterparts [6]. Our analysis reveals that stem-like
expression profiles are observable not only in epithelial
cancers, but also in neural and hematopoietic malignancy
as well.

We will use the coordinates of an expression profile’s
projection into the first principal component of the gene
space defined by the SCGS as a relative measure of
‘stemness’, our stemness index.

The overall landscape of the human transcriptome
appears to be organized by a combination of tissue, cell-
type and disease-specific features [24]. Previous studies
have suggested that the primary factors driving the organi-
zation of this landscape are largely attributable to hemato-
poietic and malignant programming [24]. Our results
indicate that while there exists a strong tissue-specific sig-
nal, the ‘malignancy’ signature is more specifically a reflec-
tion of the self-renewal and pluripotentiality common to
both stem cell populations and heterogeneous tumors.

Human-derived ES-like transcriptional profile correlates to
mouse stem cell differentiation

To verify that our SCGS-derived stemness index captures
a quantitative transcriptional measure of differentiation,
we used it to examine the expression dynamics of a set of
developing mouse ES cells over time [GEO: GSE12550].
This data set consisted of a time-course of differentiating
mouse ES cells, with gene expression measured at four
time points (ES cells, 4 days of differentiation, 8 days of
differentiation and 14 days of differentiation).
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Sperger

Figure 2 SCGS overlap with previously identified stem cell genes. The Venn diagram shows the number of genes in common and distinct
to each of the gene sets: Sperger et al. [30]; Skotheim et al. [31]; Almstrup et al. [32].

Almstrup

Human SCGS gene IDs were mapped to mouse via
NCBI's HomoloGene [33]. Human genes that lacked a
unique match in mouse were ignored. Expression intensi-
ties were processed in an identical manner to the human
data (see Materials and methods) and summarized by
gene. Again, we computed the dominant variance among
the differentiating mouse cells via PCA over the SCGS.
We likewise used each mouse ES sample’s stemness index
(that is, coordinates in the first principal basis) as a sum-
mary value of SCGS gene expression activity.

The dominant expression signal reflected in these genes
accurately sorts the samples according to their time point,
as shown in Figure 4. This supports the hypothesis that
our SCGS-derived stemness index reflects measurable
changes in state of differentiation and pluripotentiality,
and reflects the fact that the functional genomic mechan-
isms associated with stem cell activity are at least partially
conserved across species [34].

Stratifying tumor grade

We used the stemness index that we derived from the
SCGS to evaluate the transcriptional profiles of several
graded tumor data sets. Our goal was to evaluate whether
our molecular marker for tissue-agnostic stem cell-like
transcriptional activity was representative of poor clinical
prognosis. We included four publicly available data sets

in this analysis (see Materials and methods). For each
data set, we computed the samples’ stemness index (via
PCA over the SCGS) to identify the dominant differences
between the samples within the context of the stem cell
genes (Materials and methods).

This analysis revealed that our stemeness index corre-
lates with tumor grade for a variety of primary tissues.
Figure 5 shows the distribution of stemness index values
for the four tissue types’ graded tumor samples. In each
case, the transcriptional activity of the SCGS defines a
clear separation between the high- and low-graded
tumors, while also providing a molecular foundation
based on stem-like expression for the clinical difficulty in
classifying mid-grade tumors [35,36]. Importantly, such
measures should not be considered in isolation, but in
concert with standard histopathology, since an aggressive
tumor containing a relatively large proportion of normal
cells would likely have a low stemness score. As such,
these methods may well serve as a ‘warning sign’ when
traditional pathology assigns a low grade, but RNA analy-
sis suggests the tumor is about to turn aggressive.

Recent trends in chemotherapy design have focused not
only on regulating cytotoxicity, but also on affecting the
differentiation pathways that are apparently impaired in
malignant cells. For example, Stegmaier et al. [37] have
demonstrated the ability of gefitinib to induce myeloid
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Figure 3 The spectrum of stem cell-like transcriptional state. The stem cell signature genes stratify a phenotypically diverse database
according to pluripotentiality. Each panel shows the entire expression database plotted on the principal coordinates defined by the stem cell
signature genes. PC1 is represented on the x-axis of each plot, while PC2 is on the y-axis. In each plot, the pluripotent stem cells (induced
pluripotent stem and ES cells) are clustered on the extreme right-hand side (magenta), followed by mesenchymal stem cells (cyan) and
immortalized cell lines (blue). Taken together, the panels demonstrate that, across tissue types, this stem cell signature draws a coherent picture
of pluripotentiality and differentiation. While the distinction between the pluripotent stem cells and normal tissues represents the predominant
signal (PCT) in the data, the contrast in the expression profiles of hematopoietic and neural tissues apparently defines the second strongest
signal (PC2). Even so, both tissues’ respective malignancies show a common tendency to exhibit greater stem-like activity, as demonstrated by
their closer proximity to the pluripotent stem cell cluster. (a-d) Blood (a), breast (b), neural (c) and colon (d) all demonstrate the same enhanced
stem-like expression activity among their respective malignancies.

differentiation in both acute myeloid leukemia cell lines as
well as patient-derived acute myeloid leukemia blast cells.
Indeed, the phenotypic transformation induced by gefiti-
nib was shown to be observable in both cellular morphol-
ogy and gene expression. The ubiquitous stem cell-like
expression patterns described in this paper, as well as
those specifically tuned to individual tumor subclasses,
may prove useful in screening compounds through the
early stages of drug discovery. Understanding the tran-
scriptional changes wrought by these compounds within
the context of pluripotentiality and differentiation may be
of fundamental value in personalized oncology and ther-
apy selection.

Functional diversity of the stem cell gene set
Our final goal was to characterize the functional diversity
of the genes comprising the SCGS. Hierarchical clustering

of these genes’ transcriptional activity in a population of
pluripotent stem cells revealed four distinct coexpression
modules. For each module, we then identified a set of
over-enriched Gene Ontology (GO) biological processes
[38].

To illustrate the gene expression trends apparent within
each gene cluster, Figure 6 shows a heatmap of their pro-
files across pluripotent and partially committed stem cells,
as well as malignant and normal breast samples. Genes
active in DNA replication, cell cycle regulation and RNA
transcription (see Tables s5 and s6 in Additional file 1 for
detailed annotations) are most highly expressed in the
pluripotent stem cells, and less so, respectively, through
increasing levels of cellular differentiation/decreasing plur-
ipotentiality, consistent with prior studies of the dynamics
of stem cell cycling and regeneration [25,39]. Genes
related to metabolism and hormone signaling (Table s7 in
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values for a particular time point. This signature collocates the four time points’ samples and clearly separates the early and late stages of

Additional file 1) show peak expression intensity among
the partially committed stem cells, while exhibiting low
intensity among the fully differentiated tissue and tumor
samples. Correspondingly, genes responsible for multicel-
lular signaling and cellular identity (Table s8 in Additional
file 1) are most highly expressed in the fully differentiated
tissue and malignant samples. Within each functional
module, the tumor samples trend away from the respec-
tive normal tissue, echoing stem cell-like transcriptional
activity.

Conclusions
We have demonstrated conserved stem cell-like tran-
scriptional activity across a wide variety of hematopoietic
and solid cancers through a comprehensive molecular
survey of malignancy, pluripotent stem cells and normal
tissues. Our findings echo several recent developments in
the cancer stem cell debate. In particular, our results
highlight transcriptional evidence that, despite individual
tissue-specific characteristics, a wide range of cancers
share a common set of transcriptional mechanisms with
each other, as well as pluripotent and multipotent stem
cells.

While a large volume of evidence indicates that only a
small number of tumor cells are capable of self-renewal,

controversy remains as to the exact origin of these cells.
The hierarchical cancer stem cell hypothesis suggests
that these cells arise from normal pluripotent or multi-
potent stem cells that have lost the ability to regulate
their proliferative activity. Under this model, the pheno-
typic diversity observed in many tumors is viewed as the
result of this defective stem cell population mismana-
ging the process of normal organogenesis. Alternatively,
the stochastic model of tumorigenesis suggests that pro-
liferative tumor cells arise from normal fully differen-
tiated or committed progenitor cells that acquire the
ability to self renew, and that tumor cell phenotype var-
iation is the result of these mutated cells differentiating
in a random fashion [40].

Regardless of the origin of proliferative tumor cells, our
results indicate that there is a high degree of stem cell-
specific gene expression programming observable in het-
erogeneous tumor samples. Our data indicate the need
for more detailed transcriptional assays comparing prolif-
erative tumor cells to both ES/induced pluripotent stem
cells and bulk heterogeneous tumor cells, as well as nor-
mal tissue cells. Our data suggest the hypothesis that the
gene expression patterns observed in heterogeneous
tumor samples may be due to the effect of a small popu-
lation of cancer stem cells in combination with a large
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Figure 5 Stem cell-like activity correlates with tumor grade in various solid malignancies. Each panel displays the distribution, within the
space of the stem cell genes, of graded tumor samples for one particular tissue type. Our stemness index consistently separates high-grade
tumors from low grade ones. Based on this transcriptional index, the mid-grade tumors are less well defined.

number of partially differentiated cells. It is plausible
that, while the partially differentiated mass of the tumor
behaves transcriptionally similarly to healthy tissue, the
small population of proliferative tumor cells pushes the
observation of the aggregate mRNA back along the spec-
trum of stem cell-like activity identified in this paper.

We have demonstrated a specific transcriptional signal
that is shared among a wide variety of solid and hemato-
poietic cancers. Moreover, when considered from a tran-
scriptome-wide perspective, this signal is indicative of
stem cell-like activity. We have shown how these gene
expression patterns are most strongly associated with
embryonic and induced pluripotent stem cells, and are

successively less apparent in multipotent stem cells,
malignancies, and fully differentiated tissues, respectively.
In addition, the genes that comprise this signal also
reveal a stratification of solid tumors that correlates
strongly with classical grading systems.

Materials and methods

Concordia, a large phenotypically diverse gene
expression database

The Concordia database contains 3,209 Affymetrix
HGU133+ 2.0 gene expression array samples (all from
human tissue or cultured human cell lines) extracted
from NCBI's GEO. A full description of the techniques
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used to assemble this database have been previously
described [41], and the curated phenotype data are
available for public download at the Concordia database
web site [42], including all of the non-malignant, malig-
nant and stem cell samples, less the external graded
tumor sets that were used to verify the SCGS signal’s
relationship to solid tumor histology. The following two
sections briefly describe the Concordia database.

Using UMLS annotation to associate each sample with its
relevant phenotypes

We constructed a database representing a subset (3,209
samples) of NCBI's GEO [28,33] that contained a com-
bination of samples derived from normal tissues,
immortalized cell lines, a variety of cancers, and an
assortment of pluripotent and partially committed stem
cells. In order to generate high-quality, systematic
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phenotype annotations for this dataset, the GEO text
descriptions relating to each sample (including title,
description, and source fields) were mapped into the
Unified Medical Language System’s (UMLS) [43] ontol-
ogy of biological and medical concepts. This was done
using a combination of natural language processing
(NLP) software and hand validation to remove spurious
associations.

NLP was performed by the Java implementation of the
National Library of Medicine’s (NLM) MetaMap program,
MMTx [44]. A custom UMLS thesaurus was generated
using NLM’s MetaMorphosys program that contained the
concepts and relationships from the UMLS, MeSH, and
SNOMED ontologies.

These automated annotations were then verified by
hand so as to remove false positives. Using custom-built
software, these associations were propagated through the
ontology’s hierarchy, allowing us to identify all samples
related to phenotypes of arbitrary specificity.

Normalizing the gene expression samples

The expression data for the samples in our dataset were
obtained from their respective GEO CEL files, which were
MAS 5.0 [45] normalized via R’s BioConductor package
[46,47]. The resulting probe set intensities were averaged
into 20,252 unique gene-centric values, and then rank nor-
malized to improve cross-data series comparability. All
calculations were performed in the R statistical environ-
ment, employing the BioConductors suite.

Additional expression data

In addition to the Concordia gene expression data, several
additional GEO data sets were used to analyze the SCGS
signal’s relationship to histological tumor grade. These are:
a series of graded glioma tumor samples [GEO: GSE4290];
a series of graded tumor samples from core needle biop-
sies of breast cancer patients, including a variety of estro-
gen receptor-positive and -negative and progesterone
receptor-positive and -negative phenotypes [GEO:
GSE23593]; a set of graded lung tumors, including a vari-
ety of squamous and adenocarcinoma samples [GEO:
GSE18842]; and a set of graded colon tumors [GEO:
GSE17537].

Using FIR to identify genes that characterize pluripotent
stem cells

We sought to associate with each gene a measure of how
well conserved its expression intensity was over the stem
cell samples. Rather than seeking a strict measure of con-
stitutive over- or under-expression of the gene among the
stem cell population, our goal was instead to identify indi-
vidual genes that tightly cluster the stem cell population
anywhere along the spectrum of expression intensities.
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Here, we employ a signal-processing tool, the FIR [29].
The input to this procedure is a list of all of the expres-
sion samples, sorted according to their intensity for a
particular gene. The filter then applies a ‘sliding window’
to the list and outputs, at each window position, the pro-
portion of stem cell samples within the frame. The maxi-
mal value of this sliding window at any position in the
list is then taken as that gene’s score. We use a window
equal in size to the total number of stem cell samples in
the database, so the interpretation of the filter’s maximal
output is intuitive: if we are looking to find all of the
stem cell samples within one window frame, what is the
greatest fraction that we can localize, given the expres-
sion values for this gene across the entire database?
Genes with the highest scores are those with most speci-
fic stem cell expression intensities.

Binomial P-values (k = number of stem cell samples in
a given window frame; n = window frame size; p = pro-
portion of stem cell samples in the entire database) are
reported along with these scores.

To ensure that the method was not simply selecting
genes that are all highly correlated with each other across
the entire database, we computed the distribution of
SCGS Pearson correlation coefficients over the stem cell
samples, malignant tissue samples and non-malignant tis-
sue samples independently, then compared those distribu-
tions to 1,000 random sets of genes equal in size to the
SCGS. Only the non-malignant tissue samples show a
positive location shift (Figure 7).

Summarizing expression signals across a group of genes
via PCA

In order to capture a continuous measure of SCGS activ-
ity, we applied PCA [48]. The basis vector associated with
the largest eigenvalue of the gene-gene covariance matrix
captures the dominant coordinated signal present within
the gene set. By projecting each sample’s observed expres-
sion intensity onto this basis, we compute a summary
value describing the sample’s affinity for a stem cell-like
gene expression profile.

Measuring tumor grade along the continuum of stem-like
expression

We identified four independent data series containing
expression profiles for graded tumors of various tissue
types in GEO ([GEO: GSE4290], [GEO: GSE23593],
[GEO: GSE17537], [GEO: GSE18842]) on Affymetrix
HGU 133+ 2.0. Each series was pre-processed (MAS5.0
normalized, summarized) as previously described. Within
each series, the SCGS summary values were computed,
again, via PCA over this gene set, allowing us to associate
a value with each sample indicating its relative stem-like
expression activity.
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Figure 7 Inter-gene SCGS correlation across various sample types. The distribution of SCGS gene-gene correlations are shown in the top
panel independently for the non-malignant, malignant and stem cell samples contained in the database. The distribution of gene-gene
correlations for 1,000 random sets of genes equal in size to the SCGS is shown in the bottom panel.

SCGS clustering and GO enrichment readability of the resulting figures. GO biological process
The SCGS was clustered using the gplots package for R.  enrichment calculations were performed on the individual
Genes were individually quantile normalized to improve  clusters using the GOstats BioConductor library [38,49].
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Data access

All microarray samples included in these analyses are
publicly available via the GEO. Accession IDs for each
sample are included in Additional file 1, and curated,
machine-readable phenotype information for those sam-
ples is available at the Concordia database web site [42].

Additional material

Additional file 1: Supplementary tables. Tables s1 to s4: genes in the
SCGS, organized by the functional module to which they belong. Tables
s5 to s8: GO enrichment statistics for each functional module in the
SCGS. The file also includes a complete listing of all of the GEO sample
identifiers for the microarray data comprising our database.

Additional file 2: This file contains an animation demonstrating the
effect of varying the FIR score threshold for including genes in the
SCGS. For each possible number of top-scoring stem genes from 3-502
(displayed at the top of the animation frame), we project all of the
samples in the database into the first two PCs of gene space (panel on
top right), and highlight in color six relevant phenotypes (as in Figure 3):
embryonic/induced pluripotent stem cells in magenta; mesenchymal stem
cells in cyan; immortalized cell line samples in blue; blood precursor cells
in orange; leukemia samples in green; normal blood in red. The panel
below the PCA scatter plot shows the distribution of stemness index
values (PC1 projection coordinates) for each highlighted phenotype. The
plot on the left of the frame shows the analysis of variance (ANOVA) score
(including all highlighted phenotypes) for the clustering defined by the
current stemness index highlighted by a magenta dot on the curve
showing all ANOVA scores for all of the depicted FIR thresholds. Higher
ANOVA scores indicate better multi-way separation of the individual
phenotypes along the stemness index. ANOVA was calculated and all
plots were generated in the R statistical environment [46,47].

Abbreviations

ANOVA: Analysis of Variance; ES, embryonic stem; FIR: finite impulse
response filter; GEO: Gene Expression Omnibus; GO: Gene Ontology; NLM:
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