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Abstract

Background: Indels are an important cause of human variation and central to the study of human disease. The
1000 Genomes Project Low-Coverage Pilot identified over 1.3 million indels shorter than 50 bp, of which over 890
were identified as potentially disruptive variants. Yet, despite their ubiquity, the local genomic characteristics of
indels remain unexplored.

Results: Herein we describe population- and minor allele frequency-based differences in linkage disequilibrium and
imputation characteristics for indels included in the 1000 Genomes Project Low-Coverage Pilot for the CEU, YRI
and CHB+JPT populations. Common indels were well tagged by nearby SNPs in all studied populations, and were
also tagged at a similar rate to common SNPs. Both neutral and functionally deleterious common indels were
imputed with greater than 95% concordance from HapMap Phase 3 and OMNI SNP sites. Further, 38 to 56% of low
frequency indels were tagged by low frequency SNPs. We were able to impute heterozygous low frequency indels
with over 50% concordance. Lastly, our analysis also revealed evidence of ascertainment bias. This bias prevents us

Low-Coverage Pilot.

from extending the applicability of our results to highly polymorphic indels that could not be identified in the

Conclusions: Although further scope exists to improve the imputation of low frequency indels, our study
demonstrates that there are already ample opportunities to retrospectively impute indels for prior genome-wide
association studies and to incorporate indel imputation into future case/control studies.

Background
The ubiquity of insertion-deletion polymorphism (indel)
events in the human genome testifies to their relative
importance in human variation [1,2]. Indels are the second
most frequent polymorphism type and are thought to be
more polymorphic than SNPs [3,4]. Systematic detection
of indels from large population cohorts has been limited
by technological challenges [5-7]. However, the advent of
next generation sequencing (NGS) platforms, which
affordably interrogate genomes within reasonable time-
frames, presents new opportunities to detect short indels
(< 50 bp) with confidence.

The 1000 Genomes Project (1000G) is the exemplary
project using NGS to investigate human genetic variants
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on a large scale. The 1000G Low-Coverage Pilot
sequenced 179 individuals to approximately 3.6X coverage
by whole genome shotgun sequencing: 60 from the Centre
d’Etude du Polymorphisme Humain collected in Utah,
USA, with ancestry from northern and western Europe
(CEU); 60 Han Chinese in Beijing, China (CHB) and Japa-
nese in Tokyo, Japan (JPT); and 59 Yoruba in Ibadan,
Nigeria (YRI). This pilot identified, on average, 361,669
short bi-allelic indel (< 50 bp) variants in each individual.
Based on computation prediction, 890 indels in coding
and splice site regions were classified as loss-of-function
(LOF) variants [2].

Short indels in coding, promoter, and splice site regions
are well known to impact protein function and cause dis-
ease. For example, indels may manifest themselves as a tri-
plet repeat or microsatellite instability in diseases such as
Huntington’s disease, fragile X syndrome [8], and non-her-
editary non-polyposis colorectal carcinoma [9], as in-frame
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deletion in cystic fibrosis [10], and as a frame-shift deletion
in diseases such as Duchenne’s and Becker’s muscular dys-
trophy [11].

As a large contributor to genetic variation in human,
indels are a plausible cause for some of the missing hered-
itability in current genome-wide association studies
(GWAS) [12]. In a recent study, Mills et al. [1] identified
over 1,102 indels in genes that were in high linkage dise-
quilibrium (LD; r* > 0.8) with SNPs that had genome-wide
significance in 118 previously published GWAS, suggest-
ing that indels may be causative for these disease pheno-
types. The prevalence and functional importance of indels
in the human genome motivates investigation of the LD
characteristics around indel events. LD degrades over phy-
sical distance due to mutations, genetic recombination,
genetic drift and natural selection [13]. The process and
strength likely differ in indel loci relative to SNPs, as some
indel are in genomic repeat loci where the mutation rates
are hundreds of times higher than the genome-wide aver-
age [14-16].

Characterizing LD between indels and SNPs is essential
to our understanding of the landscape of genomic varia-
tion [16-20] and to improving power to discover associa-
tions with disease phenotypes. In particular, imputation
methods are used to enhance variant detection power in
GWAS. Imputation expands the set of variants that can be
evaluated, thus allowing identification of putative variants
while reducing the cost of genotyping individuals
[3,21-23]. The high resolution 1000G dataset, with a large
representation of low frequency variants in the population
results, provides opportunities to identify new recombi-
nant haplotypes and haplotype groupings in studied popu-
lations [2,13,24]. For this study, we utilized the 1,330,158
bi-allelic indels and 14,894,361 SNPs released by the
1000G Low-Coverage Pilot [2] and characterized the LD
patterns around indels conditioned on ethnicity, minor
allele frequency (MAF), length, and LOF status. We also
provide to the community a look up table of indels that
are in high LD (r* > 0.80) with nearby SNPs [25] for future
GWAS. Using this information, we then evaluated the
ability to impute indels from different SNP panels.

Results

Features of 1000G indel data

Analysis of insertions and deletions and indel MAF
distribution

Indels from the 1000G Low-Coverage Pilot included a pre-
ponderance of deletions over insertions for all populations.
For CEU there were 404,476 deletions to 323,599 inser-
tions (YRI, 551,391 to 323,599; CHB+JPT, 361,339 to
305,301), a 25% higher representation. This bias partially
resulted from the bias in calling methods that were based
on alignment. However, the relative increase of deletions
is also suggestive of a mutational process that favors
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slippage of primers in a forward direction rather than in
reverse [26].

In examining the MAF distribution of indels detected
from NGS, we found that the distribution was consistent
with studies of indels detected from sequence traces [1,6].
MAF distributions for CEU and CHB+JPT indels, exclud-
ing singletons, were found to have similar proportions of
low frequency (MAF < 5%) and common indel variants
(MAF > 5%), whereas YRI showed enrichment of low fre-
quency indels relative to the other populations (Figure S1
in Additional file 1). As expected, the MAF distribution
for indels was consistent with SNP site frequency spectra
that revealed historical out-of-Africa bottlenecks for CEU
and CHB+JPT [27].

Size distributions of indels revealed possible ascertainment
bias in 1000G

1000G indels had size distributions similar to those pre-
viously found by Mills et al. [1] and Bhangale et al. [6].
Non-LOF indels < 6 bp (small indels) represented approxi-
mately 90% of total indels (Figure S2a in Additional file 1).
However, small indels were not distributed equally
between low frequency and common (MAF > 5%) MAF
bins. Small indels were more prevalent than indels > 6 bp
(large indels) amongst low frequency indels by 20.6%
(21.3% versus 16.9%, P < 2.2 x 107'°), whereas large indels
were 5% more prevalent amongst common variants (82.9%
versus 78.7%, P < 2.2 x 107*°) (Table S1 in Additional
file 1). This finding, we reasoned, could be predominantly
ascribed to ascertainment bias (due to short read NGS and
alignment algorithms) that preferentially detected with
confidence short length low frequency indels versus long
length low frequency indel variants. However, we could
not rule out biological reasons.

We initially suspected that the cause for the distribu-
tion skew might be due to large indels being more com-
mon amongst segmental duplication regions. However,
after annotating for indel location using ANNOVAR
annotation software [28], our results showed, on the con-
trary, that large common indels were less concentrated
amongst segmental duplications than small ones (2.39%
versus 2.67%, P = 6.328 x 10™; Table S1 in Additional file
1). As such, we conclude that this difference is primarily
due to ascertainment bias, which resulted from chal-
lenges in mapping repetitive regions.

Global linkage disequilibrium patterns of INDELs

1000G SNP LD patterns are comparable to previously
published results

In our control analysis, we first evaluated SNP to SNP
(SNP-SNP) LD using pairwise correlation coefficient r*
with 1000G genotypes at 1000G, OMNI and HapMap
SNP sites [29] (Materials and methods). HapMap SNP
sites were discovered in the HapMap Phase 3 project
while OMNI SNP sites were selected by Illumina from
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the 1000G genotypes due to their ability to tag common
and rare variants while minimizing the amount of SNPs
that needed to be genotyped [30]. We found that we
were able recapitulate previously published SNP LD Hap-
Map results (Table S3 in Additional file 1).
Indel-SNP LD was similar to SNP-SNP LD
Although SNPs and indels arise by different mechanisms
in DNA replication or repair, previous studies using
only common indels and SNP variants found that these
polymorphisms had similar LD profiles, thus implying a
shared evolutionary history [27,31]. Using the larger
dataset provided by 1000G that includes both common
and low frequency variants, we compared the LD prop-
erties between pairwise indel-SNP and SNP-SNP. Our
results showed that indel-SNP and SNP-SNP LD profiles
are similar to each other when calculated by average r?
(Figure S3a in Additional file 1). This similarity was
maintained when using the SNP sites from the 1000G,
OMNI or HapMap panels. As discussed earlier, how-
ever, the similarity in indel-SNP and SNP-SNP LD pro-
files may be due to ascertainment bias - that is, highly
polymorphic indel sites are not included in the dataset.
Not surprisingly, LD profiles differed based on the dif-
ferent SNP panels. The indel-SNP and SNP-SNP LD when
using OMNI SNP sites had the lowest LD as the OMNI
chip was specifically designed to minimize SNP redun-
dancy. HapMap sites provided the highest indel-SNP LD
because the panel had a relative dearth of low frequency
SNP sites that would otherwise lower average indel-SNP
LD. In contrast, the reduction in LD due to low frequency
SNP sites was seen clearly in the 1000G panel when com-
pared to HapMap (Figure S3a in Additional file 1). Lastly,
indel-SNP LD echoed population-based SNP-SNP LD pat-
terns; we found that YRI had lower LD than the other
continental populations (Figure S3b in Additional file 1)
due to the greater number of low frequency variants in
that population.
Indels are well tagged by nearby SNPs
To explore indel tagging by nearby SNPs, we employed
‘mean max r”, a measurement that averages the maxi-
mum r” values at given distances for putative alleles. The
HapMap consortium used this measurement to describe
SNP tagging [29]. Surprisingly, mean max r” for indel-
SNP was significantly higher than SNP-SNP (Figure 1)
for all SNP panels at all distances (P < 0.05, Mann-Whit-
ney). Upon closer examination, we found that each indel
has a larger number of SNPs (27.5) in high LD (r* > 0.80)
when compared to the number of SNPs (16.15) in high
LD with nearby SNPs. As there is a higher proportion of
common variants amongst indels relative to SNPs (76.5%
versus 65.2% averaged across all populations; Table S1
and Table S2 in Additional file 1), these data suggest that
the inability to detect highly polymorphic and/or low fre-
quency indels, which would not be tagged by nearby
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SNPs, may inflate the mean max r”. This is further corro-
borated by evidence that the percentage of indels having
at least a single SNP in high LD was not different than
the percentage of SNPs in high LD with at least one
other SNP (Figure 2a). This pattern was also seen in
CHB+JPT and YRI populations (data not shown). These
data suggested that tagging of indels by SNPs is likely
similar to tagging of SNPs; further, differences in mean
max r* between indels and SNPs may be due to ascer-
tainment bias.

Mean max r* values also reflected population differ-
ences in indel tagging. YRI showed lower indel-SNP LD
when compared to CEU and CHB+JPT (Figure S3c in
Additional file 1); common indels in YRI (63.12%) are
not as well tagged as CEU (73.58%) and CHB+JPT
(70.92%) due to greater diversity in the YRI population
(Table S4 in Additional file 1). However, because of the
relative increase in low frequency SNPs in the YRI
population, low frequency YRI indels (60.99%) were bet-
ter tagged than both CEU (47.30%) and CHB+JPT
(39.53%) by 1000G SNPs (Table S4 in Additional file 1).

Lastly, we noted that OMNI and HapMap panels were
also able to tag low frequency and common indels. In
CEU and CHB+JPT, approximately 67% and approxi-
mately 66% of common indels were in high LD with at
least one SNP using OMNI and HapMap panels, respec-
tively. This is especially encouraging as we may be able to
retrospectively impute associations with indels using exist-
ing GWAS datasets. However, these panels tag low fre-
quency indels with lower efficiency: only 34.24% and
27.09% of low frequency indels in OMNI and HapMap
panels, respectively, were in high LD with nearby SNPs
(Table S4 in Additional file 1).

Strong LD between frequency-matched indels and SNPs

As common indels and SNP variants were previously
found to have similar LD profiles [26,31], we predicted
that low frequency indels and SNPs would also be simi-
lar. We found indel-SNP LD was primarily with fre-
quency matched SNPs - that is, low frequency indels
were found to be in LD with low frequency SNPs but not
common SNPs (Figure 2b). For low frequency indels, YRI
and CEU also show a greater percentage of indels in high
LD (56.8% and 46.2%, respectively) with nearby SNPs
relative to CHB+JPT (37.6%) (Figure 2b). This is due to
the higher amounts of low frequency variants in YRI and
CEU (Table S2 in Additional file 1). Similarly, common
indels were in high LD with common SNPs but not with
low frequency SNPs (Figure 2b). Overall, common indels
are tagged at similar levels across populations by com-
mon 1000G SNPs (P > 0.05, all populations).

Further, as low-frequency indels likely represent recent
mutations, the average length of extended haplotype
should be longer for low frequency indels than for com-
mon indels [32]. As expected, median haplotype length
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Figure 1 Linkage disequilibrium pattern comparisons showed that INDEL-SNP LD is greater than SNP-SNP LD for mean maximum r°.
Mean max r” for the CEU population (CHB+JPT and YRI not shown) using common SNP and indel sites from 1000G, OMNI and HapMap,
averaged over 1 kb windows. Although indel-SNP LD was higher than SNP-SNP for all SNP panels, this is likely due to ascertainment bias. OMNI
LD was the lowest due to its design, and HapMap3 had the highest LD due to the relative reduction in low frequency variants.

for low frequency indels in high LD (31.6 kb) was longer
than the median haplotype length for common indels in
high LD (25.2 kb, P < 2.2 x 107 (Table S5 in Additional
file 1). Meanwhile, there was no difference in haplotype
lengths between common indels in high LD and common
SNPs in high LD (P = 0.69) and between low frequency
indels in high LD and low frequency SNPs in high LD
(P = 0.19).

Loss-of-function indels undergo purifying selection

LOF variants in the 1000G Pilot are defined as frame-
shift, nonsense and splice site indels that may disrupt
protein-coding regions [2]. Their deleterious nature
causes these variants to undergo purifying selection; as
such, they have lower MAF and shorter (and possibly less
deleterious) lengths. In 1000G data, we observed evi-
dence of this phenomenon in the MAF distribution and
indel size distributions. Relative to non-LOF indels, LOF
indels are enriched with low frequency variants; LOF
indels within the MAF < 5% bin was approximately 50%

greater than non-LOF indels (36.15% versus 23.51%, P <
2.2 x 107 Figure S1 in Additional file 1). Further LOF
variants show a greater proportion of insertions and dele-
tions of length one versus non-LOF populations (Figure
S2a, b in Additional file 1).

Applying ANNOVAR to all indels revealed that indels
are not evenly distributed amongst exonic and intronic/
intergenic regions. In particular, low frequency CEU indels
were more prevalent in exons when compared to common
indels (0.24% versus 0.20%, respectively, P = 0.002; Figure
S5a in Additional file 1). However, between low frequency
and common non-LOF indels there was no difference in
exonic prevalence (P = 0.36). This result suggests that
deleterious variants were under purifying selection, thus
decreasing the proportion of common variants in exons.
This pattern was replicated in CHB+JPT and YRI popula-
tions (data not shown).

Our results also showed that 95% of LOF variants are
small indels compared to 90% in non-LOF variants (P =
0.0017; Figure S2b in Additional file 1). Annotation by
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Figure 2 Indels and SNPs show similar tag SNP patterns. (a) We evaluated the percentage of common indels or SNPs with at least one
pairwise r greater than 0.5 (medium LD), 0.8 (high LD) or equal to 1 (perfect LD) using 1000G SNPs. Our results suggest that indels and SNPs
are similarly tagged by nearby SNPs. (b) The percentage of low frequency and common indels that are in high LD with low frequency or
common 1000G SNPs for CEU, CHBJPT and YRI populations. Low frequency and common indels are best tagged by frequency matching SNPs.
(c) We evaluated tagging of LOF and non-LOF indels. The percentage of LOF that are in medium, high and perfect LD is slightly lower than
non-LOF variants for all populations.
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ANNOVAR revealed that a larger proportion of common
large indels were located in exonic regions when com-
pared to small indels (Figure S5b in Additional file 1;
0.28% versus 0.18%, P = 2.15 x 10’8). To investigate the
cause, we partitioned exonic indels by functional impact
(that is, by binning into LOF and non-LOF indels). Our
analysis showed that LOF variants are more prevalent
amongst exonic indels < 6 bp (61.92%) when compared
to exonic indels > 6 bp (48.81%, P = 0.00052). These find-
ings provided further evidence of purifying selection;
selection acts against larger (and potentially more dele-
terious) indels, thus decreasing the proportion of long
LOF variants and increasing the proportion of benign
indels in exonic regions. We found similar trends in both
CHB+JPT and YRI populations (data not shown).

The relative increase in low frequency variants alters
the LD profile of LOF variants in ways previously dis-
cussed. LOF variants had marginally lower LD for a given
fixed distance between a putative indel and SNPs when
compared to non-LOF variants because low frequency
LOF variants had longer haplotypes (Figure Sé6a in Addi-
tional file 1). For distances less than 14 kbp, non-LOF
variants had higher mean max r” than LOF variants (P <
0.05 for all comparisons). Low frequency variants also
decrease the percentage of indels in high LD (r* > 0.80)
with 1000G SNPs; there was a small but significant
reduction of 1 to 4% in each population (Figure S6b in
Additional file 1; P < 0.05 in all populations). LOF var-
iants had slightly longer haplotype backgrounds than
non-LOF variants due to the relative increase in low fre-
quency indels amongst these alleles. Median haplotype
length for LOF was approximately 2 kbp longer than
non-LOF indels for all populations (P < 107'° for all
populations; Table S6 in Additional file 1).

Neighboring SNPs can accurately impute low frequency
and common indels
Although the price of whole genome sequencing con-
tinues to drop, imputation of genotypes from SNP micro-
arrays will continue to remain important for the
foreseeable future. Statistical imputation of indels from
SNPs is important and necessary to increase power for
detecting variants in disease studies and central to the
design of future SNP genotyping studies. With the large
panel of SNP and indel genotypes provided by the
1000G, we assessed the effect of various population
genetic properties, such as ethnicity, MAF bins of the
indel, indel size, and LOF status, on the imputation
power of indels. We also studied the importance of SNP
density in imputation power and accuracy by comparing
imputation results using three SNPs panels: 1000G,
OMNI and HapMap3.

We evaluated power to impute homozygous reference
(ref/ref), heterzygous (ref/alt) and homozygous alternative
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(alt/alt) alleles using two different imputation engines,
SNPTools developed at the Baylor College of Medicine
[32] and IMPUTE2 [3]. As SNPTools’ imputation pro-
vided a > 15% improvement in imputation concordance
when compared to IMPUTE?2 (Table S7a, b in Additional
file 1), we present only results generated with SNPTools in
the main text. IMPUTE2 results and a detailed compari-
son are summarized in Additional file 1.

As discussed in Figure 2b, common indels were well
tagged by nearby common SNPs. As such we were not
surprised that the concordance rate for imputing common
indels was high. With SNPTools, imputation power was
greater than 96% for ref/ref, ref/alt and alt/alt imputations
in all populations (Figure 3a). This high level of accuracy
was maintained when using SNPs from 1000G, OMNI or
HapMap panels (Table S8a in Additional file 1).

1000 Genomes SNPs imputed low frequency heterozygous
indels with greater than 50% concordance but could not
impute accurately homozygous alternative alleles

Perhaps of greater interest due to the impact on disease
phenotypes by low frequency variants [33-36], we explored
imputation of low frequency alleles from 1000G SNPs. We
found that SNPTools ably imputed heterozygous low fre-
quency alleles. Using population averages, ref/alt alleles
were imputed with a 50.0% concordance rate while alt/alt
alleles were imputed with an approximately 11.9% concor-
dance rate (Figure 3a) from 1000G SNPs. In addition, YRI
demonstrated superior imputation power for ref/alt
(50.3%) when compared to CHB+JPT (44.5%) but not
when compared to CEU (52.2%) (Table S8a in Additional
file 1). This is likely due to the greater percentage of low
frequency indels in the YRI population that are in high LD
with nearby SNPs (Table S5a in Additional file 1).
Imputation of LOF variants was similar to non-LOF variants
As LOF indels represent possible deleterious variants, con-
fidence in imputing LOF indels is of interest to GWAS
studies. As there was a higher proportion of low frequency
amongst LOF variants relative to non-LOF variants (Fig-
ures S1 in Additional file 1), overall imputation concor-
dance for all (common + low frequency) variants suffers.
For ref/alt and alt/alt variants, imputation concordance for
all (common + low frequency) non-LOF variants was
greater than 95%. Ref/alt and alt/alt concordance for LOF
variants was approximately 1 to 2% lower in all popula-
tions when compared to non-LOF variants (P < < 0.05 for
all comparisons) (Figure 3b). The small reduction in impu-
tation power between non-LOF and LOF variants was due
to differences in LD contingent on their respective MAF
distributions (Tables S7b and S8b in Additional file 1).

Increased r? improved imputation performance in
SNPTools’ indel imputation

Imputation of genotypes in unrelated individuals utilizes
the shared LD structure of the population. To explore
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the impact of LD on imputation power, we created bins
of SNPs with r* values from zero to one in 0.05 incre-
ments. We then used these bins to iteratively impute
indel variants.

In Figure 2b above, we reported that indel LD was high-
est between frequency-matched indels and SNPs. Corre-
spondingly, we evaluated if we could obtain equivalent
imputation performance and reduce computational
requirements by using only frequency-matching SNPs. As
expected, our results showed that, for common indels, we
could obtain similar power to impute ref/alt and alt/alt
when using only frequency matching SNPs (Figure 4a).

For low frequency indels we found that higher LD
makes a large impact on imputation performance. Overall
imputation performance closely tracked ref/ref concor-
dance due to the overall preponderance of ref/ref imputa-
tions (approximately 93% of all comparisons) relative to
ref/alt imputations (approximately 6% of all comparisons)
and alt/alt imputations (approximately 1% of all compari-
sons). For imputation of heterozygous alleles there was a
rapid increase in concordance from approximately 35%
when using SNPs with r* values between 0 and 0.05 to
greater than 90% concordance for r” greater than 0.25
(Figure 4b). Unfortunately, we still found that there was
little power to impute homozygous alternative alleles.
Results were replicated in YRI and CHB+JPT populations
(data not shown).

Discussion and conclusion

The 1000G Consortium [2], Mills et al. [1,7,33], Bhangale
et al. [6] and other studies previously reported that short
indels are not only abundant in the genome but also
likely to impact human phenotypic diversity. In the

1000G dataset, the CEU, CHB+JPT and YRI populations
had 1,316, 1,694, and 1,691 indels, respectively, that
resided in exonic regions, of which 578, 540, and 804 of
these variants, respectively, were predicted to be LOF
variants (Figure S3 in Additional file 1).

Given the impact of LOF variants on genetic function,
our study revealed that LOF variants likely undergo purify-
ing selection (Figures S1, S3a, S3b, and S6, and Table S6 in
Additional file 1) [1]. Of particular interest to human
health, LOF variants were nearly as well tagged by nearby
SNPs as non-LOF variants (Figure S6b in Additional file
1). Further, while previous studies by Frazer et al. [34],
Eichler et al. [35], and McCarroll et al. [4,36] demon-
strated that common indels are in high LD with nearby
SNPs, our results revealed that both low frequency and
common indels can be reliably tagged by nearby SNPs
(Figure 2a). OMNI and HapMap panels ably tag > 70% of
common indels, while OMNI tags > 50% of low-frequency
indels (Table S4 in Additional file 1) in all populations.

In addition to evaluating LD, we provided in our study
descriptive statistics of imputation performance. By retro-
actively imputing indels from high scoring loci in previous
GWAS, it may be possible to identify previously unknown
causative variants. Our internal imputation engine
SNPTools can impute greater than 95% of common indels
in all populations. However, we found that imputation of
low frequency was more difficult as fewer indels are in
high LD with nearby SNPs (Table S4 in Additional file 1).
It has been assumed that low frequency variants, which
provide a large proportion of inherited susceptibility to
disease [37], cannot be easily imputed due to their low
MAF. We find this previous statement to be partially true;
while we could impute heterozygous alleles with 50%
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Figure 4 Imputation performance depends on r? of nearby SNPs. (a) For common indels, frequency matched SNP imputation performs
similar to imputation using all SNPs. (b) For low frequency indels, imputation performance improves rapidly for heterozygous (ref/alt) imputation
with > 90% concordance once r* between indels and SNPs reaches 0.25. However, imputation of alternative homozygous alleles (alt/alt) remains
below 15% even when imputed with SNPs in perfect LD.
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concordance, we had very little power to impute homozy-
gous alleles. Our results show that improvements in
imputing low-frequency indels in GWAS results can be
gained by including more low frequency ‘tag-SNPs’ in post
1000G microarray panels. However, as LD amongst low-
frequency indels and low-frequency SNPs was not as high
as that between common indels and common SNPs, such
advantages will be accretive. As we can use current impu-
tation engines to impute indels from previously published
or future GWAS, we provide to the community a list of
indels tagged with nearby SNPs with high LD (r* > 0.8)
[25].

In this study we evaluated the LD patterns and imputa-
tion results for indels called from low coverage NGS tech-
nology. Unfortunately we could not evaluate indel calls
from high coverage exon capture due to the relative diffi-
culty in calling indels from exonic data and the relative
lack of data in the 1000G Exon Pilot 3 [38,39]. However,
we do expect that these data will be important in validat-
ing future indel calls. To date, calling short indels from
short read NGS data remains technically challenging; how-
ever, this method may provide greater fidelity than trace
mapping for low frequency and small indels. While future
work comparing and validating these various approaches
is necessary, these complementary technologies nonethe-
less help us achieve the ultimate goal of generating a com-
prehensive understanding of indels and their impact on
human variation and disease.

Materials and methods

Data preparation

We used short indels (< 50 bp) and SNP genotype data
from 1000G Pilot 1 (sequenced to approximately 3.6X
coverage) from the October 2010 Pilot paper data set
releases available in VCFv4 format for CEU, YRI and CHB
+JPT populations [40]. There were 60 CEU, 59 YRI and
60 CHB+JPT samples. Indels were called using Dindel
[39], which accounts for difficulties in mapping, alignment,
and size using a bayesian framework. In the 1000G Pilot
Paper and Supplement, the false discovery rate for novel
variants was reported to be 1.7% for low-coverage indels
[2]. This was achieved by using a stringent filtering scheme
that took into account mapping quality, number of reads
and QCALL imputation estimates. Novel indels (not
found in dbSNP 129) were chosen from chromosome 20
and genotyped using Sequenom; 79, 59, and 152 indels
were genotyped from the CEU, CHB+JPT, and YRI popu-
lations, and the true positive rate) was found to be 98.7%,
94.9% and 99.3%, respectively (Table S3 and Supplemental
information in Additional file 1) [2].

The SNPs and indels were merged using a custom C++
script. During the merging process, if an indel or SNP
shared the same position, the indel was retained and the
SNP was discarded. In addition, we only evaluated bi-
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allelic indels and SNPs. Multi-allelic polymorphisms
(SNPs with multiple alternative alleles) represented
approximately 0.01% of total SNPs, and were not
included in our current study.

A list of predicted LOF indel sites was also released in
October 2010 with the pilot paper [40]. These LOF var-
iants represent predicted protein disrupting variants
[2,38]. Data manipulation was done with custom PERL
scripts. We removed all rare indels (MAF < 1%), as all
incidences were singletons. Data sparsity prevented us
from drawing any conclusions about their characteristics.

To generate OMNI and HapMap genotype panels, the
1000G genotypes were filtered using OMNI and HapMap
Phase 3 sites, which can be obtained from Illumina [30]
and the International HapMap Project website [29,41],
respectively.

Linkage disequilibrium

Indels were sampled using the sampler program. Correla-
tion coefficient (r?) was calculated using PLINK (version
1.7 x86_64) [42]. Using PLINK, pairwise correlation coeffi-
cients were calculated for each indel and each SNP for a +
100 kb region of the indel. Evaluations of SNP to SNP
pairwise correlation coefficients were completed with >
1,500 randomly sampled SNPs from OMNI, 1000G and
HapMap3 panels. All charts comparing r* to physical
nucleotide distance (base pairs) were completed using cus-
tom scripts on the statistical software package R (version
2.12.0) and graphed in EXCEL (MS Office for Windows
2007). Mean max r” was calculated by averaging the maxi-
mum r” values for all indels within 1 kb windows. Average
r* was calculated by averaging all r* values within 100 bp
windows. Statistical tests are indicated in the manuscript.

Imputation

Two LD-based imputation engines were chosen to pro-
vide more robust imputation of indels. Imputation was
completed with both IMPUTE?2 (version 2) [3] and the
imputation engine from SNPTools (manuscript under
review). Indels were first sampled using the aforemen-
tioned sampler program, and the indel was imputed
using all SNPs within a + 100 kb region. Concordance
was calculated by summing over k indels and then sum-
ming over imputed n; individuals the count of correctly
imputed genotypes. The genotypes for both the indels
and SNPs provided by the 1000G Pilot project were
assumed to be correct. In the SNPTools imputation
engine, these genotypes were given a genotype likeli-
hood of 0.995.

Concordance was calculated separately for imputed
genotypes for homozygous reference (ref/ref), heterozy-
gous (ref/alt) and homozygous alternative (alt/alt). Con-
cordance rates for populations and MAF were graphed
using EXCEL.
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To evaluate the effects of LD on imputation, the pair-
wise r> was first calculated for all SNPs within + 100
kbp of 1,500 indels. These SNPs were grouped by pair-
wise 2 values, in 0.05 increments, that is, 0 to 0.05, 0.05
to 0.10 ... 0.95 to 1. Each grouping of r* was then used
to impute the indel genotype. Concordance rates were
then calculated.

Statistical analyses

Paired comparison of count information/proportions
was completed using the two-proportion test. Popula-
tion comparisons for indel tagging and haplotype length
were evaluated using the Mann-Whitney test.

Additional material

Additional file 1: Supplemental material. Supplemental file includes
nine tables and seven figures.
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