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Abstract

supplied via standard SBML files.

Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-
phenotype relationship. We present a novel gap-filling approach, Metabollc Reconstruction via functionAl
GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and
functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network
models of £. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to
reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-
based modeling analysis and specifically for metabolic engineering. The reconstructed network models are

Background

Genome-scale metabolic network reconstructions are con-
sidered a key step in quantifying the genotype-phenotype
relationship [1]. While the process of manually recon-
structing genome-scale metabolic network models is com-
plex [2], such networks have already been manually
reconstructed for more than 50 organisms [3], including
common model microorganisms [4,5], industrially relevant
microbes [6-9], various pathogens [10-13], and recently for
human cellular metabolism [14]. A modeling approach
called constraint-based modeling serves to analyze the
function of such networks by solely relying on simple phy-
sical-chemical constraints [15,16] and is frequently used to
predict various phenotypes of microorganisms (reviewed
in [3,17-20]). Several applications of constraint-based
modeling for metabolic engineering of microbial species
has been presented (reviewed in [17,21]).

The two major computational challenges in metabolic
network reconstruction are (i) the identification of missing
reactions in a metabolic network, and (ii) the association
of genes with network reactions. The identification of
missing reactions, referred to as ‘gap-filling’, is commonly
performed based on a pre-defined metabolic capability
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that the network is expected to be able to fulfill. For exam-
ple, the capability to generate essential biomass products
under various genetic and environmental conditions
[22-25], the synthesis of specific compounds identified via
metabolomics [26], the flow of specifically measured flux
rates [27], and the ability to activate a core set of reactions
under a steady-state assumption [28]. Missing reactions
are obtained either from other species [22,23,26-28], or via
computational chemistry methodologies that enumerate
possible metabolic routes [29], aiming to identify a mini-
mal number of missing reactions to fulfill the required
objective. A specific approach for network reconstruction
that is based on the concept of elementary flux modes [30]
was previously applied to successfully recover missing net-
work reactions [16,31,32]. Another gap-filling approach
that integrates some of these principles has been recently
used to reconstruct 130 genome-scale metabolic network
models of various bacteria [22]. While most of the above
gap-filling methods rely strictly on metabolic flux analysis
and do not utilize functional genomics data to guide the
search for missing reactions, computational methods that
aim to address the second challenge of gene-reaction
assignment do rely intensively on functional genomics
data. Specifically, several methods predict gene assignment
based on genomic data, utilizing principles such as con-
served chromosomal proximity [31,33,34] and similarity in
phylogenetic profiles with neighboring genes in the same
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pathway [32,35,36]. Others rely on an additional array of
functional genomics data, including gene co-expression
and protein-protein interactions [37-43].

Here, we present a novel approach, Metabollc Recon-
struction via functionAl GEnomics (MIRAGE), for recon-
structing metabolic network models and specifically
addressing the problem of gap-filling, by searching for
missing reactions whose presence is supported by various
functional genomic data. Specifically, to reconstruct a
metabolic network model for an organism of interest,
MIRAGE starts from a core set of reactions, whose pre-
sence is established via strong genomic evidence, and
identifies missing reactions that are required to activate
the latter core reactions (in addition to biomass require-
ment) by identifying additional reactions, whose presence
is further supported by phylogenetic profiles and gene
expression data. The performance of MIRAGE, in com-
parison to previous methods, is demonstrated on the
reconstruction of network models for Escherichia coli
and the cyanobacteria Synechocystis sp. PCC 6803, vali-
dated via existing networks for these species. Then, it is
applied to reconstruct genome-scale metabolic network
models for 36 sequenced cyanobacteria (supplied via
standard Systems Biology Markup Language (SBML) files
[44]), amenable for constraint-based modeling analysis
and specifically for metabolic engineering. To demon-
strate the utility of the reconstructed cyanobacteria net-
works, a strain design method was applied to predict
gene knockouts whose implementation is expected to sig-
nificantly elevate the production rate of an important
nutritional product, astaxanthin.

Results and discussion

MIRAGE

MIRAGE is a functional genomics-based model recon-
struction approach that aims to generate a genome-scale
metabolic network model for an organism of interest,
given a core set of reactions that are known to exist in its
network, and optionally, a definition of a biomass reaction.
The core set of reactions can be automatically derived
strictly from genomic data, based on strong sequence
similarity with known enzyme-coding genes in other spe-
cies. The method then aims to find missing reactions
(from a universal database of candidate gap-filling reac-
tions such as the Kyoto Encyclopedia of Genes and
Genomes (KEGQ)), supported by functional genomics
data, whose addition to the network would lead to a func-
tional model. The method follows a two-step procedure,
starting with the utilization of functional genomics data to
estimate the probability of including each reaction from
the universal database in the reconstructed network, and
then, metabolic flux analysis that selects the most likely
set of reactions whose addition to the network would
satisfy the above described objectives.
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For the first step, we utilize two functional-genomics
data sources to estimate the likelihood that a reaction
from a universal reactions database should be included in
the target metabolic network: (i) enzymes’ phylogenetic
profiles, and (ii) gene expression. Specifically, we define a
weight for each reaction in the universal database (that is
not already included in the reconstruction’s core reactions
set), based on the functional similarity between neighbor-
ing enzymes, in terms of resemblance of phylogenetic
profiles, and correlation in gene expression of the enzyme-
coding genes (Materials and methods).

Enzyme phylogenetic profiles were extracted from
KEGG, representing a pattern of enzyme presence or
absence across an available collection of species. For each
reaction in KEGG, we computed a phylogenetic weight,
representing the likelihood for its inclusion in the network
reconstruction. Specifically, the phylogenetic weight of a
certain reaction is calculated based on the maximal Jac-
card coefficient between its phylogenetic profile and the
corresponding profiles of its neighboring core reactions in
the network (Materials and methods). Similarly, an expres-
sion weight for each reaction was calculated by evaluating
gene expression profiles (measured in the target organism)
of potential enzyme-coding genes (considering all non-
annotated genes in the genome), compared with the
expression profiles of known genes associated with neigh-
boring core reactions. The sum of the phylogenetic and
expression weights after proper normalization was used as
input for the second reconstruction step (Materials and
methods).

The second reconstruction step aims to find a set of
high weight gap-filling reactions that satisty the objectives
described above. Towards this goal, we employed the
following reaction pruning procedure. Starting from a
metabolic network model consisting of all reactions in the
universal reaction database, we iteratively remove potential
gap-filling reactions, as long as the removal does not affect
the consistency of the model. In each iteration, the prob-
ability of choosing a certain reaction for removal is inver-
sely proportional to its weight - that is, low weight
reactions have a higher probability to be chosen first for
removal. The model consistency check procedure involves
the usage of constraint-based modeling to verify that the
remaining network (i) enables each core reaction to carry
non-zero metabolic flux within a stoichiometrically
balanced flux distribution, accounting for reaction direc-
tionality constraints, (ii) enables the production of all
essential biomass constituents, and (iii) accounts for the
growth-associated dilution of all network metabolites (that
is, guaranteeing that the network consists of complete
pathways for either the transport or de novo synthesis of
all metabolites that exist in the network) [45]. Since the
reactions’ scanning order may affect the resulting model,
the algorithm is executed several times with different,
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random pruning orders (Materials and methods). The
fraction of obtained models that contains a certain reac-
tion reflects the confidence that it should be included in
the final model. Hence, to construct the final metabolic
network model, we run the reactions removal procedure
again, based on an ordering defined by the received confi-
dence values (Materials and methods).

Notably, the presented method extends upon the
Model Building Algorithm (MBA) of Jerby et al. [28] that
was recently used to reconstruct a model of human liver
metabolism. The MBA method addresses only the first
objective from the above list, while not accounting for
biomass production and growth-associated metabolite
dilution, which are of less importance for the modeling
of human tissue metabolism. Furthermore, it accounts
for functional genomics data in a more limited manner,
by using them only to define two core sets of reactions
with either a moderate or high probability to be retained
in a specific tissue model. In contrast, MIRAGE assigns a
continuous score per each reaction that reflects its prob-
ability to be retained in a specific species model, allowing
us to make better use of these data.

The described method is computationally demanding
since each trial of the random reaction pruning proce-
dure (out of the 500 trials performed to gather sufficient
confidence statistics), requires eliminating each reaction
from the universal reactions set in turn, and checking the
consistency of the resulting model. Implementing the
speedup heuristic suggested by Jerby et al. [28], which
aims to minimize the number of linear optimizations
required in each model consistency check, provided
some improvement in running time. However, each ran-
dom pruning trial still took around 35 hours, which
made the entire method computationally intractable. The
significant increase in running time in comparison to the
method of Jerby et al. resulted from the markedly large
size and complexity of the universal reaction database
in comparison to the human network model used by
Jerby et al., and the additional reconstruction objectives
previously not accounted for.

To overcome this, we implemented the following addi-
tional speed-up techniques (Materials and methods).
First, the model consistency check procedure is based on
identifying a set of flux distributions in which all core
reactions are activated (that is, have non-zero flux), and
is applied following the removal of each reaction in the
reaction pruning procedure. The first speed-up involved
the utilization of flux distributions computed in one call
to the model consistency check procedure in subsequent
calls to this procedure (testing the potential removal of
subsequent reactions in the pruning order) to avoid
time-consuming linear programming optimizations.
Second, to further minimize the number of performed
linear optimizations, the latter are now formulated with
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the objective of minimizing flux through subsequent
gap-filling reactions in the pruning order. These two
speed-up techniques, significantly elaborated upon in
Additional file 1, provide a 100-fold improvement in run-
ning time.

Figure 1 illustrates the working of MIRAGE on a toy
model. Reactions E1, E8, E9 and E10 are core reactions,
while all the other reactions are candidates for gap-filling.
MIRAGE predicts the addition of reactions E2, E3, E4
and E7 to enable flux activation of all core reactions, bio-
mass production, and accounting for growth dilution of
all metabolites in the core. The inclusion of reactions
leading from M3 to M5 is required to enable flux activa-
tion of core reactions E8 and E9. In this case, the choice
of including both reactions E3 and E4 for gap-filling,
instead of the single reaction E5, is based on higher sup-
port for the former reactions in the functional-genomic
data. Reaction E2 is predicted for gap-filling to compen-
sate for growth-associated dilution of metabolites M6
and M9 [45].

Validation of MIRAGE in the reconstruction of a

metabolic network for E. coli

To evaluate the performance of MIRAGE, we applied it
to reconstruct a metabolic network model for E. coli, for
which a comprehensively curated model (iAF1260) is
already available for validation [46]. Towards this end, we
extracted a cross-species reactions dataset from KEGG
having 7,211 reactions (referred to as the universal reac-
tions set). To define a core set of known E. coli reactions
to be used by MIRAGE, we considered KEGG reactions
annotated as existing in E. coli and also belonging to
iAF1260, plus the known biomass and all exchange reac-
tions from iAF1260. Then we removed dead-end reac-
tions that cannot be activated within a feasible flux
distribution when considering the entire universal reac-
tions set, yielding a core set of 812 reactions. Performing
standard flux variability analysis [47] when focusing only
on this set of 812 core reactions revealed that 45% (365/
812) of these reactions are on dead-ends. MIRAGE'’s task
is hence to identify gap-filling reactions that would
resolve these dead-ends, aiming to identify a remaining
set of 109 reactions from iAF1260. Notably, our analysis
did not account for subcellular localization of metabolic
processes, and hence duplicated reactions in iAF1260
that correspond to multiple compartments were
removed.

Comparison of MIRAGE’s reconstructed network
model for E. coli with iAF1260 shows a predictive preci-
sion of 41.9% and recall of 24.3%, which is significantly
better than random sampling of gap-filling reactions
(hyper-geometric P-value < 107'% Figure 2; Additional
file 1, part 6, and Supp. Table 1 in Additional file 1). As
controls, we assessed the predictive performance of using
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Figure 1 The application of MIRAGE on a toy model. Core reactions (E1, E8, E9 and E10) are marked with straight lines, while gap-filling
reactions are marked with dashed lines. A weight for each reaction is computed based on the correlation of its phylogenetic and expression
profiles with those of neighboring core reactions in the network. Reactions predicted for gap-filling by MIRAGE are in red. Specifically, E2 is
chosen to enable the growth-associated dilution of metabolites M6 and M9. E3 and E4 are chosen (instead of E5, which has a significantly lower
weight) to enable the flux activation of E8 and E9. E7 is chosen to enable flux activation of E8 and E9 under steady-state. Reaction E6 is not
chosen for gap-filling as it is redundant given the above-mentioned chosen essential reactions.

only the functional genomics data based on the com-
puted reaction weights (by ordering potential gap-filling
reactions based on their computed weights), and the pre-
dictive performance of MIRAGE without utilizing func-
tional genomics data (by assigning reactions with random
weights; as done in the MBA algorithm). Using only the
functional genomics data, the resulting predictive perfor-
mance was significantly lower than that of MIRAGE
(Figure 2), reaching a precision of 6.1%, under a recall
level of 19.6% (P-value = 2 x 107°). Without utilizing
functional genomics data, the predictive performance
was also markedly lower, with a precision of 27.5%
and recall of 20.6% (P-value < 10™'°). Using only gene

expression [48] or phylogenetic weights (based on all spe-
cies in KEGG) provided lower precision of 31.8% and
36.9%, respectively, with slightly lower recall levels
(19.6% and 22.4%, respectively) to those achieved when
utilizing both (Figure 2), demonstrating the importance
of integrating multiple functional-genomics data sources.
As a further control, we applied MIRAGE to reconstruct
a metabolic network model for E. coli, without prior
knowledge of exchange reactions (which in the above
analysis were taken from the model of iAF1260), finding
an overall similar predictive performance, showing an
improvement of MIRAGE compared to other approaches
(Supp. Table 2 in Additional file 1).
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Figure 2 MIRAGE's predictive performance on reconstructing a known metabolic network of E. coli. The precision and recall of MIRAGE is
marked with a star symbol. The precision and recall of several controls, including variants of MIRAGE that utilize only phylogenetic data, only
expression data, or no functional-genomics data, are marked with a triangle, bar, and circle, respectively. The predictive performance of the
functional genomic data (that is, by ordering potential gap-filling reactions based on their computed functional genomic weights, without
utilizing metabolic flux analysis) is shown by the straight lines: the performance of the phylogenetic data, gene expression, and both data
sources are colored green, yellow, and purple, respectively. The performance of random predictions of gap-filling reactions is colored blue.
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Comparing the predictive performance of MIRAGE on
reconstructing the metabolic network of E. coli with that
of Model SEED [22] has shown a marked advantage to the
former. While the number of core reactions considered by
MIRAGE and the SEED algorithm in the reconstruction of
a metabolic network model of E. coli is close (812 and 826
reactions for MIRAGE and SEED, respectively), the num-
ber of predicted gap-filling reactions by MIRAGE was 62,
in comparison to only 10 by SEED. This results from
MIRAGE’s aim to resolve all gap-filling problems instead
of just enabling biomass production as performed by
SEED. The precision of MIRAGE's predictions was signifi-
cantly higher than that of SEED, reaching 41.9% for
MIRAGE versus 10% for SEED. Re-running MIRAGE
given the very same definition of a biomass reaction used
in the SEED reconstruction of E. coli’s model (rather than
the biomass definition taken from iAF1260) still resulted
in a higher number of 76 predicted gap-filling reactions,
with a significantly higher precision of 34.2% than that
achieved by SEED.

Applying MIRAGE to reconstruct metabolic network
models for cyanobacteria

To demonstrate the utility of MIRAGE, we applied it to
reconstruct genome-scale metabolic network models for
36 cyanobacteria for which genomic data are available to
define core reactions sets. Our analysis spans all cyanobac-
teria for which enzyme annotations are available in KEGG,
including Symnechocystis, Synechococcus, Cyanobacteria,
Prochlorococcus, Anabaena, and so on [49]. For all species,
we considered the same biomass function, obtained from
a previously reconstructed model of Synechocystis sp. PCC
6803 [50], assuming that CO, is the sole carbon source.
Due to lack of comprehensive gene expression for most
cyanobacteria species, we utilized here only phylogenetic
data (considering all species in KEGG) to define reaction
weights.

The average size of a core reactions set for a cyano-
bacteria network is 570 reactions (Figure 3a), out of
which, 331 reactions belong to all of the 36 network
cores (Figure 3b). The high degree of similarity between
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the reaction cores of the various cyanobacteria species
reflects the current knowledge on common metabolic
processes across these species, obtained mostly from
sequence comparisons. These shared core reactions
belong to highly conserved metabolic pathways, such as
glycolysis, gluconeogenesis, and the TCA cycle among
others. MIRAGE’s predictions extend these networks in
a species-specific manner, with many reactions predicted
to belong to a small number of species (Figure 3b).
These species-specific reactions belong to more periph-
eral pathways, for example, diterpenoid biosynthesis,
fluorene degradation and others.

To evaluate the performance of MIRAGE in recon-
structing cyanobacteria models, we compared a recon-
structed network model for Synechocystis sp. PCC 6803
with the manually curated models of Knoop et al. [50] and
iSyn811 [51,52]. In this case, MIRAGE was applied to
reconstruct a Synechocystis model by further utilizing gene
expression data obtained from Tu et al. [53] as part of the
reconstruction process (Materials and methods). The
comparison shows a predictive precision of 70% and recall
of 24.6% for the Knoop et al. model [50] and precision of
37.5% and recall of 45% for iSyn811 [51,52]. These results
are significantly better than random sampling (hyper-
geometric P-values are 2.99 x 10*” and 3.59 x 10! for
Knoop et al’s model and iSyn811, respectively). Again, we
find that the predictive performance of either the func-
tional genomics data or the flux analysis alone is far worse
(Figure 4). A comparison with the predictive performance
of Model SEED was not possible in this case, as the SEED
algorithm was not applied to reconstruct cyanobacteria
models (focusing only on well-studied and annotated gen-
omes). As a further evaluation criterion, we performed a
BLAST [54] search of the known enzyme sequences cata-
lyzing the predicted gap-filling reactions in other species
against the genomes of the corresponding cyanobacteria.
Reassuringly, we found that the resulting BLAST E-scores
show significantly higher sequence similarity for the set of
predicted reactions in comparison to a random set of reac-
tions (¢-test of 1.04 x 107%). Moreover, 20.3% of predicted
reactions showed E-values below 1071, compared to 9.7%
of randomly sampled reactions, testifying the overall cor-
rectness of the predicted set of reactions.

As a further evaluation of our reconstructed Synecho-
cystis model, we applied it to predict gene knockout leth-
ality data provided by [50]. We find that the prediction
performance of our model is comparable with that of
Knoop et al. (Supp. Table 3 in Additional file 1): out of
39 genes known to be non-essential, Knoop et al. correctly
predicted 35, while our model correctly predicts 38. Out
of 11 known essential genes, Knoop et al. correctly pre-
dicted 7, while our model correctly predicts 6. The fact
that our automatically generated model reaches a similar
level of prediction performance to that of a manually
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curated model demonstrates the applicability and impor-
tance of our model reconstruction approach.

Utilizing the reconstructed cyanobacteria networks for
metabolic engineering

To demonstrate the applicability of the reconstructed
cyanobacteria networks, we applied a computational
metabolic engineering approach called Optknock [55] on
these networks to rationally design genetic modifications
that would increase the production of astaxanthin, which
is a powerful antioxidant belonging to the carotenoid
family. These metabolites are known to be produced by
various cyanobacteria [56,57]. Optknock works by
searching for gene knockouts that would couple the max-
imal production and secretion of a molecule of interest
with a naturally selected trait of maximizing growth rate.
Notably, 24 of the original core networks extracted from
KEGG include an astaxanthin production reaction,
though only 8 of these are not dead-end. In contrast,
25 of the network models reconstructed by MIRAGE
have a functional astaxanthin production pathway, amen-
able for Optknock analysis.

The application of Optknock for astaxanthin production
identified double gene knockouts in 15 species that are
expected to lead to astaxanthin secretion (Table 1). For 12
out of these, Optknock predicts the knockout of dimethy-
lallyl-diphosphate: isopentenyl-diphosphate dimethylallyl
transtransferase (EC: 2.5.1.1), which consumes an essential
precursor for astaxanthin biosynthesis (1-hydroxy-2-
methyl-2-butenyl4-diphosphate). The maximal achievable
astaxanthin production rate reaches 2.18 umol gDW™' h™*
in Prochlorococcus marinus 9601, representing a carbon
utilization of 40% for astaxanthin production (considering
a CO, uptake rate of 0.22 mmol gDW ™ h™! [50]). This uti-
lization of CO, to produce astaxanthin is predicted to
reduce growth rate by 57% relative to the wild-type Pro-
chlorococcus strain (Table 1).

Conclusions

Our paper presents a novel method, MIRAGE, for recon-
structing metabolic network models by integrating meta-
bolic flux analysis and functional genomics data to resolve
network gaps. MIRAGE was validated based on a compari-
son of its predictions with manually curated metabolic
networks for E. coli [46] and Synechocystis sp. PCC 6803
[50-52]. Then it was applied to reconstruct metabolic net-
work models for an ensemble of cyanobacteria, with the
resulting networks shown to be amenable for metabolic
engineering applications of astaxanthin secretion.

Our results show that functional genomics data enable
the marked improvement of gap-filling in metabolic net-
works. Furthermore, we show that the integration of
more than one type of functional genomics data can
further improve the performance of MIRAGE. Naturally,
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Figure 4 MIRAGE's predictive performance on reconstructing a known metabolic network of the cyanobacteria Synechocystis sp.
PCC6803. (a) Metabolic network after Knoop et al. [50]; (b) metabolic network after Montagud et al. [51,52]. The precision and recall of MIRAGE
is marked with a star symbol. The precision and recall of a variant of MIRAGE that does not utilize functional-genomics data is marked with a
circle. The predictive performance of the functional genomic data (without metabolic flux analysis) is shown by the purple line. The performance
of random predictions of gap-filling reactions is colored blue.

MIRAGE can be extended to account for additional func-
tional genomics data, including protein-protein interac-
tions and genomic context data, which were previously
used for the identification of missing gene annotations in

metabolic networks [38]. Metabolomics data can also be
integrated within MIRAGE, to enable the definition of a
metabolite core, consisting of metabolites that are known
to be synthesized, and hence corresponding pathways



Vitkin and Shlomi Genome Biology 2012, 13:R111
http://genomebiology.com/2013/13/11/R111

Table 1 Predicted knockout strategies for Astaxanthin over-production in cyanobacteria
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Organism Growth rate Astaxanthin production Knockout reaction names KEGG reaction
(mutant/wt) [h"] [umol gDW™ h™'] (min/max) ID/EC number

P. marinus 0.026/0.061 2.18/2.18 Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1

as9601 diphosphate dimethylallyl transtransferase
5-O-(1-Carboxyvinyl)-3-phosphoshikimate RO1714/EC 4235
phosphate-lyase

T. elongatus 0.016/0.048 2.08/2.08 Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1
diphosphate dimethylallyl transtransferase
Phosphoenolpyruvate: D-erythrose-4-phosphate C- R01826/EC 2.5.1.54
(1-carboxyvinyl)transferase

G. violaceus 0.033/0.061 1.64/1.64 Succinate:(acceptor) oxidoreductase R0O0408/EC 1.3.99.1
Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1
diphosphate dimethylallyl transtransferase

Synechococcus 0.033/0.061 1.64/1.64 Succinate:(acceptor) oxidoreductase R0O0408/EC 1.3.99.1

pcc7942
Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1
diphosphate dimethylallyl transtransferase

Cyanobacteria 0.032/0.058 1.57/157 Succinate:(acceptor) oxidoreductase R0O0408/EC 1.3.99.1

cyb
Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1
diphosphate dimethylallyl transtransferase

T. erythraeum 0.051/0.061 0.24/0.24 Hydrogen-carbonate: L-glutamineamido-ligase R00575/EC 6.3.5.5
Dimethylallyl-diphosphate: isopentenyl- RO1658/EC 2.5.1.1
diphosphate dimethylallyl transtransferase

A. variabilis 0.051/0.061 0/0.96 4-Methyl-2-oxopentanoate: NAD+ oxidoreductase ~ RO1651/EC 1.2.1.25
1-Deoxy-D-xylulose-5-phosphate pyruvate-lyase R05636/EC 2.2.1.7

Anabaena 0.051/0.061 0/0.96 3-(4-Methylpent-3-en-1-yl)-pent-2-enedioyl-CoA R03493/EC 4.2.1.57

hydrolyase

1-Deoxy-D-xylulose-5-phosphate pyruvate-lyase RO5636/EC 2.2.1.7

For each species the table shows the predicted reactions whose knockout is expected to provide maximal astaxanthin production rate, the expected astaxanthin

production rate, and the expected decline in growth rate.

that connect them to the rest of the network must be
identified [26].

Several existing gap-filling methods work by searching
for a minimal set of missing reactions that would enable
the network to perform a certain task [22]. MIRAGE
extends upon these methods by enabling the identification
of pathways that are not necessarily minimal in size, if
supported by functional genomics data. However,
MIRAGE is still limited in being unable to predict the pre-
sence of alternative pathways, in case either one is suffi-
cient to fulfill its defined objectives. This may explain the
relatively low recall levels achieved by MIRAGE and the
other tested approaches. For example, this was demon-
strated in Figure 1, where reaction R6 will not be predicted
for gap-filling, as an alternative pathway that fulfills the
required metabolic objectives was chosen. The identifica-
tion of alternative pathways based on more complex inte-
gration of functional genomics data with metabolic flux
analysis is currently an open challenge for all known gap-
filling algorithms. An additional limitation of MIRAGE is
that it does not explicitly account for thermodynamic con-
siderations as part of the network reconstruction process.
Future implementation of this approach may formulate
additional thermodynamic constraints as part of the

model consistency check, as suggested in Thermodynamic
Metabolic Flux Analysis (TMFA) [58] (which would
require further speedups to obtain reasonable running
times).

Metabolic models generated by automated methods
such as MIRAGE should be regarded as first draft models,
requiring further manual curation to bring them up to
comparable level with standard manually curated models.
The growing interest in reconstructing metabolic network
models for hundreds of species raises the challenge of
developing improved such gap-filling approaches that
could speed up the reconstruction process, while the
approach presented here shows a marked improvement in
this direction over the state-of-the-art, supporting the
advantage of integrating functional genomic data as part
of model reconstruction. We expect MIRAGE to be used
for automatic reconstructions of many other species, lead-
ing to a significant boost in the understanding of their
metabolism.

Materials and methods

Step I: calculation of functional genomics weights

Binary vectors describing reaction phylogenetic profiles
were acquired from KEGG. A phylogenetic weight for
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each non-core reaction is defined as the maximal Jaccard
similarity with a phylogenetic profile of a core reaction
that shares a metabolite substrate with the reaction at
hand. The Jaccard values are normalized based on the fre-
quency of appearance of the shared metabolite in the uni-
versal reaction database (see Additional file 1 for details).

An expression weight for a given non-core reaction is
computed by evaluating the correlation between profiles
of genes that may potentially code for an enzyme catalyz-
ing the reaction at hand and expression profiles of genes
associated with neighboring reactions. Specifically, for
each gene in the genome of the target species, we compute
the average Pearson correlation between its expression
profile and profiles of genes associated with neighboring
reactions, with the expression weight defined as the maxi-
mal such correlation obtained. All Pearson correlations
are normalized by the frequency of appearance of the con-
necting metabolites (as done above).

The distribution of phylogenetic and expression
weights are normalized to having the same mean and
standard deviation. Final edge weights are defined based
on the sum of normalized phylogenetic and expression
weights. Reactions for which either weight is missing are
assigned the median normalized value.

Step lI: finding gap-filling reactions supported by
functional genomics weights
First, we create a random reaction pruning list by iteratively
sampling the next reaction with probability proportional to
its weight normalized by the sum of weights of the remain-
ing non-sampled reactions. Next, we scan through the
obtained reaction list and try to remove each reaction in
turn from the model, as long as the resulting model
remains consistent. The consistency check involves verify-
ing that: (i) each core reaction can carry non-zero flux
under steady-state and reaction directionality constraints;
(ii) there can be non-zero flux through the biomass reac-
tion; and (iii) the growth-dilution of each metabolite in the
network is accounted for. Once we finish scanning through
the pruning list, we are left with a minimal functional
model. We repeat the random pruning procedure 500
times and count the number of times that each non-core
reaction appeared in the final model. Finally, we order the
non-core reactions based on their frequencies (from low to
high) and repeat the pruning step to obtain the final model.
The details of the above and the implementation of the
various speed-up techniques that makes this algorithm
computationally tractable are described in Additional file 1.
The implementation of MIRAGE is available at [44].

Abbreviations

KEGG, Kyoto Encyclopedia of Genes and Genomes; MBA, Model Building
Algorithm; MIRAGE, Metabollc Reconstruction via functionAl Genomics;
SBML, Systems Biology Markup Language.
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