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Abstract

Voluminous parallel sequencing datasets, especially metagenomic experiments, require distributed computing for
de novo assembly and taxonomic profiling. Ray Meta is a massively distributed metagenome assembler that is
coupled with Ray Communities, which profiles microbiomes based on uniquely-colored k-mers. It can accurately
assemble and profile a three billion read metagenomic experiment representing 1,000 bacterial genomes of
uneven proportions in 15 hours with 1,024 processor cores, using only 1.5 GB per core. The software will facilitate
the processing of large and complex datasets, and will help in generating biological insights for specific
environments. Ray Meta is open source and available at http://denovoassembler.sf.net.
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Background
While voluminous datasets from high-throughput sequen-
cing experiments have allowed new biological questions to
emerge [1,2], the technology’s speed and scalability are not
yet matched by available analysis techniques and the gap
between them has been steadily growing [3,4]. The de
Bruijn graph is a structure for storing DNA words - or
k-mers - that occur in sequence datasets [5,6]. Recent
work showed that adding colors to a de Bruijn graph can
allow variants to be called even in the absence of a com-
plete genome reference [7].
The field of metagenomics is concerned with the analy-

sis of communities by sampling the DNA of all species in
a given microbial community. The assembly of metagen-
omes poses greater and more complex challenges than
single-genome assembly as the relative abundances of the
species in a microbiome are not uniform [8]. A com-
pounding factor is the genetic diversity represented by
polymorphisms and homologies between strains, which
increases the difficulty of the problem for assemblers [8].
Moreover, the underlying diversity of the sample
increases its complexity and adds to the difficulties of
assembly. Last but not least, DNA repeats can produce

misassemblies [9] in the absence of fine-tuned, accurate
computational tools [10].
The microbial diversity in microbiomes contains the

promise of finding new genes with novel and interesting
biological functions [11]. While the throughput in metage-
nomics is increasing fast, bottlenecks in the analyses are
becoming more apparent [12], indicating that only equally
parallel - and perhaps highly distributed - analysis systems
can help bridge the scalability gap. Parallel sequencing
requires parallel processing for bioprospecting and for
making sense of otherwise largely unknown sequences.
Environmental microbiomes have been the subject of

several large-scale investigations. Viral genome assemblies
have been obtained from samples taken from hot springs
[13]. Metabolic profiling of microbial communities from
Antarctica [14] and the Arctic [15] provided novel insights
into the ecology of these communities. Furthermore, a
new Archaea lineage was discovered in a hypersaline
environment by means of metagenomic assembly [16].
The metabolic capabilities of terrestrial and marine micro-
bial communities have been compared [17]. The structure
of communities in the environment has been recon-
structed [18]. All these studies show that environmental
microbiomes are reservoirs of genetic novelty [19], which
bioprospecting aims at discovering.
Through metagenomic analysis, the interplay between

host and commensal microbial metabolic activity can be
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studied, promising to shed light on its role in maintaining
human health. Furthermore, precisely profiling the human
microbial and viral flora at different taxonomic levels as
well as functional profiling may hint at improved new
therapeutic options [20]. To that end, the human distal
gut microbiome of two healthy adults was analyzed by
DNA sequencing [21], and subsequently the human gut
microbiome of 124 European individuals was analyzed by
DNA sequencing from fecal samples by the MetaHIT con-
sortium [22]. Another study proposed that there are three
stable, location-independent, gut microbiome enterotypes
[23]. Finally, the structure, function and diversity of the
healthy human microbiome were investigated by the
Human Microbiome Project Consortium [24].
With 16S rRNA gene sequencing, species representation

can be extracted by taxonomic profiling [25]. However,
using more than one marker gene produces better taxo-
nomic profiles [26,27]. Furthermore, a taxonomy based on
phylogenetic analyses helps in the process of taxonomic
profiling [28]. While taxonomic profiles are informative,
functional profiling is also required to understand the biol-
ogy of a system. To that end, gene ontology [29] can
assign normalized functions to data.
Although not designed for metagenomes, distributed

software for single genomes, such as ABySS [30] and Ray
[31], illustrate how leveraging high-performance and par-
allel computing could greatly speed up the analysis of the
large amount of data generated by metagenome projects.
Notably, sophisticated parallel tools are easily deployed
on cloud computing infrastructures [32] or on national
computing infrastructures through their use of a cross-
platform, scalable method called the message-passing
interface.
Taxonomic profiling methods utilize alignments

[26,27,33-36]or hidden Markov models [37] or both[38].
Few methods are available for metagenome de novo
assembly (MetaVelvet [39], Meta-IDBA [40] and Genovo
[41]), none couples taxonomic and ontology profiling with
de novo assembly, and none is distributed to provide scal-
ability. Furthermore, none of the existing methods for
de novo metagenome assembly distributes memory utiliza-
tion over more than one compute machine. This addi-
tional difficulty plagues current metagenome assembly
approaches.
The field of metagenomic urgently needs distributed and

scalable processing methods to tackle efficiently the size of
samples and the assembly and profiling challenges that
this poses. Herein we show that Ray Meta, a distributed
processing application, is suited for metagenomics. We
present results obtained by de novo metagenome assembly
with coupled profiling. With Ray Meta, we show that the
method scales for two metagenomes simulated to incorpo-
rate sequencing errors: a 100-genome metagenome
assembled from 400 × 106 101-nucleotide reads and a

1,000-genome metagenome assembled from 3 × 109 100-
nucleotide reads. Ray Communities utilizes bacterial
genomes to color the assembled de Bruijn graph. The
Greengenes taxonomy [28] was utilized to obtain the
profiles from colored k-mers. Other taxonomies, such as
the NCBI taxonomy, can be substituted readily. We also
present results obtained by de novo metagenome assembly
and taxonomic and functional profiling of 124 gut micro-
biomes. We compared Ray Meta to MetaVelvet and
validated Ray Communities with MetaPhlAn taxonomic
profiles.

Results
Scalability
In order to assess the scalability of Ray Meta, we simulated
two large datasets. Although a simulation does not capture
all genetic variations (and associated complexity) occurring
in natural microbial populations, it is a way to validate the
correctness of assemblies produced by Ray Meta and the
abundances predicted by Ray Communities. The first data-
set contained 400 × 106 reads, with 1% as human contami-
nation. The remaining reads were distributed across 100
bacterial genomes selected randomly from GenBank. The
read length was 101 nucleotides, the substitution error rate
was 0.25% and reads were paired. Finally, the proportion of
bacterial genomes followed a power law (with exponent
-0.5) to mimic what is found in nature (see the section on
Materials and methods). The number of reads for this 100-
genome metagenome roughly corresponds to the number
of reads generated by one lane of an Illumina HiSeq 2000
flow cell (Illumina, Inc.). Table S1 in Additional file 1 lists
the number of reads for each bacterial genome and for the
human genome. This dataset was assembled by Ray Meta
using 128 processor cores in 13 hours, 26 minutes, with an
average memory usage of 2 GB per core. The resulting
assembly contained 22,162 contigs with at least 100
nucleotides and had an N50 of 152,891. The sum of contig
lengths was 345,945,478 nucleotides. This is 93% of the
sum of bacterial genome lengths, which was 371,623,377
nucleotides. Therefore, on average there were 3,459,454
assembled nucleotides and 221 contigs per bacterial gen-
ome, assuming that the bacterial genomes were roughly of
the same size and same complexity and that the coverage
depth was not sufficient to assemble incorporated human
contamination. Using the known reference sequences, we
validated the assembly using MUMmer to assess the qual-
ity. There were 11,220 contigs with at least 500 nucleotides.
Among these, 152 had misassemblies (1.35%). Any contig
that did not align as one single maximum unique match
with a breadth of coverage of at least 98.0% was marked as
misassembled. The number of mismatches was 1,108 while
the number of insertions or deletions was 597.
To further investigate the scalability of our approach

for de novo metagenome assembly, we simulated a
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second metagenome. This one contained 1,000 bacterial
genomes randomly selected from GenBank as well as
1% of human sequence contamination. The proportion
of the 1,000 bacterial genomes was distributed according
to a power law (with exponent -0.3) and the number of
reads was 3 × 109 (Table S2 in Additional file 1). This
number of reads is currently generated by one Illumina
HiSeq 2000 flow cell (Illumina, Inc.). This second data-
set, which is larger, was assembled de novo by Ray Meta
in 15 hours, 46 minutes using 1,024 processor cores
with an average memory usage of 1.5 GB per core. It
contained 974,249 contigs with at least 100 nucleotides;
N50 was 76,095 and the sum of the contig lengths was
2,894,058,833, or 80% of the sum of bacterial genome
lengths (3,578,300,288 nucleotides). Assuming a uniform
distribution of assembled bases and contigs and that
human sequence coverage depth was not sufficient for
its de novo assembly, there were, on average, 974 contigs
and 2,894,058 nucleotides per bacterial genome. To

validate whether or not the produced contigs were of
good quality, we compared them to the known refer-
ences. There were 196,809 contigs with at least 500
nucleotides. Of these, 2,638 were misassembled (1.34%)
according to a very stringent test. There were 59,856
mismatches and 13,122 insertions or deletions.
Next, we sought to quantify the breadth of assembly

for the bacterial genomes in the 1,000-genome dataset.
In other words, the assembled percentage was calculated
for each genome present in the 1,000-genome metagen-
ome. Many of these bacterial genomes had a breadth of
coverage (in the de novo assembly) greater than 95%
(Figure 1).

Estimating bacterial proportions
Another problem that can be solved with de Bruijn graphs
is estimating the genome nucleotide proportion within a
metagenome. Using Ray Communities, the 100-genome
and 1,000-genome datasets de novo assembled de Bruijn
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Figure 1 Assembled proportions of bacterial genomes for a simulated metagenome with sequencing errors. 3 × 109 100-nucleotide
reads were simulated with sequencing errors (0.25%) from a simulated metagenome containing 1,000 bacterial genomes with proportions
following a power law. Having 1,000 genomes with power law proportions makes it impossible to classify sequences with their coverage. This
large metagenomic dataset was assembled using distributed de Bruijn graphs and profiled with colored de Bruijn graphs. Highly similar, but
different genomes, are likely to be hard to assemble. This figure shows the proportion of each genome that was assembled de novo within the
metagenome. Of the bacterial genomes, 88.2% were assembled with a breadth of coverage of at least 80.0%.
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graphs were colored using all sequenced bacterial genomes
(Table S4 in Additional file 1) in order to identify contigs
and to estimate bacterial proportions in the datasets. Ray
Communities estimates proportions by demultiplexing
k-mer coverage depth in the distributed de Bruijn graph
(see the section on Demultiplexing signals from similar bac-
terial strains in Materials and methods). Because coloring
occurs after de novo assembly has completed, the reference
sequences are not needed for assembling metagenomes.
For the 100-genome dataset, only two bacterial genome

proportions were not estimated correctly. The first was
due to a duplicate in GenBank and the second to two
almost identical genomes (Figure 2A). When two identi-
cal genomes are provided as a basis to color the de Bruijn
graph, no k-mer is uniquely colored for any of these two
genomes, and identifying k-mers cannot be found
through demultiplexing. This can be solved by using a
taxonomy, which allows reference genomes to be similar
or identical.
In the 1,000-genome dataset, four bacterial genome pro-

portions were overestimated and 20 were underestimated
(Figure 2B). In both the 100-genome and 1,000-genome
datasets, the proportion of bacterial genomes with incor-
rect estimates was 2.0%. In both of these, the incorrect
estimates were caused by either duplicated genomes, iden-
tical genomes or highly similar genomes. The use of a tax-
onomy alleviates this problem.
The results with the 100-genome and 1,000-genome

datasets show that our method can recover bacterial gen-
ome proportions when the genome sequences are known.
In real microbiome systems, there is a sizable proportion
of unknown bacterial species. For this reason, it is impor-
tant to devise a system that can also accommodate
unknown species by using a taxonomy, which allows the
classification to occur at higher levels - such as phylum or
genus instead of species.

Metagenome de novo assembly of real datasets
Here, we present results for 124 fecal samples from a pre-
vious study [22]. From the 124 samples, 85 were from
Denmark (all annotated as being healthy) and 39 were
from Spain (14 were healthy, 21 had ulcerative colitis and
4 had Crohn’s disease). Each metagenome was assembled
independently (Table S3 in Additional file 1) and the
resulting distributed de Bruijn graphs were colored to
obtain taxonomic and gene ontology profiles (see Materi-
als and methods and Table S4 in Additional file 1).
These samples contained paired 75-nucleotide and/or

44-nucleotide reads obtained with Illumina Genome Ana-
lyzer sequencers. In about 5 hours, 122 samples were
assembled (and profiled) using 32 processor cores and the
two remaining samples, namely MH0012 and MH0014,
were assembled (and profiled) with 48 and 40 processor

cores, respectively (Table S3 in Additional file 1). These
runtime figures include de novo assembly, graph coloring,
signal demultiplexing and taxonomic and gene ontology
profiling, which are all tightly coupled in the process. In
the next section, taxonomic profiles are presented for
these 124 gut microbiome samples.
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Figure 2 Estimated bacterial genome proportions. For the two
simulated metagenomes (100 and 1,000 bacterial genomes,
respectively), colored de Bruijn graphs were utilized to estimate the
nucleotide proportion of each bacterial genome in its containing
metagenome. Genome proportions in metagenomes followed a
power law. Black lines show the expected nucleotide proportion for
bacterial genomes while blue points represent proportions
measured by colored de Bruijn graphs. (A) For the 100-genome
metagenome, only two bacterial genomes were not correctly
measured (2.0%), namely Methanococcus maripaludis X1 and Serratia
AS9. Methanococcus maripaludis X1 was not detected because it
was duplicated in the dataset as Methanococcus maripaludis XI, thus
providing zero uniquely colored k-mers. Serratia AS9 was not
detected because it shares almost all its k-mers with Serratia AS12.
(B) For the 1,000-genome metagenome, 4 bacterial genomes were
overestimated (0.4%) while 20 were underestimated (2.0%). These
errors were due to highly similar bacterial genomes, hence they did
not provide uniquely colored k-mers. This problem can be alleviated
either by using a curated set of reference genomes or by using a
taxonomy. The remaining 976 bacterial genomes had a measured
proportion near the expected value.
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Taxonomic profiling
In metagenomic projects, the bacterial genomes that occur
in the sample may be unknown at the species level. How-
ever, it is possible to profile these samples using a taxon-
omy. The key concept is to classify colored k-mers in a
taxonomy tree: a k-mer is moved to a higher taxon as long
as many taxons have the k-mer so it can be classified as
the nearest common ancestor of the taxons. For example if
a k-mer is not classified at the species level, it can be classi-
fied at the genus level and so on. Furthermore, taxonomy
profiling does not suffer from similarity issues as seen for
proportions present in samples because k-mers can be clas-
sified in higher taxons when necessary.
Accordingly, k-mers shared by several bacterial species

cannot be assigned to one of them accurately. For this
reason, the Greengenes taxonomy [28] (version 2011_11)
was utilized to classify each colored k-mer in a single
taxon with its taxonomic rank being one of the following:
kingdom, phylum, class, order, family, genus or species.
For each sample, abundances were computed at each
taxonomic rank. At the moment, the most recent and
accurate taxonomy for profiling taxons in a metagenome
is Greengenes [28]. We profiled taxons in the 124 gut
microbiome samples using this taxonomy. We also incor-
porated the human genome into this taxonomy to profile
the human abundance in the process. At the phylum
level, the two most abundant taxons were Firmicutes and
Bacteroidetes (Figure 3A). The profile of the phylum
Chordata indicated that two samples contained signifi-
cantly more human sequences than the average (Figure
3A). The most abundant genera in the 124 samples were
Bacteroides and Prevotella (Figure 3B). The taxon Bacter-
oides is reported more than once because several taxons
had this name with a different ancestry in the Green-
genes taxonomy. The genera Prevotella and Butyrivibrio
had numerous samples with higher counts, indicating
that the data are bi-modal (Figure 3B). The genus Homo
had two samples with significantly more abundance
(Figure 3B).

Grouping abundance profiles
It has been proposed that the composition of the
human gut microbiome of an individual can be classi-
fied as one of three enterotypes [23]. We profiled
genera for each of the 124 gut microbiome samples
to reproduce these three enterotypes. The 124 samples
(85 from Denmark and 39 from Spain) were analyzed
using the two most important principal components
(Figure 4; see Materials and methods). Two clear
clusters are visible, one enriched for the genus Bacter-
oides and one for the genus Prevotella. A continuum
between two enterotypes has also been reported
recently [42].

Profiling of ontology terms
Gene ontology is a hierarchical classification of normalized
terms in three independent domains: biological process,
cellular component and molecular function. Some biologi-
cal datasets are annotated with gene ontology. Here, we
used gene ontology to profile the 124 metagenome sam-
ples based on a distributed colored de Bruijn graph (see
Materials and methods). First, abundances for biological
process terms were obtained (Figure 5A). The two most
abundant terms were metabolic process and transport.
The terms oxidation-reduction process and DNA
recombination had numerous sample outliers, which
indicates that these samples had different biological
complexity for these terms (Figure 5A). Next, we
sought to profile cellular component terms in the sam-
ples. The most abundant term was membrane, fol-
lowed by cytoplasm, integral to membrane and plasma
membrane. This redundancy is due to the hierarchical
structure of gene ontology (Figure 5B). Finally, we
measured the abundance for molecular function terms.
The most abundant was ATP binding, which had no
outliers. The term DNA binding was also abundant.
However, the latter had outlier samples (Figure 5C).

Comparison of assemblies
Three samples from the MetaHIT Consortium [22] -
MH0006 (ERS006497), MH0012 (ERS006494) and
MH0047 (ERS006592) - and three samples from the
Human Microbiome Project Consortium [24] - SRS0
11098, SRS017227 and SRS018661 - were assembled
with MetaVelvet [39] and Ray Meta to draw a compar-
ison. Assembly metrics are displayed in Table 1. The
average length is higher for MetaVelvet for samples
ERS006494 and ERS006592. For the other samples, the
average length is higher for Ray Meta. The N50 length
is higher for Ray Meta for all samples. For all samples
but ERS006497, the total length is higher for Ray
Meta. Although we assembled the 124 samples from
[22] and 313 samples (out of 764) from the Human
Microbiome Project [24] with Ray Meta on supercom-
puters composed of nodes with little memory (24 GB),
we only assembled a few samples with MetaVelvet
because a single MetaVelvet assembly requires exclu-
sive access to a single computer with a large amount
of available memory (at least 128 GB). Ray Meta pro-
duced longer contigs and more bases for these six
samples. The shared content of assemblies produced
by MetaVelvet and Ray Meta is shown in Table 1.
A majority of sequences assembled by MetaVelvet and
Ray Meta are shared. As metagenomic experiments
will undoubtedly become more complex, Ray Meta will
gain a distinct advantage owing to its distributed
implementation.
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Validation of taxonomic profiling
We compared Ray Communities to MetaPhlAn in order
to validate our methodology. Taxonomic profiles for 313
samples (Additional file 2) from the Human Microbiome
Project [24] were generated with Ray Communities and
compared to those of MetaPhlAn [27]. The correlations
are shown in Table 2 for various body sites. Correlations
are high - for instance the correlations for buccal mucosa
(46 samples) were 0.99, 0.98, 0.97, 0.98, 0.95 and 0.91 for
the ranks phylum, class, order, family, genus and species,
respectively. These results indicate that Ray Communities

has an accuracy similar to that of MetaPhlAn [27], which
was utilized by the Human Microbiome Project Consor-
tium [24]. The correlation at the genus rank for the site
anterior nares was poor (0.59) because MetaPhlAn classi-
fied a high number of reads in the genus Propionibacter-
ium thus yielding a very high abundance while the number
of k-mer observations classified this way by Ray Commu-
nities was more moderate. For the body site called stool,
the correlation at the family rank was weak (0.62) because
MetaPhlAn utilizes the NCBI taxonomy whereas Ray Com-
munities utilizes the Greengenes taxonomy, which has
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Figure 3 Fast and efficient taxonomic profiling with distributed colored de Bruijn graphs. From a previous study, 124 metagenomic samples
containing short paired reads were assembled de novo and profiled for taxons. The graph coloring occurred once the de Bruijn graph was assembled
de novo. (A) The taxonomic profiles are shown for the phylum level. The two most abundant phyla were Firmicutes and Bacteroidetes. This is in
agreement with the literature [22]. The abundance of human sequences was also measured. The phylum Chordata had two outlier samples. This
indicates that two of the samples had more human sequences than the average, which may bias results. (B) At the genus level, the most abundant
taxon was Bacteroides. This taxon occurred more than once because it was present at different locations within the Greengenes taxonomic tree. Also
abundant is the genus Prevotella. Furthermore, the later had numerous samples with higher counts, which may help in non-parametric clustering. Two
samples had higher abundance of human sequences, as indicated by the abundance of the genus Homo.
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been shown to be more accurate [28]. Overall, these results
indicate that Ray Communities yields accurate taxonomic
abundances using a colored de Bruijn graph.

Discussion
Message passing
Ray Meta is a method for scalable distributed de novo
metagenome assembly whereas MetaVelvet runs only on
a single computer. Therefore, fetching data with Meta-
Velvet is fast because only memory accesses occur. On
the other hand, Ray Meta runs on many computers.
Although this is a benefit at first sight, using many com-
puters requires messages to be sent back and forth in
order to fetch data. We used 8 nodes totaling 64 proces-
sor cores (8 processor cores per node) for Human Micro-
biome Project samples and the observed point-to-point
latency (within our application, not the hardware latency)
was around 37 microseconds - this is much more than
the 100 nanoseconds required for main memory accesses.
However, by minimizing messages, RayMeta runs in an
acceptable time and has a scalability unmatched by Meta-
Velvet while providing superior assemblies (Table 1).

From Ray to Ray Meta
For single genomes, peak coverage is required by Ray in
the k-mer coverage distribution [31]. This is not the case
for Ray Meta. Moreover, in Ray for single genomes, read
markers are selected using the peak coverage and mini-
mum coverage. This process is local to each read path in
Ray Meta. This is in theory less precise because there are
fewer coverage values, but in practice it works well as
shown in this work. In Ray for single genomes, the unique
k-mer coverage for a seed path (similar to a unitig) is sim-
ply the peak k-mer coverage for the whole graph whereas
in Ray Meta the coverage values are sampled from the
seed path only.

Algorithms for metagenome assembly
Notwithstanding the non-scalability of all de novo meta-
genome assemblers except Ray Meta (MetaVelvet [39],
Meta-IDBA [40] and Genovo [41]), there are major dif-
ferences in the algorithms these software tools imple-
ment, which are unrelated to scalability.
Genovo is an assembler for 454 reads. It uses a genera-

tive probabilistic model and applies a series of hill-climbing
steps iteratively until convergence [41]. For Genovo, the
largest dataset processed had 311,000 reads. Herein, the
largest dataset had 3,000,000,000 reads. MetaVelvet and
Meta-IDBA both partition the de Bruijn subgraph using k-
mer coverage peaks in the k-mer coverage distribution
and/or connected components. This process does not
work well in theory when there is no peak in the coverage
distributions. MetaVelvet and Meta-IDBA both simplify
the de Bruijn graph iteratively - this approach, termed
equivalent transformations, was introduced by Pevzner and
collaborators [43]. One of the many advantages of using
equivalent transformations is that the assembled sequences
grow in length and their number decreases as the algo-
rithm makes its way toward the final equivalent transfor-
mation. Equivalent transformations are hard to port to a
distributed paradigm because the approach requires a
mutable graph.
Ray Meta does not modify the de Bruijn subgraph in

order to generate the assembly. We showed that applying
a heuristics-guided graph traversal yields excellent assem-
blies. Furthermore, working with k-mers and their rela-
tionships directly is more amenable to distributed
computing because unlike k-mers, contigs are neither reg-
ular nor small and are hard to load balance on numerous
processes.

Taxonomic profiling with k-mers
For taxonomic profiling, we have shown that Ray Commu-
nities is accurate when compared to MetaPhlAn (Table 2).
Our approach consists in building a de Bruijn graph from
the raw sequencing reads, assembling it de novo, and then

Figure 4 Principal component analysis shows two clusters.
Principal component analysis (see Materials and methods) with
abundances at the genus level yielded two distinct clusters.
Abundances were obtained with colored de Bruijn graphs. One was
enriched in the genus Bacteroides while the other was enriched in
the genus Prevotella. Principal component 1 was linearly correlated
with the genus Prevotella while principal component 2 was linearly
correlated with the genus Bacteroides. This analysis suggests that
there is a continuum between the two abundant genera Bacteroides
and Prevotella. This interpretation differs from the original
publication in which three human gut enterotypes were reported
[23]. More recently, it has been proposed that there are only two
enterotypes and individuals are distributed in a continuum between
the two [42].
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coloring it with thousands of bacterial genomes in order to
obtain an accurate profile of the sequenced metagenome.
By using whole genomes instead of a few selected marker
genes, such as the 16S RNA gene, some biases are removed
(like the copy number of a gene). Furthermore, amplifica-
tions in a whole-genome sequencing protocol are not tar-
geted toward any particular marker genes, which may
remove further biases. A limitation of the method pre-
sented here is that using k-mers alone to compare
sequences is highly stringent. On the other hand, aligner-
based approaches can accommodate for an identity as low
as 70% between sequences as sequence reads are usually
mapped to reference bacterial genomes. At the crux of our
method is the use of uniquely colored k-mers for signal
demultiplexing (see Materials and methods). Sequencing
errors produce erroneous k-mers. One of the advantages of
using a de Bruijn graph is that erroneous k-mers have a
small probability of being considered in the assembly [31],
hence sequencing errors do not contribute to taxonomic
profiling for assembled sequences. However, alignment-
based approaches will likely a higher sensitivity than k-mer
based approaches because they are more tolerant to mis-
matches. Yet, the present work showed that metagenome
profiling is efficiently done with k-mer counting, through
the use of a colored de Bruijn graph [7], and that it is also
sensitive (Figure 2) and produces results similar to those of
MetaPhlAn (Table 2). With this approach, conserved DNA
regions captured the biological abundance of bacteria in a
sample. A k-mer length of 31 was used to give a high strin-
gency in the coloring process. The low error rate of the
sequencing technology enabled the capture of error-free k-
mers for most of the genomic regions, meaning that it was
unlikely that a given k-mer occurred in the sequence reads,
in a known genome, but not in the actual sample.

Validation of assemblies
Using MUMmer [44], we validated the quality of assem-
blies produced by Ray Meta. The quality test used was
very stringent because any contig not aligning as one sin-
gle maximum unique match with a breadth of coverage of
at least 98% was marked as misassembled. In Table 1, the
number of shared k-mers between assemblies produced by
MetaVelvet and Ray Meta is shown. Although the overlap
is significant, the k-mers unique to MetaVelvet or Ray
Meta may be due to nucleotide mismatches. Moreover,
improvements in sequencing technologies will provide
longer reads with higher coverage depths. These advances
will further improve de novo assemblies.

Conclusions
Scalability is a requirement for analyzing large metagen-
ome datasets. We described a new method to assemble

Table 1 Comparison of assemblies produced by
MetaVelvet and Ray Meta

MetaVelvet Ray Meta Shared

ERS006494

Reads 372,147,956

Scaffoldsa 50,136 56,363

Total length (nt) 150,904,880 156,075,852 130,979,321

Average length (nt) 3,009 2,769

N50 length (nt) 6,141 12,117

Longest length (nt) 146,549 570,359

ERS006497

Reads 322,444,920

Scaffoldsa 61,093 52,194

Total length (nt) 113,403,805 111,187,163 94,649,612

Average length (nt) 1,856 2,130

N50 length (nt) 2,778 5,430

Longest length (nt) 115,684 430,963

Running time (h:min) 4:34 10:06

ERS006592

Reads 53,869,960

Scaffoldsa 4,358 9,387

Total length (nt) 19,501,348 24,687,275 18,061,386

Average length (nt) 4,474 2,629

N50 length (nt) 8,819 10,277

Longest length (nt) 87,983 137,473

Running time (h:min) 0:41 4:28

SRS011098

Reads 202,487,723

Scaffoldsa 30,458 36,130

Total length (nt) 60,574,679 83,736,387 51,938,031

Average length (nt) 1,988 2,317

N50 length (nt) 3,117 4,961

Longest length (nt) 192,898 222,213

Running time (h:min) 8:34 6:38

SRS017227

Reads 139,002,751

Scaffoldsa 106,957 89,953

Total length (nt) 171,200,737 186,958,660 126,068,148

Average length (nt) 1,600 2,078

N50 length (nt) 2,168 3,771

Longest length (nt) 102,749 224,709

Running time (h:min) 9:00 7:10

SRS018661

Reads 288,475,194

Scaffoldsa 30,709 18,541

Total length (nt) 35,281,226 36,891,130 21,659,465

Average length (nt) 1,148 1,989

N50 length (nt) 1,223 3,794

Longest length (nt) 111,404 377,149

Running time (h:min) 1:24 4:42
aOnly scaffolds with a length higher or equal to 500 were considered. nt,
nucleotide.
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(Ray Meta) and profile (Ray Communities) a metagenome
in a distributed fashion to provide unmatched scalability.
It computes a metagenome de novo assembly in parallel
with a de Bruijn graph. The method also yields taxonomic
profiles by coloring the graph with known references and
by looking for uniquely colored k-mers to identify taxons
at low taxonomic ranks or by using the lowest common
ancestor otherwise. Ray Meta surpassed MetaVelvet [39]
for de novo assemblies and Ray Communities compared
favorably to MetaPhlAn [27] for taxonomic profiling.
While taxonomic and functional profiling remains a

useful approach to obtain a big picture of a particular
sample, only de novo metagenome assembly can truly
enable discovery of otherwise unknown genes or other
important DNA sequences hidden in the data.

Materials and methods
Thorough documentation and associated scripts to
reproduce our studies are available in Additional file 3 on
the publisher website or on https://github.com/sebhtml/
Paper-Replication-2012.

Memory model
Ray Meta uses the message-passing interface. As such, a
1,024-core job has 1,024 processes running on many com-
puters. In the experiments, each node had 8 processor
cores and 24 GB, or 3 GB per core. With the message-pas-
sing paradigm, each core has its own virtual memory,
which is protected from any other process. Because the
data are distributed uniformly using a distributed hash
table, memory usage for a single process is very low. For
the 1,024-core job, the maximum memory usage of any
process was on average 1.5 GB.

Assemblies
Metagenome assemblies with profiling were computed
with Ray v2.0.0 (Additional file 4) on Colosse, a Compute
Canada resource. Ray is open source software - the license
is the GNU General Public License, version 3 (GPLv3) -
and is freely available from http://denovoassembler.source-
forge.net/ or http://github.com/sebhtml/ray. Ray can be
deployed on public compute infrastructure or in the cloud
(see [45] for a review).
The algorithms implemented in the software Ray were

heavily modified for metagenome de novo assembly and
these changes were called Ray Meta. Namely, the coverage
distribution for k-mers in the de Bruijn graph is not uti-
lized to infer the average coverage depth for unique geno-
mic regions. Instead, this value is derived from local
coverage distributions during the parallel assembly pro-
cess. Therefore, unlike MetaVelvet [39], Ray Meta does
not attempt to calculate or use any global k-mer coverage
depth distribution.

Simulated metagenomes with a power law
Two metagenomes (100 and 1,000 genomes, respectively)
were simulated with abundances following a power law
(Tables S1 and S2 in Additional file 1). Power laws are
commonly found in biological systems [46]. Simulated
sequencing errors were randomly distributed, the error
rate was set at 0.25% and the average insert length was
400. The second simulated metagenome was assembled
with 128 8-core computers (1,024 processor cores) inter-
connected with a Mellanox ConnectX QDR Infiniband
fabric (Mellanox, Inc.). For the 1,000-genome dataset,
messages were routed with a de Bruijn graph of degree 32
and diameter 2 to reduce the latency.

Table 2 Correlation of taxonomic abundances produced by MetaPhlAn and Ray Communities

Body site Samples Phylum Class Order Family Genus Species

Anterior nares 45 0.91 0.92 0.94 0.94 0.59 0.59

Attached keratinized gingival 3 0.99 0.94 0.92 0.94 0.84 0.71

Buccal mucosa 46 0.99 0.98 0.97 0.98 0.95 0.91

Left retroauricular crease 3 0.99 0.99 0.99 0.99 0.72 0.83

Mid vagina 1 0.99 0.99 0.99 0.99 0.99 0.90

Palatine tonsils 4 0.90 0.80 0.79 0.83 0.84 0.97

Posterior fornix 23 0.99 0.99 0.99 0.99 0.97 0.94

Right retroauricular crease 6 0.94 0.92 0.93 0.94 0.83 0.91

Saliva 3 0.97 0.87 0.88 0.96 0.89 0.95

Stool 61 0.80 0.81 0.81 0.62 0.92 0.84

Subgingival plaque 5 0.86 0.75 0.76 0.74 0.81 0.93

Supragingival plaque 53 0.94 0.93 0.92 0.88 0.89 0.93

Throat 6 0.95 0.86 0.87 0.92 0.92 0.80

Tongue dorsum 53 0.93 0.80 0.79 0.84 0.85 0.88

Vaginal introitus 1 1.00 1.00 0.99 0.99 0.99 0.97

Total 313

Pearson’s correlation was utilized to compare taxonomic abundance for 313 samples from various body sites [24].
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Validation of assemblies
Assembled contigs were aligned onto reference genomes
using the MUMmer bioinformatics software suite [44].
More precisely, deltas were generated with nucmer.
Using show-coords, any contig not aligning as one single
maximum with at least 98% breadth of coverage was
marked as misassembled. Contigs aligning in two parts at
the beginning and end of a reference were not counted as
misassembled owing to the circular nature of bacterial
genomes. Finally, small insertions/deletions and mis-
matches were obtained with show-SNPs.

Colored and distributed de Bruijn graphs
The vertices of a de Bruijn graph are distributed across
processes called ranks. Here, graph coloring means label-
ing the vertices of a graph. A different color is added to
the graph for each reference sequence. Each k-mer in any
reference sequence is colored with the reference
sequence color if it occurs in the distributed de Bruijn
graph. Therefore, any k-mer in the graph has zero, one
or more colors. First, a k-mer with no colors indicates
that the k-mer does not exist in the databases provided.
Second, a k-mer with one color means that this k-mer is
specific to one and only one reference genome in the
databases provided while at least two colors indicates
that the k-mer is not specific to one single reference
sequence. These reference sequences are assigned to
leaves in a taxonomic tree. Reference sequences can be
grouped in independent name spaces. Genome assembly
is independent of graph coloring.

Demultiplexing signals from similar bacterial strains
Biological abundances were estimated using the product of
the number of k-mers matched in the distributed de
Bruijn graph by the mode coverage of k-mers that were
uniquely colored. This number is called the number of k-
mer observations. The total number of k-mer observations
is the sum of coverage depth values of all colored k-mers.
A proportion is calculated by dividing the number of k-
mer observations by the total.

Taxonomic profiling
All bacterial genomes available in GenBank [47] were uti-
lized for coloring the distributed de Bruijn graphs (Table
S4 in Additional file 1). Each k-mer was assigned to a
taxon in the taxonomic tree. When a k-mer has more
than one taxon color, the coverage depth was assigned to
the nearest common ancestor.

Gene ontology profiling
The de Bruijn graph was colored with coding sequences
from the EMBL nucleotide sequence database [48]
(EMBL_CDS), which are mapped to gene ontology by
transitivity using the uniprot mapping to gene ontology

[49]. For each ontology term, coverage depths of colored
k-mers were added to obtain the total number of k-mer
observations.

Principal component analysis
Principal component analysis was used to group taxo-
nomic profiles to produce enterotypes. Data were pre-
pared in a matrix using the genera as rows and the
samples as columns. Singular values and left and right
singular vectors of this matrix were obtained using singu-
lar value decomposition implemented in R. The right sin-
gular vectors were sorted by singular values. The sorted
right singular vectors were used as the new base for the
re-representation of the genus proportions. The two first
dimensions were plotted.

Software implementation
Ray Meta is distributed software that runs on connected
computers by transmitting messages over a network
using the message-passing interface (MPI) and is imple-
mented in C++. The MPI standard is implemented in
libraries such as Open-MPI [50] and MPICH2 [51]. On
each processor core, tasks are divided into smaller ones
and given to a pool of 32,768 workers (thread pool),
which are similar to chares in CHARM++ [52]. Each of
these sends messages to a virtual communicator. The lat-
ter implements a message aggregation strategy in which
messages are automatically multiplexed and demulti-
plexed. The k-mers are stored in a distributed sparse
hash table which utilizes open addressing (double hash-
ing) for collisions. Incremental resizing is utilized in this
hash table when the occupancy exceeds 90% to grow
tables locally. Smart pointers are utilized in this table to
perform real-time memory compaction. The software is
implemented on top of RayPlatform, a development fra-
mework used to ease the creation of massively distributed
high-performance computing applications.

Comparison with MetaVelvet
Software versions used were: MetaVelvet 1.2.01, Velvet
1.2.07 and Ray 2.0.0 (with Ray Meta). MetaVelvet was run
on one processor core. Ray Meta was run on 64 processor
cores for Human Microbiome Project samples (SRS0
11098, SRS017227 and SRS018661) and on 48, 32 and 32
processor cores for MetaHIT samples (ERS006494,
ERS006497 and ERS006592), respectively. There were
eight processor cores per node. The running time for
MetaVelvet is the sum of running times for velveth, vel-
vetg and meta-velvetg. For MetaVelvet, sequence files
were filtered to remove any sequence with more than 10N
symbols. The resulting files were shuffled to create files
with interleaved sequences. The insert size was manually
provided to MetaVelvet and the k-mer length was set to
51 as suggested in its documentation. Peak coverages were
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determined automatically by MetaVelvet. Ray Meta was
run with a k-mer length of 31. No other parameters were
required for Ray Meta and sequence files were provided
without modification to Ray Meta. The overlaps of assem-
blies produced by MetaVelvet and by Ray Meta were eval-
uated with Ray using the graph coloring features. No
mismatches were allowed in k-mers. Overlaps were com-
puted for scaffolds with at least 500 nucleotides.

Comparison with MetaPhlAn
Taxonomic profiles calculated with MetaPhlAn [27] for
samples from the Human Microbiome Project were
obtained [24]. Taxonomic profiles were produced by
Ray Communities for 313 samples (Additional file 2).
Pearson’s correlation was calculated for each body site
by combining taxon proportions for both methods for
each taxonomic rank.

Additional material

Additional file 1: Tables S1, S2, S3 & S4. Table S1: Composition of the
simulated 100-genome metagenome. Table S2: Composition of the
simulated 1,000-genome metagenome. Table S3: Overlay data on
metagenome assembly of 124 gut microbiome samples. Table S4: List of
genomes used for coloring de Bruijn graphs.

Additional file 2: List of 313 samples from the Human Microbiome
Project.

Additional file 3: Documentation and scripts to reproduce all
experiments.

Additional file 4: Software source code for Ray Meta and Ray
Communities.
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