Alfred et al. Genome Biology 2012, 13:R105
http://genomebiology.com/2012/13/11/R105

Genome Biology

METHOD Open Access

A phenotypic screening platform to identify small
molecule modulators of Chlamydomonas
reinhardtii growth, motility and photosynthesis

Simon E Alfred"??, Anuradha Surendra'?*, Chris Le', Ken Lin', Alexander Mok', lain M Wallace'®, Michael Proctor®,

134

Malene L Urbanus'*, Guri Giaever'** and Corey Nislow

1,2,3%

Abstract

Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful
approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga
Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility
and simple genetics. We report the results of an automated fitness screen of 5445 small molecules and
subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core
structures and was used to construct a naive Bayes model that successfully predicts algal bioactive compounds.

Background

Chemical biology uses small molecules to study and
manipulate biological systems (reviewed in [1]). By alter-
ing an organisms’ normal state, and thereby affecting
growth or development, we can learn about the contribu-
tions of the perturbed processes to the organisms’ fitness,
physiology and homeostasis. The approach is analogous
to genetic manipulation to produce an observable pheno-
type (reviewed in [2]). Small molecules, in addition to
complementing genetic perturbations, have several
advantages: they can be applied at varied concentrations,
during different stages of development and on specific
tissues, to different organisms, and their (frequently)
rapid reversibility can be used to modulate dynamic
processes.

The single-celled green alga Chlamydomonas reinhard-
tii, often referred to as the ‘green yeast’ [3], is a powerful
model organism that can be easily manipulated, with
straightforward genetics and a wide range of informative
phenotypes. Furthermore, its biology is relevant to both
plants and animals and to human disease, for example,
ciliopathies [4,5]. Key discoveries have been made from
study of Chlamydomonas’ chloroplast [6,7] as well as
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components of its light perception [8] and light response
complexes [9]. Evolutionary studies have focused on evo-
lution of fitness under selective pressures (elevated [CO,],
sexual/asexual populations) and the evolution of multicel-
lularity [10-13]. Chlamydomonas has provided a wealth of
data on flagellar formation and function and intraflagellar
transport was first observed in Chlamydomonas [14]. As
one of the few model organisms with motile flagella, com-
bined with renewed interest in primary cilia and flagellar/
ciliary disorders [15], Chlamydomonas is a clinically
important test system for perturbation.

Chemical perturbation studies on green algae have
focused primarily on inhibitors of photosynthesis, particu-
larly for agricultural and research applications [16,17].
Chlamydomonas’ chemical sensitivity has also been
exploited to assess environmental toxins such as cadmium
and the herbicide fluoxypyr [18,19], providing information
on small molecule bioaccumulation and uptake [20,21]. In
addition, chemical genetic screens have tested small mole-
cules for their ability to alter motility [22,23], phototaxis
[24], and flagellar formation and regeneration [25,26].
However, a large-scale, comprehensive screen for small
molecule inhibitors of fitness has, to our knowledge, not
yet been reported. Our experience with yeast chemical
perturbation has shown that data derived from simple fit-
ness screens are quite valuable, with growth being the ulti-
mate ‘integrative phenotype’. Information at this stage can
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be invaluable for facilitating genetic and genomic
approaches to determine possible mechanisms of action of
small molecule growth inhibitors [27,28].

Here we developed a small molecule screen at very high-
throughput to identify fitness inhibitors of C. reinhardtii,
based on two screens, one for long-term fitness in the pre-
sence of compound, and another for phenotypic effects on
photosynthesis and motility/phototaxis using short-term
exposure. We demonstrate the effectiveness of Chlamydo-
monas as a chemical biology subject, and define and
model physiochemical parameters that characterize small
molecule activity on Chlamydomonas. As part of this
study we generated a chemical biology Chlamydomonas
resource searchable by identifier or structure and that pro-
vides detailed growth and phenotypic metrics of small
molecules on Chlamydomonas [29].

Results

Chlamydomonas as a chemical biology model

To screen for small molecules that inhibit the growth of
Chlamydomonas we performed an 80-hour fitness assay
(Figure 1a). Our assay takes advantage of tools developed
for yeast growth that monitor optical density (OD) of
individual microtiter plate wells several times each hour,
resulting in high resolution growth curves [27,30]. This
high-throughput method combines a liquid handling
robot, plate reader and integration software [30]. Growth
was performed at constant temperature (22°C), agitation
(150 rpm) and illuminance (40 pmol photons/m?s) and
was validated in both 96- and 384-well plates.

To determine conditions for small molecule screening
on Chlamydomonas we performed growth assays with
solid and liquid TAP media with varying concentrations
of solvent (DMSO) or small molecules. DMSO is a pre-
ferred diluent because the majority of available chemicals
are soluble in DMSO at high concentrations and many
chemical libraries are pre-plated in DMSO. We tested
CC-125, a common laboratory strain, in DMSO doses
ranging from 0.25 to 2.5%, in liquid and solid media to
determine a dose for screening (Figure S1 in Additional
file 1). In liquid TAP media DMSO concentrations above
1.0% (v/v) had adverse effects, with cells collecting at the
bottom of wells, and 2.5% severely reduced growth. On
solid media DMSO was deleterious to growth at concen-
trations greater than 2.0%, at which point cells became
swollen and chlorotic. Based on these tests, we selected a
concentration of 0.5% DMSO for liquid TAP and 1.0%
for solid TAP media [16,31,32].

We next assayed the fitness of Chlamydomonas by light
scattering (ODgqp) in 96- and 384-well plates to determine
the cell density that provided the most reproducible high-
resolution growth curves with the greatest dynamic range.
Suitable volumes for each plate type were determined
empirically, 200 pl for 96-well plates and 70 pl for 384-well
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plates. In addition, we miniaturized Chlamydomonas fit-
ness assays further by screening 9 pl in 1,536-well plates
(Figure S2 in Additional file 1).

In a pilot study, we screened 168 novel small molecules
(plates 723N5803 and 723N5890 from the Chembridge
Novacore collection [33]) at doses ranging from 25 to
200 puM to determine a suitable screening dose. Virtually
all cells died at concentrations above 100 pM regardless
of structure (data not shown). Compared to Saccharo-
myces cerevisiae, Chlamydomonas is significantly more
sensitive to small molecules. We chose an initial screen-
ing dose of 25 uM because it yielded the best balance of
inhibition without being toxic. This dose is similar to
that used in small-scale screens on Chlamydomonas,
plants and zebrafish [16,24,32,34,35].

Although we anticipated that the hydroxyproline-rich
cell wall of Chlamydomonas could present a physical bar-
rier for small molecule uptake [36]; based on the efficacy
of our tests and those in the literature, Chlamydomonas is
sufficiently permeable to diverse chemical structures.
To directly evaluate small molecule permeability on Chla-
mydomonas, we quantified the intracellular accumulation
of exogenously added chemicals using high-pressure liquid
chromatography (HPLC). Briefly, Chlamydomonas cells
were treated with select small molecules for 2 to 4 hours,
washed and lysed, and lysate was separated via high-
pressure liquid chromatography (HPLC) [37]. We found
that drugs accumulate in a dose-dependent manner,
based on the appearance of a peak in treated samples
that elutes at a similar time and with the same spectral
qualities as the drug in buffer (Figure S3 in Additional
file 1). Our results indicate that small molecule uptake
and accumulation in Chlamydomonas is more efficient
than in Caenorhabditis elegans and S. cerevisiae [37,38].

We tested the growth of wild-type strains, non-motile
mutants, as well as mutants that display altered phototaxis
or photosynthesis, in our automated fitness assay to com-
pare growth curves among the different strains (Table S1
in Additional file 2). All strains tested show comparable
growth dynamics compared to wild-type (CC-125); how-
ever, motility mutants, bld2 (CC-478) and pf14 (CC-1032),
occasionally show jagged growth curves, suggesting that
their lack of motility can cause cells to aggregate and/or
pool at the bottom of wells, which could result in erratic
OD readings from one time point to the next. To mini-
mize these effects plates are shaken at 150 rpm during
growth.

Chlamydomonas small molecule screens

We screened C. reinhardtii (CC-125) for sensitivity to
compounds against several commercially available chemi-
cal collections, including the ‘FDA library’, a collection of
640 approved and off market drugs (Enzo Life Sciences,
Farmingdale, NY, USA); ‘Tim Tec’, a 280 member natural
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Figure 1 Chlamydomonas reinhardtii small molecule screens. (a) Chronic fitness screen: 96- and 384-well microtiter plates were inoculated
with low density cells (1.5 x 10° cells/ml) and small molecules were added to a final concentration of 25 uM (0.5 pg/ml FDA library). Growth
was monitored by optical density in our Freedom Evo robotics platform every 30 minutes, resulting in detailed growth curves. A total of 5,445
small molecules were screened with 44% inhibiting Chlamydomonas growth by 35% or more compared to in-plate controls. (b) Acute exposure
screen: 96-well microtitre plates were prepared similarly to the chronic screen except with a higher cell density (2 x 10° cells/ml). Plates were
assayed for alterations in motility utilizing a phototaxis assay or photosynthesis by assaying fluorescent induction. Of the 476 unique acute
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product library consisting of herbicides and natural
extracts (TimTec LLC, Newark, DE, USA); and the ‘yac-
tives library’, a novel small molecule collection that we col-
lated based on yeast growth inhibition from ChemBridge
(NOVACore and DIVERSet) and ChemDiv (Divers) col-
lections [38] (Table S2 in Additional file 2). In total we
screened 5,445 unique small molecules in triplicate (with
the exception of the TimTec library because of limited
amounts and two NOVACore plates from the pilot
screen). We calculated the standard deviation to assess
variation between replicates and developed a compound
activity score based on the average of the triplicate data.
Actives were scored based on the area under each growth
curve versus an in-plate DMSO control. Compounds that
resulted in a growth ratio of 0.65 or less (that is, 35% inhi-
bition), defined Chlamydomonas fitness inhibitors. Using
this metric, 44% (2,397) of small molecules from our

screen of 5,445 distinct small molecules altered algal
growth (Figure 1a). This enrichment is quite high, and
likely reflects that the majority of these small molecules
have been pre-selected for bioactivity. Indeed, we have
shown that compared to random compounds, the yactive
library is enriched 3- to 12-fold when screened against
Escherichia coli, whole worms and cultured mammalian
cells [38].

To complement the fitness screen, we performed an
acute exposure screen to measure light- and motility-
related phenotypes. By treating Chlamydomonas for hours
(as opposed to days) we can observe immediate effects of
chemical activity on cells within a single cell cycle. We
assayed motility/phototaxis and photosynthesis because
they are well-studied phenotypes and are amenable to
detailed downstream follow-up analysis (Figure 1b). These
screens were performed similar to fitness screens, but with
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a higher starting cell density (2 x 10° cells/ml versus 1.5 x
10° cells/ml) and for a shorter time (4 to 8 hours versus
approximately 80 hours). Phototaxis was evaluated by
Chlamydomonas’ response to a strong directional light;
3 minutes following light exposure an image was captured
and the response scored. We tested photosynthetic effi-
ciency by assaying fluorescence induction at 685 nm, the
fluorescent maxima for photosystem II (PSII). Specifically,
plates were transferred from low light into a plate reader,
shaken at 100 rpm in the dark for 20 seconds and then
excited with 470 nm light, an optimal wavelength for
photosynthetic function. In this procedure a higher fluor-
escence signal corresponds to reduced photosynthetic
capacity, because the emitted light is released as fluores-
cence rather than being used for photosynthesis [39].

From the 5,445 chemicals screened in the chronic
assay, 4,841 (88.9%) were screened in the acute assay. In
this latter set of compounds we identified 144 motility/
phototaxis modulators and 350 photosynthetic inhibitors,
of which 18 were found in both assays (Figure 1b). Of
these 476 small molecules active in these acute screens,
270 were also growth inhibitors, suggesting that their
growth inhibition may be a result of modulating compo-
nents involved in motility/phototaxis or photosynthesis,
or alternatively, by secondary effects on essential cellular
processes. Motility/phototaxis modulators were separated
into two classes, 106 inhibitors of motility (no response
to directional light) and 38 modulators of phototaxis sign
(altered response to directional light). Vinpocetine, a
phosphodiesterase and Na* channel inhibitor [40,41], is a
phototaxis modulator resulting in positive phototaxis in
our assay (untreated cells display negative phototaxis;
Figure S4 in Additional file 1), which likely modulates
phototaxis by altering concentrations of Na* and Ca**
ions.

Following the acute and chronic exposure screens we
pinned the cells in each well onto TAP agar without
compound to determine which chemicals under each
treatment were cytocidal or cytostatic. We performed the
cytocidal/cytostatic assay for cells treated in the fitness
screen (approximately 80 hours) and found that 11.5%
are cytocidal and 33.2% are cytostatic. The difference in
cytocidal/cytostatic percentages between the chronic and
acute assays suggests that exposure time is critical, and
that most small molecules under short-term exposure are
reversible. However, we found that only 0.9% (44/4,841)
of chemicals are cytocidal and 0.3% (17/4,841) are cyto-
static under the short exposure of the acute screen (4 to
8 hours). The results from the acute screen indicate that
fitness inhibitors also show effects in our acute exposure
experiments and demonstrate that the fitness assay iden-
tifies inhibitors of specific, growth-dependent processes.

To gain insight into the physiochemical properties
that confer activity on Chlamydomonas, we clustered all
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active small molecules by their structural similarity and
mapped them on each phenotype (fitness, motility/
phototaxis, and photosynthesis) to define substructures
enriched for specific activities. We calculated ECFP_4
similarity [42] for each small molecule versus the entire
5,445 screened collection and using Cytoscape [43] and
a cutoff of 0.5 (on a scale of 0 to 1.0, with 1.0 represent-
ing identical compounds), we clustered and visualized
the data using a network topology (Figure 2). We then
mapped our phenotypic data using Cytoscape onto our
small molecule network to identify clusters that group
according to structure and phenotype.

Several major structural classes of compounds are high-
lighted to illustrate that related structures cluster with spe-
cific phenotypes (Figure 2and Table 1). We highlighted
five chemical clusters (groups I to IV) based on their phe-
notypic activity profile. Fitness inhibitors are by far the
largest class of small molecule identified in our screens.
Group I inhibitors, characterized by a shared benzyl-
methyl-phenylethyl-piperidinyl-methylamine, predomi-
nately inhibit growth. Group II compounds affect motility/
phototaxis, which appear to inhibit motility as a result of
their high toxicity, as cells in the phototaxis assay show no
response to directional light and most treated cells are
lysed. We found that photosynthetic inhibitors are found
evenly across our network, indicating that diverse chemi-
cal structures can alter photosynthesis. Not surprisingly,
there is significant overlap between photosynthesis and
growth inhibitors - for example, herbicides affect growth
based on their effects on photosynthetic efficiency. Group
III is the combination of two unrelated clusters, phenyl-
piperidine-oxazoles and benzoyl-piperidine, enriched for
photosynthetic inhibitors. To assess the mode of action of
these photosynthetic inhibitors, we screened a subset of
the 350 photosynthetic inhibitors on a well-characterized
DCMU resistant strain, which has the V>I mutation in the
D1 protein at residue 219 [44]. Based on the resistance of
the mutant to uncharacterized photosynthesis inhibitors,
we can gain insight into their mode of action and priori-
tize novel photosynthetic inhibitors for follow-up. Among
48 active photosynthetic inhibitors we found 23 chemicals
that affect wild-type (CC-125) but not a DCMU-resistant
line (CC-1403), suggesting the D1 mutation confers resis-
tance to many compounds within our set of uncharacter-
ized inhibitors. Group IV small molecules possess activity
in all phenotypes tested, indicating the biphenyl-pyrazole
substructure is particularly active. Interestingly, most
chemicals that reverse Chlamydomonas response to light
are from group IV.

A structural model for Chlamydomonas bioactive
compounds

Using chemical fingerprinting analysis of the active ver-
sus inactive small molecules, we constructed a model to
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Figure 2 Network view of active molecules. All active small molecules were clustered according to their ECFP_4 chemical fingerprints. Each
node represents a unique small molecule: 1,802 small molecules cluster together and are shown here. Edges represent structural relatedness at
a cutoff of ECFP_4 greater than 0.5. Core structural clusters are outlined and designated groups | to IV. Acute screen data were mapped onto
the active network with white fitness inhibitors, red photosynthetic inhibitors, blue motility/phototaxis modulators, and green photosynthetic
and motility/phototaxis; circles indicate fitness inhibition, diamonds indicate no fitness inhibition. Bar graphs: phenotypes for each chemical
group are displayed as a percentage.

Table 1 Groups | to IV core chemical structures and reported activities

Core Phenotype PubChem bioassays (AID) Named drugs and uses
structure

group

| Fitness PubChem AID 317390, 317391, 317396, 317399, 317400, 5512, 52703;

displaces binding of sigma receptor, binds sigma receptor, binds 5HT-2A
receptor, inhibits chemokine receptor 3 (CCR3)

I Motility/ PubChem AID31792; acetocholinesterase inhibitor Cyclizine, antihistamine; benethamine,
Phototaxis

llla Photosynthesis  PubChem AID1865, 2314, 2315, 2546, 504333, 493056; epigenetic Darglitazone, muraglitazar, peroxisome
regulator, shiga toxin inhibitor, inhibits retinoic acid related orphan proliferation activated receptor gamma,
receptor gamma, inhibits BAZ2B, increases thyrotropin releasing antiglycemic; oxaprozin, NSAID
hormone receptor

b Photosynthesis PubChem AID894, 1529, 145655, 5512; binds 5HT-2A receptor, inhibits Tolperisone, muscle relaxant
MEKS kinase, inhibits 15-hydroxyprostaglandin dehydrogenase

Y Active in all PubChem AID265123, 265124, 265125, 265126, 265127; binds dopamine  Fezolamine, antidepressant; lonazole, NSAID,

phenotypes receptors D2, D3, D4, D1A COX2 inhibitor
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predict active algal inhibitors. Chemical structures of
active and inactive small molecules were analyzed using
the ECFP_4 chemical fingerprinting [42], and were used
to train a naive Bayes model to determine chemical
groups over-represented in the active class. To test the
performance of the model we trained it using four-fifths
of the dataset and then predicted actives in the remaining
fifth of the data. This was repeated five times to ensure
that each fifth of the data was used as the comparison
set. We then generated one model for each phenotype to
predict compounds that were active in fitness, motility/
phototaxis, and photosynthetic structures. Using these
models we ranked small molecules by predicted algal
activity and compared the number of tested algal active
compounds identified versus a randomly ordered set. At
a predictive rate of 10% (selecting the top 10% of ranked
compounds versus a random selection), the fitness, moti-
lity/phototaxis, and photosynthetic models showed
enrichment for actives of 1.6x, 3.8x, and 2.8x, respec-
tively (Figure 3a-c). These enrichments could easily save
significant costs in labor and time (for example, screening
10% of a 10K library with a hit rate of 44% results in 440
hits randomly versus 704 hits from a prioritized list with
an enrichment of 1.6x). We next used our model to pre-
dict algal actives on a 50,000-member small molecule
library (NOVACore, ChemBridge, San Diego, CA, USA)
and empirically tested 253 of the predicted compounds.
Our model accurately predicted active small molecules in
the unscreened library, enriching for algal fitness inhibi-
tors 2.8x over a non-prioritized set of the same library,
demonstrating the utility of such predictive models for
prioritizing molecules for screening.

Human antipsychotics alter Chlamydomonas motility

Our screen included two small molecule collections of
known inhibitors, the ‘FDA and TimTec’ libraries, of
which approximately 7% (61) are algal actives. These com-
pounds were enriched for chloroplast and mitochondria
targets, and antifungals including ergosterol inhibitors,
and human antipsychotics. The antipsychotics were
enriched for those involved in dopamine and serotonin
signaling. Intriguingly, we found that a majority of our
chemical groups (Figure 2) have activity in diverse dopa-
mine and serotonin assays (Table 1).

To better understand the activity of antipsychotics on
Chlamydomonas we focused on the atypical antipsychotic
dibenzazepines because of their activity in our screens,
therapeutic relevance and availability of structural analogs.
In our dataset this cluster is composed of structural ana-
logs of clozapine, including clothiapine (Figure 4a-c), an
active algal growth inhibitor in our assay, and fluperlapine,
which we found caused cell pooling in the acute exposure
screen but does not affect fitness at screening doses.
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Interestingly, clozapine, which differs from fluperlapine by
one atom, does not show growth inhibition at the same
concentration. When a broad range of concentrations was
tested, clozapine and other analogs, loxapine, quetiapine,
and clothiapine, produced a similar aggregation phenotype
as fluperlapine and were all inhibitory at high concentra-
tions, suggestive of different potencies but similar modes
of action.

To further characterize the dibenzazepine effect, cells
following fluperlapine treatment were observed microsco-
pically (Figure 4d, e). Two predominant classes of cells
were observed; large transparent cells (36/80) and small
clusters of typically four cells (31/80). The large cells were
chlorotic with vacuolated chloroplasts, indicating these
cells were dead or dying. The cells within the four-cell
clusters appeared normal, but remained encased in a par-
ental cell wall. Mechanical stress released four aflagellate
cells, indicative of a hatching defect (Figure 4f). Because
hatching requires the cell wall degrading enzyme sporan-
gin, which is expressed only in the flagella [45], aflagellate
cells (that is, bld-2) have difficulty hatching [45]. Given the
phenotypic similarities between fluperlapine treatment
and flagellar mutations, we speculate that fluperlapine and
its analogs could modulate flagellar growth/development
to prevent hatching.

To determine if fluperlapine affects flagellar growth, we
performed a flagellar regeneration assay in the presence of
fluperlapine. Several inhibitors are known to shorten fla-
gella, including IBMX, colchicine and cytochalasin D
[46,47]. We deflagellated cells using the pH shock method
[48] and assayed flagellar length every 20 to 30 minutes
(Figure 4g) in the presence of 100 pM fluperlapine. This
dose resulted in an observable effect, yet did not affect via-
bility after washout. Over the course of approximately
2 hours, flagella regenerated to near pre-deflagellation
lengths (8.97 + 0.5 um; pre-deflagellation 10.9 + 0.7 pm)
in solvent-treated cells, while fluperlapine-treated cells
regenerated to just over half length (7.0 + 0.5 pm). We
also treated cells with several doses of fluperlapine and
clozapine for 12 hours. Fluperlapine-treated cells (50 pM)
had flagella (7.2 + 0.4 um), similar to that observed in the
flagellar regeneration assay; however, cells treated with
clozapine (50 and 100 uM) and high concentrations of
fluperlapine (100 uM) were aflagellate and inviable.

Discussion

In this study we demonstrate that high-throughput screen-
ing of the model alga C. reinhardltii is an effective means to
identify novel small molecule probes. Our work builds on
previous studies focused on small molecule herbicides and
well-characterized inhibitors and combines it with high-
throughput methods developed for bacteria and yeast. For
example, the PSII inhibitors DCMU and atrazine, and
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Figure 3 Naive Bayes modeling for active small molecule
prediction. (a) Fitness model. (b) Photosynthesis model. (c)
Motility/phototaxis model. (a-c) The model was trained on four-fifths
of the active set and tested against the remaining fifth. Assessment
is repeated five times and compared to random selection of active
small molecules to calculate the model enrichment factor. Error bars
represent standard error of five replicates.
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other modulators of photosynthesis, have contributed to
our understanding of photosynthesis and signaling [44,49].
Antibiotics that target the chloroplast were instrumental in
demonstrating uniparental chloroplast inheritance [6].
Research on motility and the cell cycle sparked interest in
various classes of modulating compounds, including micro-
tubule inhibitors [50,51], many of which can discriminate
between animal and plant tubulins and are therefore useful
in agriculture [52]. Inhibitor studies have also shed light on
the biology of flagellar regeneration [46] and microtubule
organization [31]. Chemical interrogation of phototaxis
using chemical screens has identified modulators of moti-
lity and light perception [24,53,54]. In addition, studies on
a diverse group of chemical classes, including anesthetics
[26,46,55,56], phosphodiesterase inhibitors [23,57], DNA
damaging drugs [58], antipsychotics [22], antifungals and
translation inhibitors [55,56,59,60], have established the
sensitivity of Chlamydomonas to diverse chemical classes
and structures. Recent efforts have exploited Chlamydomo-
nas’ small molecule sensitivity to develop it as a biomonitor
of pesticide, herbicide and heavy metal accumulation in
water systems [19,61].

Our screens are quantitative (providing high-resolu-
tion growth curves for each small molecule) and large
enough to identify active compounds that can be classi-
fied into phenotypic categories. Profiling screens incor-
porating fitness readouts have shown remarkable
predictive ability in binning known inhibitors with small
molecule libraries [28,38,62-64].

Using the results from our screens, we generated a
model that effectively predicts the Chlamydomonas
bioactivity of compounds and allows one to rank and
prioritize libraries for screening. By training a Naive
Bayes model with chemical fingerprinting data from
algal actives we were able to predict fitness inhibitors in
an unscreened small molecule library, resulting in
enrichment of actives identified by 2.8x. Our model can
be improved in an iterative manner, as more data
become available for training, increasing its predictive
accuracy.

All screens are accessible for individual query or bulk
download from our website [29]. This website contains fit-
ness and phenotypic metrics for each small molecule
tested, as well as links to several chemical repositories,
including PubChem [65], ChemBank [66] and PharmGKB
[67]. Also included are several unscreened chemical
libraries with predicted activity scores on Chlamydomonas
as a resource for further screening.

Finally, we identified a class of neuroleptics, clozapine
analogs that appear to modulate Chlamydomonas flagellar
growth/function. In animals, these drugs target serotonin
and dopamine receptors; however, such targets are absent
in green algae and therefore the pathways affected in Chla-
mydomonas may represent functions that are evolutionarily
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Figure 4 Effects of fluperlapine on Chlamydomonas. (a-c) Dibenzazapine analogs: (a) fluperlapine; (b) clozapine; (c) clothiapine. Common
core structure is shown in black, variable regions in red. (d) Chlamydomonas cells grown in TAP with 0.5% DMSO. (e) Cells grown in TAP with
25 uM fluperlapine. (f) Fluperlapine-induced cell cluster produces four distinct flagella-less cells upon applied pressure. Parental wall is outlined in
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least 20 flagella per time point, averaged from two independent replicates is plotted. Error bars represent standard error. Scale bar 10 pm.
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conserved and ancient. For example, Avasthi et al. [22]
recently reported results from a Chlamydomonas motility
screen using the chemical library LOPAC (Library of Phar-
macologically Active Compounds), in which they found an
enrichment in antipsychotics with reported targeting to
G-protein coupled receptors and observed modulation of
mammalian ciliary length. Our findings on fluperlapine-
treated cells suggest modulation of flagellar growth based
on the absence of flagella in chronically grown cells, aber-
rant hatching and reduced flagellar regeneration.

Conclusions

The maturation of Chlamydomonas as a model ‘plant’
makes its description as the green yeast more appropriate
now than ever before. Chlamydomonas genomics, com-
bined with the features that have made it an excellent
genetic system, promise applications beyond the laboratory
- for example, in biofuel development. A recent observa-
tion shows that changes in culture conditions can coax
Chlamydomonas cells to produce an abundance of triacyl-
glycerol, to the point where it comprises much of the cell
volume (reviewed in [68]). The platform we describe here
is well suited to (i) systematize molecular breeding experi-
ments and (ii) explore chemical and environmental space
to uncover perturbations that produce a desired phenotype.
Combining such high-throughput screening capacity with
genetic perturbations across the Chlamydomonas genome
will permit new research insights for understanding ‘non-
yeast’ biology - for example, ciliopathies, photosynthesis,
and biofuel precursor production, to name a few. Indeed,
recent advances in next-generation sequencing for asses-
sing genome-wide mutant collections (reviewed in [69])
make the development of a systematic Chlamydomonas
mutant collection (for example, using barcoded transpo-
sons or complete deletions [70,71]) not only possible, but
essential.

Materials and methods

Strains and growth conditions

Screens were performed using the Chamydomonas refer-
ence strain CC-125 (nitl’, nit27; a gift from the Dutcher
Lab) grown in TAP media [72] under constant illumination
(LED strip light, Lumicrest, Toronto, ON, Canada). Cells
for screening were inoculated from pre-cultures in which
4 ml of TAP was inoculated from a single colony, cells
were cultured to ODgpp~0.1 for chronic or ODgy~0.4 for
acute screens.

Growth assays were performed in clear, flat-bottom
96- and 384-well microtiter plates (VWR International,
Mississauga, ON, USA) sealed with adhesive plate seals
(catalogue number AB-0580) using a custom developed
platform incorporating microtitre plate reader Safire2 and
the Freedom EVO (Tecan-US, Durham, NC, USA). Chronic
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screens were carried out at an initial cell density of 1.5 x
10° cells/ml (ODgoy~0.1). A final screen concentration of
25 puM (10 pg/ml EDA library) with a DMSO solvent con-
centration at 0.5% in a total volume of 190 to 200 ul/well
was chosen based on initial testing. We found that con-
centrations of DMSO greater that 0.5%, in liquid assays,
resulted in aberrant growth (aggregating cells; Figure S1 in
Additional file 1). Plates were shaken in constant light to
saturation at 150 rpm, for 3 to 4 days, with at least four
DMSO controls per plate. Algal growth was assayed using
a Tecan Safire2 plate reader measuring OD every 30 min-
utes at ODgpp nm. OD readings are output to provide
detailed growth curves (OD over time) that can distinguish
percent variations in growth. We were also able to assess
fitness in 1,536-well plates as above. Plates were prepared
by inoculating 50 pl of cells with drug or solvent to the
appropriate concentration, aliquoting 9 pl to each well,
and spinning down at 500 rpm for 10 s to remove bubbles.

Acute screens were prepared as above except they were
performed only in 96-well microtiter plates at an initial
cell density of 2.0 x 10° cells/ml (ODggo~0.4) and incu-
bated between 4 and 8 hours. Phototaxis response was
assayed by placing 96-well plates in a strong directional
light for 3 minutes. Images for each plate were captured
and the assay was repeated at least 15 minutes later on
the other side of the plate to improve resolution of wells
far from the light. Images were scored for inhibitors of
motility, no movement, or movement towards light, the
opposite of untreated cells. Photosynthetic efficiency was
assayed by fluorescent induction in the Safire2 plate
reader. Plates were kept in low light prior to the assay.
We assessed photosynthetic efficiency by exciting with
470 nm actinic light and measuring the emission at 680
nm, in which a higher reading reports inhibited photo-
synthesis. To determine cytotoxicity (cytocidal/cytostatic)
we pinned treated cells onto 2% agar in 96-well format
and allowed them to grow for 10 days at 24°C before they
were analyzed.

Chemicals and libraries

The chemical libraries screened were FDA BML-640
(Enzo Life Sciences, Farmingdale, NY, USA), Yactives, a
prescreened yeast actives set derived from ChemBridge
(NOVACore and DIVERSet, San Diego, CA, USA) and
ChemDiv (Divers, San Diego, CA, USA), and two stock
plates from ChemBridge (NOVACore, San Diego, CA,
USA). TimTec NPL-280 (TimTec LLC, Newark, DE,
USA) was supplied at 5.0 mM in DMSO and was a gift
from D Desveaux (University of Toronto). Lugol’s stain
was obtained from Sigma (62650-100ML-F, St Louis,
MO, USA) and diluted to 10 uM in water. Formalde-
hyde 10% (04018, Polysciences, Warrington, PA, USA)
was diluted to 1% in water. Fluperlapine was ordered
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from Enzo Life Sciences (BML-NS109, Farmingdale, NY,
USA) and suspended in DMSO to a stock concentration
of 100 mM.

Screening chemical libraries on C. reinhardtii

A compound was considered active on C. reinhardtii if
the area under the growth curve after reaching saturation
was less than 65% of the DMSO control (ratio [com-
pound/control] <0.65). Automatic flagging of actives was
confirmed by visual inspection of the data. Compounds
were added to the culture using a 2 pl or 600 nl pin tool
(V&P Scientific, San Diego, CA, USA) for 96- or 384-well
microplates, respectively, to dilute the compounds 200
times to a final DMSO concentration of 0.5%.

Cheminformatic analysis

For all chemicals ECFP_4 similarity was calculated using
the cheminformatic package in Pipeline Pilot version 6.1
(Scitegic Inc. Accelyrs, San Diego, CA, USA). Chemicals
with a similarity of greater than 0.5 (1.0 being identical)
were visualized using Cytoscape version 2.8.2; results
from phenotypic screens were added as attributes and
were used to alter node shape and color. Marvin version
5.4.1 (ChemAxon, Budapest, Hungary) was used for
drawing and displaying chemical structures. Naive Bayes
model building was performed as described [38].

Flagellar regeneration

Cells were grown for two days in a 16 h/8 h light/dark
cycle to an ODggo~0.4. Cells were deflagellated using the
pH shock method [48] by adding 350 pl of 0.5 N acetic
acid, inverted for 40 seconds, and neutralized with 125 pl
Na2CO3, to 6 ml of culture. Deflagellation was confirmed
by observation of cells at 40x using a DMIL inverted light
microscope (Leica). Deflagellated cells were aliquoted into
1.5 ml tubes and drug or solvent was added. Flagella were
observed every 20 to 30 minutes by fixing cells with 6.67 x
10% formaldehyde, a concentration that preserved
flagella during the 20-minute observation period. Flagella
were observed with the 100x objective and acquired using
AxioVision software on an Axiovert 200 M microscope
(Carl Zeiss).

HPLC analysis

A 100 ml culture was grown for four days, spun down and
resuspended in 20 ml fresh TAP. Aliquots (1 ml) were
treated with drug or solvent for 3 h. Cells were then
washed three times with TAP, resuspended in 50 pl TAP
media, transferred to clean 1.5 ml tubes and stored frozen
at -20°C. The samples were later lysed with 50 pl SDS-EB
buffer (2% SDS, 400 mM NacCl, 40 mM EDTA, 100 mM
Tris-HCI, pH 8.0) and incubated at 60°C for 1 h. Samples
were frozen at -80°C and later processed on HPLC as
described [37].
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Additional material

Additional file 1: Supplemental Figures S1, S2, S3, and S4.

Additional file 2: Supplemental Tables S1 and S2. Proschold T:
Portrait of a Species: Chlamydomonas reinhardtii. Genetics 2005,
170:1601-1610. Ehler L, Holmes J: Loss of spatial control of the mitotic
spindle apparatus in a Chlamydomonas reinhardtii mutant strain
lacking basal bodies. Genetics 1995, 141:945-960. Goodenough UW,
StClair HS: BALD-2: a mutation affecting the formation of doublet
and triplet sets of microtubules in Chlamydomonas reinhardtii.
Journal of Cell Biology 1975, 66:480-491. Luck D, Piperno G, Ramanis Z,
Huang B: Flagellar mutants of Chlamydomonas: studies of radial
spoke-defective strains by dikaryon and revertant analysis.
Proceedings of the National Academy of Sciences of the United States of
America 1977, 74:3456-3460. Piperno G, Huang B, Luck DJ: Two-
dimensional analysis of flagellar proteins from wild-type and
paralyzed mutants of Chlamydomonas reinhardtii. Proceedings of the
National Academy of Sciences of the United States of America 1977,
74:1600-1604. Galloway RE, Mets L: Non-Mendelian inheritance of 3-(3,
4-dichlorophenyl)-1, 1-dimethylurea-resistant thylakoid membrane
properties in Chlamydomonas. Plant Physiology 1982, 70:1673.
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