
Alcohol abuse and alcoholism are significant global 
public health problems. In the USA, alcoholism affects 
approximately 14  million people at a healthcare cost of 
$184  billion per year. Excessive alcohol consumption is 
associated with violent crime, aggression and increased 
risk of accidents, injury and death. �e term ‘alcoholism’ 
was first coined by Magnus Huss to describe the persis-
tence of drinking despite adverse health effects. �e 
Diagnostic and Statistical Manual of Mental Disorders 
classifies alcoholism as an addictive disorder [1]. It is a 
complex disorder affected by genetic, epigenetic and 
environ mental etiologic factors.

High levels of alcohol intake are associated with im pair-
ment of multiple organs, including brain, liver, pancreas 
and the immune system. �e first stage of liver damage 
following chronic alcohol consumption is the develop-
ment of fatty liver, which may be followed by inflamma-
tion, apoptosis, fibrosis and cirrhosis. Alcohol and its 
metabolite acetaldehyde are carcinogens, and excessive 
alcohol consumption is associated with increased risk for 
mouth and oropharyngeal cancer, breast cancer and liver 
cancer. �e risk of upper gastrointestinal cancer is 
increased by a missense variant in the gene encoding 
aldehyde dehydrogenase (ALDH), which is found in some 

500  million East Asians [2]. Depression, epilepsy, 
hypertension and hemorrhagic stroke occur secondary to 
alcohol consumption [3]. Finally, alcohol consumption 
during pregnancy can result in birth defects that com prise 
fetal alcohol syndrome [4]. �e diversity of pathologic 
effects of alcohol indicates that this drug exerts toxicity 
through multiple mechanisms, each of which can be 
modulated by different genetic variants.

Twin studies have demonstrated that the amount of 
alcohol one consumes has a genetic influence [5]. Age at 
first drink appears to be associated with alcohol-related 
problem behavior, but progression to alcoholism is under 
stronger genetic control than initiation, and the effect of 
early exposure to predict outcome is genetically mediated 
[6]. Alcohol-related phenotypes are typical quantitative 
traits, with population variation attributable to multiple 
segregating loci with effects that are sensitive to 
environmental exposures. Given that many loci are likely 
to affect alcohol drinking behavior and the development 
of dependence, we need to shift our focus from a ‘one 
gene at a time’ approach to genetic networks. �is can be 
done by considering the effects of molecular polymor-
phisms on phenotypes mediated via complex networks of 
transcriptional, protein, metabolic and neurogenetic 
endophenotypes. Here, we review genetic risk factors 
and transcriptional correlates for alcohol consumption in 
humans, with insights from studies on model genetic 
organisms.

Human studies
Human genetic studies on alcohol-related phenotypes 
have used family-based linkage and population-based 
association analyses to identify quantitative trait loci 
(QTLs). Linkage studies are based on co-segregation 
between genetic markers and alcohol dependence in 
families with several affected members. By contrast, 
asso ciation studies evaluate the strength of association 
between genetic variants and alcohol phenotypes in 
samples of unrelated individuals; these can be attri bu-
table to a causal effect of the variant or linkage dis-
equilibrium (LD) between the molecular variant and the 
true causal allele. Association analyses give more precise 
localization of QTLs than linkage studies; however, 
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false-positive associations can arise from population 
stratification of cases and controls, and by chance in 
small samples. In both designs, large numbers of 
individuals are required to detect QTLs with small 
effects. Early efforts to dissect the genetic basis of alcohol 
consumption and addiction in humans were based on 
candidate genes. The main pathway of ethanol metabo­
lism involves its conversion to acetaldehyde by alcohol 
dehydrogenase (ADH; Figure 1). Acetaldehyde is oxidized 
to acetate by aldehyde dehydrogenase (ALDH). The 
activated form of acetate, acetyl-CoA, can be metabolized 
into ketone bodies, fatty acids, amino acids and steroids, 
in addition to oxidation in the Krebs cycle. Cytochrome 
P450s (for example, those encoded by the gene CYP2E1) 
and catalase also metabolize a small fraction of ingested 
ethanol. Multiple ADH and ALDH enzymes are encoded 
by different genes [7], and different ADH and ALDH 
alleles can differ in expression levels and in the rate at 
which their corresponding enzymes metabolize ethanol 
or acetaldehyde. The ADH1B His48Arg and ALDH2 
Lys487 polymorphisms have long been associated with 
risk of alcoholism, and directly and predictably lead to 
alcohol-induced flushing through molecular mechanisms 
that include accumulation of acetaldehyde and release of 
histamine [8]. ADH1B, ALDH2 and ADH4 influence 
alcohol consumption and have been implicated as risk 
factors for developing alcohol abuse or dependence [9-11].

The positive reinforcing effects of alcohol are mediated 
through the corticomesolimbic dopaminergic reward 
pathway, which extends from the ventral tegmental area 
to the nucleus accumbens and is modulated by a wide 
range of neurotransmitters. This pathway is indirectly 
activated by alcohol through the release of other neuro­
transmitters, including acetylcholine, dopamine, 

glutamate, gamma-aminobutyric acid (GABA), opioids 
and serotonin. Several candidate genes in neurotrans­
mitter pathways associated with the ventral tegmental 
area and nucleus accumbens have been associated with 
alcohol dependence, including the genes encoding 
cholinergic receptor, muscarinic 2 (CHRM2) [12]; 
cholinergic receptor, nicotinic, alpha 5 (CHRNA5) [13]; 
catechol-O-methyltransferase (COMT) [9]; GABA A 
receptor, alpha 2 (GABRA2) [14]; glutamate receptor, 
metabotropic 8 (GRM8) [15]; solute carrier family 6 
(neurotransmitter transporter, serotonin), member 4 
(5-HTT) [16]; nuclear factor of kappa light polypeptide 
gene enhancer in B cells 1 (NFKB1) [17]; monoamine 
oxidase A (MAOA) [18]; neuropeptide Y receptor Y2 
(NPY2R) [19]; opioid receptor, kappa 1 (OPRK1) [20]; 
opioid receptor, mu 1 (OPRM1) [21]; prodynorphin 
(PDYN) [20]; and tachykinin receptor 3 (TACR3) [22].

More recently, several genome-wide association studies 
(GWASs) using 500,000 to 1 million SNPs spanning the 
entire genome have provided unbiased screens for 
variants affecting alcohol-related behaviors [23-32] 
(Table  1; Additional file 1). Many of these studies have 
used samples from large consortia, such as the Colla­
borative Studies of Genetics of Alcoholism (COGA), the 
Study of Addiction: Genetics and Environment (SAGE) 
and the Australian Twin Registry. Consistent with GWAS 
for other traits [33], many novel loci have been implicated 
in alcohol dependence and alcohol consumption, but 
these loci have small effects and are thus difficult to 
detect with the available sample sizes, especially given 
the high significance threshold required to control for 
multiple tests. In one GWAS study, the gene encoding 
ACN9 homolog (ACN9), which is involved in gluconeo­
genesis and required for the assimilation of ethanol or 

Figure1. Alcohol metabolism. Ethanol is converted to acetaldehyde by alcohol dehydrogenase (ADH) and subsequently to acetate by aldehyde 
dehydrogenase (ALDH). Acetate is conjugated to coenzyme A and the resulting acetyl-CoA can be metabolized in the Krebs cycle, or utilized for the 
synthesis of fatty acids. In addition, a small fraction of ethanol is metabolized by cytochrome P450 2E1 (CYP2E1) and in the brain by catalase. The 
diagram presents only those members of the ADH and ALDH families referred to in the text. Accumulation of acetaldehyde is responsible for the 
physiological malaise commonly known as ‘hangover’.
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acetate into carbohydrate [34], has been associated with 
susceptibility to alcohol dependence [35]. Two SNPs in 
the 3’ flanking region of the gene encoding peroxisomal 
trans-2-enoyl-CoA reductase, which is a key enzyme for 
the peroxisomal fatty acid chain elongation pathway, 
achieved genome-wide significance for alcohol depen­
dence in a study of German males [31]. A GWAS on 
pooled DNA samples from individuals with a lifetime 
history of alcohol dependence, nicotine dependence and 
co-morbid alcohol/nicotine dependence in an Australian 
population [28] identified three SNPs that reached 
genome-wide significance for co-morbid alcohol/nicotine 
dependence. The implicated genes were: (1)  the gene 

encoding MAP/microtubule affinity-regulating kinase 1 
(MARK1), which is a kinase involved in the phosphory­
lation of microtubule-associated proteins; (2)  the gene 
encoding DEAD box polypeptide 6 (DDX6), which is a 
putative RNA helicase; and (3) KIAA1409, which encodes 
a component of the NALCN Na+ channel complex. A 
family-based association analysis for alcohol dependence 
that utilized both COGA and the Australian twin-family 
samples implicated the genes encoding endothelin recep­
tor type B (EDNRB), Usher syndrome 2A (USH2A), 
TCDD-inducible poly(ADP-ribose) polymerase (TIPARP), 
monoamine oxidase A, Na+/K+ transporting ATPase inter­
acting 2 (NKAIN2), and Down syndrome cell adhesion 

Table 1. Candidate genes for alcohol-related phenotypes replicated in several GWAS and transcriptional profiling studies

		  Type of 
Protein (gene symbol) 	 Gene functiona	 study	 Phenotype(s) and reference(s)

Cadherin 13 (CDH13) Calcium-dependent cell adhesion protein GWAS Alcohol dependence [27,28,31]; 
polysubstance abuse [29]

Rho GTPase activating protein 28 
(ARHGAP28)

GTPase activator for the Rho-type GTPases GWAS Alcohol dependence [25,27]; alcohol 
consumption [23]

CUB and Sushi multiple domains 1 
(CSMD1)

Potential suppressor of squamous cell carcinomas GWAS Alcohol dependence [25,27]; 
polysubstance abuse [29]

CUB and Sushi multiple domains 2 
(CSMD2)

Potential suppressor of squamous cell carcinomas GWAS Alcohol dependence [25,27]; 
polysubstance abuse [29]

Catenin, delta 2 (CTNND2) Transcriptional activator; may be involved in neuronal 
cell adhesion and tissue morphogenesis and integrity by 
regulating adhesion molecules

GWAS Polysubstance abuse [29]; alcohol 
dependence [25]; alcohol consumption 
[23]

Kv channel interacting protein 1 
(KCNIP1)

Modulates channel’s density, inactivation kinetics, and rate 
of recovery from inactivation in a calcium-dependent and 
isoform-specific manner

GWAS Alcohol dependence [25,26]; alcohol 
consumption [23]

Neuronal PAS domain protein 3 
(NPAS3)

Encodes a member of the basic helix-loop-helix and PAS 
domain-containing family of transcription factors; may play 
a role in neurogenesis

GWAS Polysubstance abuse [29]; alcohol 
dependence [25]; alcohol consumption 
[23]

Protein tyrosine phosphatase, 
receptor type, D (PTPRD)

The protein is a member of the protein tyrosine 
phosphatase family, members of which regulate a variety of 
cellular processes

GWAS Polysubstance abuse [29]; alcohol 
dependence [25]; alcohol consumption 
[23]

Usher syndrome 2A (USH2A) The protein contains laminin EGF motifs, a pentaxin domain, 
and many fibronectin type III motifs; involved in hearing 
and vision

GWAS Alcohol dependence [26,27,32]

Angiotensinogen (AGT) Essential component of the renin-angiotensin system, 
a potent regulator of blood pressure, body fluid, and 
electrolyte homeostasis

Microarrayb Frontal cortex [38,39]; prefrontal cortex 
[41]

Lysosomal-associated membrane 
protein 2 (LAMP2)

Member of a family of membrane glycoproteins; implicated 
in tumor cell metastasis

Microarrayb Temporal cortex [40]; frontal cortex 
and nucleus accumbens [36]; frontal 
cortex [38]

Peripheral myelin protein 22 (PMP22) Integral membrane protein that is a major component of 
myelin in the peripheral nervous system; might be involved 
in growth regulation, and in myelinization

Microarrayb Prefrontal cortex [41]; frontal cortex and 
nucleus accumbens [36]

Selenoprotein P, plasma, 1 (SEPP1) Might be responsible for some of the extracellular 
antioxidant defense properties of selenium or might be 
involved in the transport of selenium

Microarrayb Frontal cortex [39]; temporal cortex [40]; 
prefrontal cortex [41]

Transferrin (TF) Responsible for the transport of iron from sites of absorption 
and heme degradation to those of storage and utilization

Microarrayb Frontal cortex [38,39]; frontal, motor 
cortices [37]

aObtained from GeneCards® [103]; bSamples were obtained from postmortem human brains from alcoholics versus control.
GWAS, genome-wide association study. 
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molecule like 1 (DSCAML1) [32], with four SNPs in 
DSCAML1 reaching genome-wide significance. A GWAS 
for alcohol consumption in Korean male drinkers [23] 
identified 12 SNPs in six genes (chromosome 12 ORF 51 
(C12orf51), and the genes encoding coiled-coil domain 
containing 63 (CCDC63), myosin, light chain 2 (MYL2), 
2’-5’-oligoadenylate synthetase 3 (OAS3), cut-like homeo­
box 2 (CUX2), and rabphilin 3A homolog (RPH3A)) on 
chromosome 12q24 associated with alcohol consumption 
at a genome-wide significance level. In contrast, two 
studies on alcohol dependence [25,26], including one of 
the largest GWASs to date, with over 10,000 individuals 
from the Australian Twin Registry, failed to identify any 
SNPs with genome-wide significance. A GWAS meta-
analysis of approximately 2.5 million SNPs with alcohol 
consumption among 12 population-based samples of 
European ancestry, comprising more than 20,000 indivi­
duals [30], identified a single SNP, rs6943555, in the gene 
for autism susceptibility candidate 2 (AUTS2) associated 
with alcohol consumption at a genome-wide significance 
level.

Considering only SNPs in genes that achieve genome-
wide significance reveals no overlap across the studies, 
with the exception of the large effects contributed by 
variation at ADH1B and ALDH2 in Asian populations. 
Among all SNPs that were significant at a nominal P-
value in the studies described above, the gene encoding 
cadherin 13 (CDH13) was replicated in four independent 
studies, and eight genes were common across any three 
studies (Table 1). In addition, five differentially expressed 
genes in different areas of postmortem human brains of 
alcoholics were replicated in any of three transcriptional 
profiling studies (Table 1) [36-41].

The lack of concordance across GWASs could be 
partially due to different measures of alcohol consump­
tion used in different study populations or even across 
different samples from the same population. Common 
measures of alcohol consumption are frequency of 
drinking (weekly and annually), quantity by frequency, 
maximum drinks in a 24 hour period, frequency of heavy 
drinking and frequency of intoxication [5]; if these 
measures are not perfectly correlated, they will be asso­
ciated with different SNPs. Association studies in humans 
are limited in resolution by the structure of LD; to the 
extent that LD varies among populations, different genes 
may be implicated in different studies. Moreover, rare 
alleles that contribute to variation in alcohol consump­
tion are essentially blind to detection by association studies 
using common variants, and many SNPs with small effects 
may contribute to risk for alcohol dependence.

In summary, GWASs have been limited by difficulties 
in quantifying alcohol-related phenotypes and in obtain­
ing large sample sizes, together with co-morbidity of 
alcoholism with other behavioral and neuropsychiatric 

disorders, gender effects and population admixture. 
Furthermore, the diversity of mechanisms of vulnerability 
and resilience to alcohol pose challenges for human 
genetic studies on alcoholism or alcohol consumption. It 
has become increasingly clear that, in addition to a few 
common alleles, many different rare alleles may contri­
bute to vulnerability in different populations.

One strategy that circumvents the limitations of human 
GWASs relies on comparisons with genes associated with 
ethanol-related behaviors in genetically amenable model 
organisms.

Animal models
Given the evolutionary conservation of genes and path­
ways affecting key biological processes between verte­
brates, invertebrates and humans, studies on model 
organisms (rats, mice, flies and nematodes) have played 
an important role in identifying potential candidate 
genes that contribute to alcohol intoxication. Invertebrate 
and vertebrate models show similar symptoms of alcohol 
intoxication, including loss of postural control, sedation, 
immobility and development of tolerance. After alcohol 
intoxication, mice and rats increase their alcohol 
consumption, develop tolerance and even alcohol depen­
dence. Drosophila develops tolerance after a single 
exposure to ethanol [42]. In addition to rapid tolerance, 
flies develop chronic tolerance after prolonged exposure 
to a low concentration of ethanol [43]. Caenorhabditis 
elegans also exhibits tolerance after continuous ethanol 
exposure [44] and develops ethanol preference as a result 
of prolonged pre-exposure [45].

In addition to the behavioral similarities between 
invertebrate and mammalian models, invertebrates use 
similar neurotransmitter systems, neuropeptides, synap­
tic proteins, channels and signaling processes to mediate 
ethanol-induced behaviors [46]. These include genes 
encoding Ca2+-sensitive adenylate cyclase and protein 
kinase A [47-49], BK channels [50-52], Homer [53,54], 
genes encoding proteins involved in GABA neurotrans­
mission [55,56], the gene encoding protein kinase C 
[57,58], and genes encoding proteins involved in dopa­
mine and serotonin signaling [45,59,60]. In vertebrates, 
neuropeptide Y (NPY) signaling plays a role in alcohol 
intake and dependence [61,62]. Invertebrates have an 
ortholog to NPY, neuropeptide F (NPF), and signaling via 
NPF also influences ethanol-related behaviors [44,63].

Rats meet all the criteria for animal models of 
alcoholism, including: the ability to orally self-administer 
ethanol; elevation of blood ethanol concentration after 
alcohol consumption; willingness to work for ethanol 
access; development of functional tolerance; and, after a 
deprivation period, relapse-like behavior [64]. A study on 
recombinant inbred rat strains identified several genomic 
regions on chromosomes 1, 6 and 12 that harbor 
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candidate genes for alcohol consumption, including the 
genes encoding actin filament associated protein, chole­
cystokinin 2 receptor, melanocortin 4 receptor; protein 
tyrosine phosphatase receptor type E and tubulin B6 [65]. 
Furthermore, several microarray studies have identified 
differential expression of genes between alcohol-prefer­
ring and alcohol-non-preferring rat strains, including the 
genes encoding alpha-adducin (Add1), retinal dehydro­
genase 1 (Aldh1a1), adenylate cyclase type 3 (Adcy3), 
alpha-crystallin B chain (Cryab), glutamate decarboxylase 
1 (Gad1) and NPY (Npy) [66,67]. However, most studies 
on the genetic underpinnings of alcohol-related pheno­
types have focused on mice, because, in contrast to rats, 
they can be more easily genetically manipulated. Mice 
are amenable to complete elimination of the gene of 
interest, gene silencing by RNA interference (RNAi), 
overexpression and mutagenic technologies [68]. Numer­
ous genetic models have been developed to investigate 
specific aspects of alcoholism in mice, including toler­
ance, withdrawal, motivational effects and high-dose 
sensitivity [68]. Over 90% of the mouse and human 
genomes can be partitioned into regions of synteny [69].

Among invertebrate models Drosophila is advantageous 
because large numbers of genetically identical individuals 
can be reared at relatively low cost and without regulatory 
restrictions, and many community resources are available 
for sophisticated genetic manipulations. Drosophila is also 
readily amenable to neuroanatomical studies.

C. elegans presents a useful model system for examin­
ing the effects of ethanol on development [70]. The 
lineage of each of its 302 neurons and their chemical 
synapses has been characterized. Nematodes have a short 
(approximately 3  days) reproductive cycle, enabling 
large-scale mutagenesis screens within a relatively short 
time, and they can be cryopreserved.

Mouse models
Studies on mice have identified more than 80 genes that 
affect alcohol preference drinking [59]. Pioneering work 
by Buck and colleagues identified three genomic regions 
on mouse chromosomes 1, 4 and 11 that influence acute 
alcohol withdrawal [71]. Through a succession of studies 
involving F2 intercrosses, construction of recombinant 
inbred lines, and interval-specific congenic strains 
[71‑73], the gene encoding multiple PDZ domain protein 
(Mpdz) was identified as a quantitative trait gene for 
alcohol withdrawal symptoms. In humans, MPDZ does 
not demonstrate an association with alcohol-induced 
withdrawal seizures, but haplotype and single-SNP asso­
ciation analyses suggest a possible association with 
alcohol dependence [74] and alcohol consumption [65]. 
Another QTL on chromosome 1 was mapped to a 
0.44 Mb interval containing 15 candidate genes, including 
Kcnj9. Kcnj9 encodes GIRK3, a subunit member of a 

family of G-protein-dependent inwardly rectifying K+ 
channels that mediate postsynaptic inhibitory effects of 
Gi/o-coupled receptors [75]. Kcnj9-null mutant mice show 
reduced withdrawal from pentobarbital, zolpidem and 
ethanol [76].

QTLs for alcohol consumption and acute and chronic 
alcohol withdrawal on distal mouse chromosome 1 
[71,73] are syntenic to a region on human chromosome 
1q where several studies have identified QTLs for 
alcohol-related phenotypes [69,77,78]. The gene encoding 
5-hydroxytryptamine receptor 1B (Htr1b) is located in 
this region, and mice in which this gene was knocked out 
were more aggressive and drank more alcohol, although 
the effects on alcohol consumption were influenced by 
unknown environmental factors in different laboratories 
[79]. In humans, HTR1B was subsequently associated 
with ‘antisocial alcoholism (the dual diagnosis of alco­
holism and antisocial personality disorder)’ in two popu­
lations [80]. A QTL for severity of alcohol dependence 
and withdrawal on human chromosome 15 was identified 
in two human studies [77,81] and is syntenic with a 
region on mouse chromosome 9, where QTLs for alcohol 
preference have also been mapped [82,83]. Significant 
concordance between allelic variants of human GWASs 
and orthologous genes associated with alcohol-related 
phenotypes in mice [84,85] further demonstrate that 
mapping genes that underlie alcohol-related behaviors in 
mice is useful for identifying genes that govern alcohol-
related phenotypes in people.

The Drosophila model: single gene mutations
Despite differences between the fly brain and the 
mammalian brain, Drosophila has been a valuable model 
system for studies on the genetics of alcohol sensitivity. 
When exposed to alcohol vapors, flies initially become 
hyperactive, but ultimately lose postural control; alcohol 
knockdown time provides a measure of sensitivity. 
Studies on flies have employed two complementary 
strategies: single mutant analyses and systems genetics 
approaches. A P-element mutagenesis screen for alcohol 
sensitivity revealed that a large fraction (approximately 
30%) of the genome can contribute to alcohol sensitivity 
[86]. Indeed, most of the mutations that affect alcohol 
sensitivity in Drosophila have pleiotropic effects on other 
complex traits. The first mutants implicated the cyclic 
AMP signaling pathway, including: the cheapdate allele 
of amnesiac [49], which encodes a neuropeptide that 
activates the cyclic AMP signaling pathway [87]; the 
Ca2+/calmodulin-dependent adenylate cyclase encoded 
by the rutabaga gene [49]; and PkaR2, which encodes a 
cyclic AMP-dependent protein kinase [47]. In addition, 
mutants affecting axonal migration, neural cell adhesion 
and neurotransmission have also been implicated in 
alcohol sensitivity, including the gene encoding the 
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axonal migration and cell adhesion receptor fasciclin II 
[88], the gene encoding GABA-B receptor 1 [56], and 
genes encoding NPF and its receptor [63]. Others include 
slowpoke, which encodes a large-conductance Ca2+-
activated K+ channel, and arouser, which encodes a 
predicted adaptor protein homologous to the mammalian 
epidermal growth factor receptor substrate 8 (Eps8) 
family. Mutations in slowpoke prevent the development 
of tolerance [50]. Mutations in the gene encoding arouser 
(aru) result in increased ethanol sensitivity. The aru gene 
product interacts with the epidermal growth factor/
extracellular signal-regulated kinase and the phospo­
inositide 3-kinase/Akt pathways to regulate ethanol 
sensitivity [89].

Several transcription factors have been implicated in 
alcohol sensitivity and/or induction of tolerance in flies. 
The hangover gene encodes a transcription factor that 
contributes to the induction of alcohol tolerance [90]. 
Similarly, dLmo/Beadex, which encodes a transcriptional 
regulator, contributes to behavioral responses to ethanol 
[91]. The mouse ortholog gene encoding LIM domain 
only 3 (Lmo3) also affects alcohol sensitivity; reduced 
Lmo3 expression correlates with increased sedation time 
and reduces voluntary consumption of ethanol [91].

The Drosophila model: genetic networks
While single gene approaches have advanced our under­
standing of how specific genes may influence responses to 
ethanol, it is becoming increasingly clear that a compre­
hensive understanding of the genetic architecture of 
alcohol sensitivity requires studies at the level of genetic 
networks. Such networks can be constructed based on 
covariance of transcript levels associated with alcohol 
sensitivity among different genotypes [92], or compu­
tational predictions based on genome-wide co-regulation 
of transcripts followed by experimental verification [86].

Morozova et al. [92] constructed modules of correlated 
transcripts associated with alcohol sensitivity and induc­
tion of tolerance; these models were validated by 
transposon-mediated disruption of focal genes. A second 
approach built computational networks of covariant 
transcripts around genes that affect sensitivity or resis­
tance to alcohol exposure identified by P-element muta­
tions [86]. Subsequent RNAi-mediated inhibition of 
genes connected to the focal genes in the networks con­
firmed their effects on alcohol-related phenotypes. Those 
genes could, in turn, serve as focal genes to grow the 
computational networks by iteration, allowing a stepwise 
expansion of the network with simultaneous functional 
validation.

From model organisms to human genetics
Evolutionary conservation of pathways offers oppor­
tunities for comparative cross-species analyses (Table 2). 

For example, AUTS2 was identified in human GWASs for 
alcohol consumption and verified by genotype-specific 
expression in human prefrontal cortex samples. Differ­
ences in expression of Auts2 were also observed in 
whole-brain extracts of mice selected for differences in 
voluntary alcohol consumption, and downregulation of 
an Auts2 homolog was causally associated with reduced 
alcohol sensitivity in Drosophila. Thus, evidence for the 
involvement of AUTS2 in alcohol drinking or sensitivity 
is corroborated across three different species [30].

Because at least 60% of Drosophila genes have con­
served human orthologs, the latter can be identified and 
superimposed on computationally predicted networks 
from Drosophila. This allows identification of candidate 
genes for subsequent human association studies based on 
a previous unbiased genome-wide approach in Droso
phila. Not only can this strategy empower human 
association analysis by reducing the prohibitive multiple 
testing correction of a GWAS, but it provides also func­
tional contexts to the candidate genes as they form part 
of defined networks.

To provide proof of principle for the potential of this 
translational approach, the human ortholog of the 
Drosophila Men gene, which encodes malic enzyme, was 
targeted as a candidate gene based on artificial selection, 
mutational and transcriptional profiling studies [86,93,94]. 
The gene encoding malic enzyme is also differentially 
expressed in mice upon acute alcohol treatment [95]. 
Malic enzyme represents a metabolic switch, converting 
malate into pyruvate while generating NADPH, an 
essential co-factor for fatty acid biosynthesis (Figure  2). 
Thus, the malic enzyme reaction enables the development 
of alcohol-induced fatty liver syndrome. Association 
studies on the Framingham Offspring cohort showed that 
intronic SNPs of the gene encoding malic enzyme 1 
(ME1) were associated with amount of cocktail drinking, 
indicating that variation in expression of cytoplasmic 
malic enzyme contributes to variation in alcohol 
consumption. Thus, translational approaches from model 
organisms to humans can identify SNPs that are 
associated with drinking behavior, with an effect size that 
could not have been resolved with large-scale unbiased 
GWASs [92].

Concluding remarks
During the past decade a wealth of information on 
alcohol consumption has been obtained from human and 
model organism studies, but rarely have data from 
different studies been integrated to form a comprehensive 
blueprint of the genetic networks that contribute to 
alcohol drinking. In future, studies integrating data on 
alcohol-related phenotypes from GWASs and trans­
criptional profiling studies on both humans and model 
organisms will make it possible to construct biologically 
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meaningful networks of genes that contribute to alcohol 
consumption and dependence, and generate a deeper 
understanding of the genetic susceptibility for 
alcoholism.
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