
Introduction
Current reprogramming technology, pioneered by 
Takahashi and Yamanaka [1], was built on several seminal 
advances in the field of developmental biology. First, 
nuclear transfer experiments demonstrated that a 
somatic cell nucleus could be epigenetically reset to an 
early developmental state [2]. Second, cell culture 
conditions were developed that allowed for the isolation 
and culture of pluripotent cells, termed embryonic stem 
(ES) cells, from the inner cell mass of the human and 
mouse blastocyst [3,4]. Finally, study of these cells and of 
early embryonic development led to the identification of 
factors that were ultimately able to reprogram mouse 
embryonic fibroblasts (MEFs) to the iPS cell state when 
ectopically expressed, albeit at low frequency [1].

Several groups rapidly followed up on the initial 
generation of iPS cells and demonstrated that these cells, 
in their ideal state, are functionally equivalent to ES cells 
in their ability to contribute to healthy adult mice and 
their offspring, in addition to forming teratomas when 
injected into athymic mice [5-10]. In accordance with 
these results, the gene expression and chromatin states of 
iPS cells were also found to be strikingly similar to their 

ES cell counterparts, although subtle differences remain 
[10-12]. Tremendous innovation has occurred in the 
method of factor delivery and the type of somatic cells 
being reprogrammed. Initially, reprogramming factors 
were expressed from retroviral transgenes integrated into 
the genome. Subsequent advances have eliminated the 
requirement for genomic insertion and viral infection 
altogether (reviewed in [13]). Additionally, iPS cells have 
been generated from individuals with specific genetic 
lesions that can be used to model human diseases 
(reviewed in [14]). However, despite all of these advances, 
much remains to be learned about the reprogramming 
process itself. We believe that the MEF reprogramming 
paradigm still holds the most promise for future studies 
due to the ease of obtaining primary cells that are 
genetically tractable and easy to expand and reprogram, 
even though we acknowledge that additional lessons may 
be learned from the use of non-mesenchymal cells, such 
as hepatocytes or neural cells. �e next frontier for the 
reprogramming field will be a complete mechanistic 
understanding of how the factors cooperate to reshape 
the epigenome and gene expression profile of the somatic 
cell.

Enhancer and replacement factors
Reprogramming of somatic cells is a multistep process 
that culminates in the expression of pluripotency genes 
such as Nanog. Although morphological changes occur at 
early and intermediate stages of reprogramming, 
pluripotency gene expression is only induced during the 
late stage and indicates faithful reprogramming. �e core 
reprogramming cocktail, consisting of the transcription 
factors Oct4, Sox2 and Klf4 (O, S and K), can be 
augmented by the addition of factors that enhance the 
efficiency of iPS cell generation, which is typically 
assessed by quantifying the number of Nanog-positive 
colonies in the culture (Figure 1a). �e most well known 
of these enhancer factors is c-Myc, which was added 
alongside O, S and K in the original reprogramming 
experiment but later shown to be dispensible 
[1,5,9,10,15,16]. c-myc is a protooncogene that appears to 
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act early in reprogramming to promote an active 
chromatin environment, enhance cell proliferation, and 
may play a major role in enhancing the transition from 
transcriptional initiation to elongation [12,17]. In support 
of the notion that c-Myc acts mainly in early 
reprogramming stages, c-Myc greatly enhances the 
generation of partially reprogrammed cells, which have 
not turned on pluripotency genes, when combined with 
O, S and K [15,16]. It has been shown that the family 
members N-Myc and L-Myc can also enhance repro
gramming [15] and that particularly L-Myc has little 
transforming potential, suggesting that reprogramming 
and transformation by Myc are distinct processes [18].

The frequency with which somatic cells convert to iPS 
cells is typically below 1%. Therefore, much effort has 
gone into improving reprogramming. Several 
transcription factors normally expressed in the early 
stages of embryonic development can enhance 
reprogramming when added ectopically to O, S and K 
treated MEFs. These include Glis1, Sall4 and Nanog [19-
22]. This class of enhancer factors likely acts late in the 
reprogramming process to establish and stabilize the 
pluripotency transcription network. In contrast to c-
Myc, Glis1 added to O, S and K enhances the generation 
of iPS cell colonies without producing Nanog-negative, 
partially reprogrammed colonies [20]. Remarkably, 
adding Glis1 and c-Myc together with O, S and K further 
enhances iPS cell colony formation without the presence 
of Nanog-negative colonies, suggesting that Glis1 is able 
to coerce them to the fully reprogrammed state. Forcing 
Nanog overexpression in partially reprogrammed cells 
leads to their conversion to iPS cells, demonstrating its 
late-stage reprogramming activity [22,23].

The ability of cells to pass through the cell cycle has 
also been shown to be an important determinant of 
reprogramming efficiency. Knockdown or gene deletion 

of p53, p21 or proteins expressed from the Ink4/Arf locus 
allows cells undergoing reprogramming to avoid the 
activation of cell cycle checkpoints and cellular 
senescence, leading to greater iPS cell formation [21,24-
27]. Consequently, it is likely that any manipulation that 
accelerates the cell cycle would enhance reprogramming. 
Thus, reprogramming cultures should be monitored for 
alterations in their proliferation rate to determine 
whether the action of an enhancer factor can be 
attributed to changes in the cell cycle (Figure 1a).

In summary, the induction of pluripotency by O, S and 
K is a multistep progression whose efficiency can be 
boosted by enhancer factors. Even though additional 
factors can positively influence reprogramming, the 
efficiency of reprogramming is typically still very low. 
The list of factors discussed above is a brief overview and 
is by no means exhaustive. Enhancer factors are not 
exclusively proteins and may consist of any manipulation, 
including small molecules, long non-coding RNAs and 
microRNAs, that improves reprogramming [28,29]. Their 
addition at different stages of the reprogramming 
process, the generation of partially reprogrammed cells, 
and the conversion of these cells to the fully 
reprogrammed state allows one to assay for enhancers of 
the early and late stages of reprogramming. It will be 
important to identify the subset of genes whose 
expression is changed by the introduction of each 
enhancer factor. Do these genes work alongside the core 
gene expression changes conferred by O, S and K, or do 
they simply amplify the magnitude and kinetics of these 
changes? Also, do known enhancer factors share 
common mechanisms of action?

Replacement factors possess the unique ability to 
substitute for O, S or K in reprogramming (Figure 1b). 
Esrrb, an orphan nuclear receptor that is expressed 
highly in ES cells, has been reported to replace Klf4 [30]. 

Figure 1. The reprogramming assay has revealed enhancer and replacement factors. (a) (i) Example characterization of enhancer factors 
(X and Y). Factors delivered using individual retroviruses expressing the relevant genes. Nanog serves as a marker of fully reprogrammed cells. 
Enhancer factors may act through proliferation-dependent (X) or proliferation-independent mechanisms (Y), both of which would increase the 
proportion of induced pluripotent stem cell colonies. (ii) Example growth curves for mouse embryonic fibroblasts infected with vectors expressing 
Oct4, Sox2 and Klf4 (O, S and K), and X, Y or control, displaying how proliferation effects can be measured. Error bars represent standard deviation. 
(b) Example characterization of a Sox2 replacement factor (Z). Error bars represent standard deviation.
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Additionally, p53 knockdown has been shown to permit 
reprogramming in the absence of Klf4 [31]. High-
throughput screens have been used successfully to 
identify small molecule replacement factors. Treatment 
of cells with kenpaullone allows reprogramming to occur 
without Klf4, albeit with slightly lower efficiency [32], 
and several distinct classes of small molecules contribute 
to iPS cell generation in the absence of Sox2 [33-35]. 
Reprogramming enhancer and replacement factors are 
not necessarily mutually exclusive. Nr5a2, for instance, is 
capable of both enhancing reprogramming and replacing 
Oct4 [36]. In the human reprogramming system, Lin28 
and Nanog, mentioned above as enhancer factors, 
combine to replace Klf4 [37].

Replacement factors, despite their substantial 
molecular and functional divergence, may provide 
important insights into the mechanism whereby O, S and 
K function in reprogramming. Future work will 
demonstrate whether these factors regulate the same key 
genes and pathways as the reprogramming factors that 
they replace or whether they help achieve the iPS cell 
state via different means.

Gene expression changes during reprogramming
Even though causal events are difficult to pinpoint during 
reprogramming due to the inefficiency of the process, 
important changes have nonetheless been identified 
through global expression profiling [11,12,38]. The 
introduction of O, S and K brings about a dramatic 
change in the MEF transcriptional profile that eventually 
leads to induced pluripotency. Of the genes examined by 
Sridharan et al. [12] (GEO:GSE14012) using expression 
microarrays, more than 6,000 change their expression by 
more than twofold between MEFs and iPS cells 
(Figure  2a). The expression changes in response to 
reprogramming factors begin immediately; however, the 
pluripotent state is not achieved until several days later 
[11,38,39]. Hierarchical clustering of data obtained from 
a reprogramming time course has suggested that 
reprogramming can be separated into three distinct gene 
expression phases [38].

The first of these phases includes downregulation of 
lineage-specific genes and activation of a genetic program 
that radically alters cell morphology [38]. This change, 
known as mesenchymal-to-epithelial transition (MET), is 
activated by BMP/Smad signaling and inhibited by 
activation of the TGF-β pathway [34,38,40]. The 
difference in morphology that results from MET is not 
simply cosmetic. For example, knockdown of Cdh1, 
which encodes the epithelial cell adhesion protein E-
cadherin, significantly reduces reprogramming efficiency 
[40]. Additionally, reduction in cell size has been shown 
to be an important early event that occurs in cells that go 
on to reach the pluripotent state [41].

The intermediates generated in a reprogramming culture 
do not appear to be stable when factor expression is turned 
off before pluripotency is achieved [38,42,43]. In this 
instance, cells revert back to a MEF-like gene expression 
pattern. In agreement with this notion, stable repro
gramming intermediates isolated in the form of pre-iPS cells 
with an ES-cell-like morphology retain high levels of ectopic 
O, S, K and c-Myc [11,12]. These cells have successfully 
downregulated fibroblast genes and initiated MET, but have 
not activated the self-reinforcing network of transcription 
that characterizes the ES/iPS state [11,12,44,45].

Fully reprogrammed cells arise with low frequency in 
reprogramming cultures. These cells exhibit indefinite 
self-renewal and possess the capacity to differentiate into 
any of the cell types that make up the developing 
organism. These unique properties are governed by a 
complex transcriptional program involving many 
transcription factors, including the reprogramming 
factors O, S and K, now expressed from their endogenous 
loci, and additional genes such as Nanog, Esrrb, Smad 
family members and Stat family members [44,45]. 
Transcription factors within the pluripotency network 
appear to work cooperatively to regulate genes. Genome-
wide chromatin immunoprecipitation (ChIP) 
experiments demonstrate co-binding among these 
factors at levels well beyond what would be expected by 
chance [12,44,45]. Additionally, the presence of multiple 
factors at a given locus is associated with increased levels 
of ES/iPS cell-specific gene expression [12,44,45].

In ES cells, which are viewed as a proxy for iPS cells due 
to their high level of functional similarity, knockdown of 
any one of a number of transcription factors leads to loss 
of the pluripotent state, indicating the interconnected 
nature of the transcriptional network [46]. However, one 
factor – Nanog – seems to be of special importance. 
Overproduction of Nanog was able to rescue several of 
the aforementioned loss-of-function effects and allow ES 
cells to maintain pluripotency in the absence of the 
growth factor LIF [46-48]. Furthermore, reprogramming 
of Nanog-deficient cells proceeds to a partially 
reprogrammed state that cannot transition to the iPS cell 
state due to impaired upregulation of the pluripotency 
network [22,23]. These data illustrate the central role of 
Nanog in the establishment and maintenance of 
pluripotency and are consistent with its role as a late-
stage enhancer of reprogramming.

Now that transcription factors within the pluripotency 
network have been largely identified, future research can 
determine their relative importance by performing 
similar gain-of-function and loss-of-function assays to 
those described above involving Nanog. Are all 
pluripotency-associated factors capable of acting as 
enhancers of reprogramming? Does their abrogation 
block reprogramming? Why or why not?
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In addition to the changes in specific gene programs, 
reprogramming fundamentally alters the cell in several 
important ways. For instance, mouse ES/iPS cells have an 
altered cell cycle with a shortened G1 phase [49]. �us, 
reprogrammed cells have a reduced doubling time, and a 
greater fraction of these cells reside in the later phases of 
the cell cycle [49]. In order to protect genomic integrity 
during early development, ES/iPS cells have an enhanced 
capacity for DNA repair [50,51]. Pluripotent cells also 
have an increased nuclear to cytoplasmic ratio when 
compared with differentiated cells, as shown by electron 
microscopy [52].

In accordance with the reduction in membrane surface 
area and secretory function relative to MEFs, iPS cells 
generally express genes whose products function outside 
of the nucleus at comparatively lower levels. Significantly 
enriched gene ontology (GO) terms within the list of 
genes whose expression is reduced at least twofold from 
MEFs to iPS cells include: Golgi apparatus, endoplasmic 
reticulum and extracellular matrix (Figure 2a). 
Conversely, genes whose expression is up at least twofold 
in iPS cells relative to MEFs act primarily within the 
nucleus and are enriched for GO terms such as nuclear 
lumen, chromosome and chromatin (Figure 2a).

Figure 2. Characterization of gene expression changes during MEF reprogramming. (a) Gene expression data were derived from Sridharan 
et al. [12] and log

2
 induced pluripotent stem (iPS) cell/mouse embryonic fibroblast (MEF) expression ratios for all RefSeq genes ordered from highest 

to lowest. Shown are selected enriched gene ontology (GO) terms for genes with at least a twofold expression difference. (b) (i) Average log
2
 iPS 

cell/MEF expression ratios for selected groups of chromatin-modifying enzymes or chromatin-modifying complexes. The red line indicates overall 
median expression change from (a). (ii-vi) Expression changes for indicated individual complex subunits or specific enzymes between MEFs, pre-
iPS cells and iPS cells, normalized to the MEF value. Pre-iPS cells represent embryonic-stem-cell-like colonies that arise during the reprogramming 
process but do not express pluripotency genes and can be clonally expanded. Expression changes for Taf7 (green), Taf7l (light green), Taf5 (orange), 
Dpy30 (maroon), Wdr5 (purple), Smarcc1 (BAF155, red) and Smarcc2 (BAF170, blue) are highlighted and discussed in the text. ex., example; Dnmt, 
DNA methyltransferase; FDR, false discovery rate; TFIID, transcription factor IID; MLL, mixed-lineage leukemia.
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One important class of nuclear proteins whose gene 
expression is increased dramatically in ES/iPS cells 
relative to MEFs is chromatin-modifying complexes 
(Figure 2b) [53]. These molecular machines modulate 
gene expression partly by covalent and non-covalent 
modification of nucleosomes. The expression levels of 
physically associated subunits within these complexes are 
largely coordinately regulated during reprogramming. 
For example, transcripts encoding the components of the 
PRC2 polycomb complex, responsible for H3K27me3, are 
highly upregulated as cells progress to the pluripotent 
state (Figure 2b). The DNA methyltransferases, which are 
not stably associated, also experience similar increases in 
their expression as reprogramming proceeds (Figure 2b). 
On the other hand, the transcription factor IID (TFIID) 
and mixed-lineage leukemia (MLL)/Set complexes are 
more moderately upregulated as a whole, yet they contain 
highly upregulated individual subunits, which play 
important roles in pluripotency and reprogramming 
(Figure 2b; Taf7, Taf7l and Taf5 of TFIID; Dpy30 and 
Wdr5 of MLL/Set) [54-56]. Expression switches within 
chromatin-modifying complexes may affect the induction 
of pluripotency. In agreement with this notion, Smarcc1 
(BAF155) replaces Smarcc2 (BAF170) in the specific 
form of the BAF complex expressed in pluripotent cells 
and is critical for their self-renewal (Figure 2b) [57].

The presence of increased levels of chromatin-
modifying complexes in ES/iPS cells may serve one of 
two purposes. First, these proteins may contribute to the 
maintenance of the self-renewing, undifferentiated state. 
Examples of this class, where loss-of-function disrupts 
self-renewal, include Smarca4 (Brg1), Chd1 and Wdr5 
[54,57,58]. Second, while a given protein may not be 
required for normal growth of ES/iPS cells, its presence 
may be required for the proper execution of subsequent 
developmental events. Thus, a loss-of-function pheno
type will only be detected upon differentiation, as is seen 
for PRC2, G9a and TAF3, and the DNA methyl
transferases Dnmt1, Dnmt3a and Dnmt3b [59-63].

Chromatin changes during reprogramming
Epigenetic changes during reprogramming, most 
frequently seen in the posttranslational modification 
status of histone tails, are likely to be both cause and 
consequence of the previously mentioned changes in 
gene expression. Differences in H3K4me2 and 
H3K27me3 are detected rapidly upon reprogramming 
factor induction and often at times precede 
transcriptional upregulation of the underlying loci [39]. 
Shifts in the balance of active and inactive chromatin 
marks at proximal gene regulatory elements are highly 
correlated with transcriptional changes during 
reprogramming. ChIP experiments in MEFs and iPS cells 
demonstrate that the promoter regions of many genes 

with the greatest expression increase in the transition 
from MEFs to iPS cells lose H3K27me3 and gain 
H3K4me3 [10,12]. The low efficiency of reprogramming 
makes it difficult to study the chromatin state of 
reprogramming intermediates with population studies 
such as ChIP, particularly towards the end of the process 
where the majority of cells have not progressed down the 
reprogramming path. Pre-iPS cells, which are a clonal 
population of cells expanded from Nanog-negative 
colonies with an ES-cell-like morphology, are thought to 
represent a relatively homogeneous late reprogramming 
state amenable to ChIP [11,12,22,33]. Similar to what has 
been observed regarding changes in gene expression, the 
resetting of chromatin marks does not appear to occur all 
at once because pre-iPS cells display an intermediate 
pattern of a subset of chromatin modifications that lies 
between the MEF and iPS states, both globally and near 
transcription start sites [12,64].

High-throughput sequencing coupled with ChIP has 
allowed for the identification of putative distal regulatory 
elements based on combinations of chromatin marks. 
These ‘enhancer’ regions have been mainly defined by the 
presence of H3K4me1 and H3K4me2 at sites that lie at a 
distance from transcription start sites, which are 
frequently marked by H3K4me3 [39,65,66]. Chromatin at 
these distal sites is reset to an ES-cell-like state over the 
course of reprogramming [39,65]. In addition to promoting 
the proper expression of pluripotency-related genes, these 
sites may contribute to the developmental potential of 
pluripotent cells by maintaining a poised state that allows 
for the upregulation of lineage-specific genes in response 
to the appropriate signals [65,66]. Future studies that 
analyze more histone marks and incorporate machine 
learning techniques will help to better characterize these 
regions as well as other important chromatin states in cells 
at different stages of reprogramming, which will require 
the isolation or at least enrichment of cells that will 
undergo faithful reprogramming.

Over the course of reprogramming, cells experience 
dramatic global increases in a variety of active histone 
acetylation and methylation marks, while H3K27me3 
levels remain unchanged [64]. The majority of these 
changes occur during the late stages of reprogramming – 
between the pre-iPS and fully reprogrammed states [64]. 
Additionally, the number of heterochromatin foci per cell, 
as marked by HP1α (heterochromatin protein 1α), is 
reduced in iPS cells when compared with MEFs [64]. In 
accordance with this observation, electron spectroscopic 
imaging demonstrates that lineage-committed cells have 
compacted blocks of chromatin near the nuclear envelope 
that are not seen in the pluripotent state [67,68]. The 
specific increase in active chromatin is somewhat sur
prising given that the expression levels of chromatin-
modifying complexes associated with both the deposition 
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of active and inactive marks increase as reprogramming 
proceeds. Overall, changes in chromatin structure and 
histone marks coupled with increased transcription of 
repeat regions indicate that the pluripotent state may 
possess a unique, open chromatin architecture [53].

Another epigenetic modification, DNA methylation, 
plays an important role in silencing key pluripotency 
genes, including Oct4 and Nanog, as cells undergo 
differentiation [69]. The promoter regions of pluripotency 
genes are demethylated in ES cells but strongly 
methylated in fibroblasts [11]. The lack of DNA 
methylation within these promoters in faithfully 
reprogrammed iPS cells strongly suggests that during 
reprogramming, this repressive mark must be erased in 
order to allow for the establishment of induced 
pluripotency [5,9-11]. Bisulfite sequencing suggests that 
removal of DNA methylation from pluripotency loci is a 
late event that can be placed between the pre-iPS and iPS 
cell states in the reprogramming continuum [11]. 
Furthermore, reprogramming efficiency is increased in 
response to the DNA methyltransferase inhibitor 5-aza-
cytidine [11]. This enhancement is greatest when it is 
added in a brief window towards the end of the 
reprogramming process, thus reinforcing the importance 
of the late-stage removal of DNA methylation [11].

Several other components of the chromatin-modifying 
machinery have also been shown to affect reprogramming 
efficiency. Knockdown of LSD1, as well as chemical 
inhibition of histone deacetylases, leads to enhanced 
reprogramming [70]. Also, overproduction of the histone 
demethylases Jhdm1a and Jhdm1b/Kdm2b, and the SWI/
SNF complex components Brg1 and Baf155, increases the 
efficiency of iPS cell generation [71,72]. In contrast, 
knockdown of Chd1 and Wdr5 inhibits reprogramming 
in a cell-proliferation-independent manner [54,58]. 
Knockdown of candidate chromatin-modifying proteins 
during human reprogramming identified the histone 
methyltransferases DOT1L and SUV39H1, and members 
of the PRC1 and PRC2 polycomb complexes as 
modulators of reprogramming activity [73]. Reducing the 
levels of DOT1L and SUV39H1 led to enhanced 
reprogramming, while reductions in Polycomb complex 
subunits (BMI1, RING1, SUZ12, EZH2 and EED) 
resulted in decreased reprogramming efficiency [73]. 
Recently, Utx/Kdm6a was also shown to be critical for 
several types of reprogramming, including iPS cell 
generation from MEFs [74]. The action of this protein is 
important to remove H3K27me3 from repressed genes in 
MEFs and prevent the acquisition of H3K27me3 by 
pluripotency genes as reprogramming proceeds [74]. 
Finally, Parp1 and Tet2, which both contribute to 
chromatin modification of the silenced Nanog locus early 
in reprogramming, are each required for iPS cell 
formation [75].

Through the results mentioned above, several general 
themes have emerged. First, heterochromatin-associated 
marks, namely histone deacetylation, H3K9me3 and 
DNA methylation, represent a barrier whose removal 
leads to increased reprogramming efficiency. Second, 
proteins that contribute to an active chromatin 
environment by writing or reading the H3K4me3 mark 
are important for achieving pluripotency. Finally, removal 
of marks associated with transcriptional elongation 
(H3K36me2/3 and H3K79me2) surprisingly enhances 
reprogramming. Mechanistically, removal of 
H3K36me2/3 by Jhdm1b, which is stimulated by ascorbic 
acid, has been shown to overcome cell senescence by 
repressing the Ink4/Arf locus [76]. Inhibition of DOT1L 
leads to reduced H3K79me2 at mesenchymal genes, 
thereby facilitating their downregulation [73].

Molecular mechanisms of reprogramming factor 
activity
From comparing their binding profiles between pre-iPS 
cells and iPS cells [12], it is thought that O, S and K vary 
considerably in their DNA-binding patterns over the 
course of reprogramming. Eventually, however, they 
adopt an ES-cell-like binding configuration upon 
reaching the iPS cell state [12]. Genes that exhibit the 
largest expression changes during reprogramming are 
frequently bound by all three reprogramming factors in 
ES and iPS cells [12]. Increased factor binding at gene 
promoters in iPS cells is associated with higher levels of 
transcription, indicating that O, S and K work together to 
regulate genes primarily as transcriptional activators as 
described for ES cells [11,12,44,45].

Reprogramming factors must navigate a dynamic 
chromatin landscape at the various stages of iPS cell 
generation. While it is plausible that DNA binding 
differences may be due in part to changes in local 
chromatin accessibility, O, S and K do not appear to be 
blocked by the presence of the repressive mark 
H3K27me3, as promoters enriched for this chromatin 
mark also can be bound by O, S and K [12,45,77]. In 
contrast, binding of overproduced OCT4 to the 
enhancers of silenced genes is associated with 
nucleosome depletion and the absence of DNA 
methylation, suggesting that nucleosomes and DNA 
methylation may comprise a physical barrier that inhibits 
factor binding [78,79]. Future work may identify 
additional chromatin signatures that enable or inhibit 
reprogramming factor binding. Mapping of O, S and K 
binding in the early stages of reprogramming should 
reveal chromatin states and nucleosome positions that 
allow the factors to access target genes.

While there is considerable overlap between the ChIP 
profiles of all three factors in ES and iPS cells, Oct4 and 
Sox2 are found together most frequently, whereas Klf4 
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binds to approximately twice as many sites genome-wide 
as either of the other factors [12,44,45]. Oct4 and Sox2 
can bind cooperatively to composite sox-oct motifs that 
are frequently found within the regulatory elements of 
important pluripotency genes [80-82]. These genes 
include those that encode Oct4 and Sox2 themselves, 
indicating that these two factors act within 
autoregulatory positive feedback loops that help to 
reinforce the pluripotent state [80,81].

Each reprogramming factor contains a highly 
conserved domain that functions primarily to bind DNA 
in a sequence-specific manner (Figure 3a). The DNA-
binding domains of O, S and K each have distinct 
evolutionary origins with differing modes of interacting 
with the double helix. Klf4 binds DNA through three 
tandem C2H2 zinc fingers that wrap around the major 
groove [83]. Arginine and histidine side chains that 
project into the major groove and make contacts with the 
electronegative surface presented by guanine dictate the 
GC-rich DNA-binding motif of Klf4 (Figure 3b) [83]. 
Sox2 binds an AT-rich motif (Figure 3b) through its high-
mobility group (HMG) box, which forms an L-shaped 
binding surface that exclusively contacts the minor 
groove [84]. This unique shape, along with amino acid 
side chains that intercalate between the DNA base pair 
stacks, create a substantial bend in the DNA that is 
important for its ability to activate transcription [84,85]. 
Oct4 interacts with DNA through two separate domains 
containing helix-turn-helix (POU) motifs that each 
contact half sites within its DNA-binding motif (Figure 
3b) in a cooperative manner [86].

Reprogramming factors can sometimes be functionally 
replaced by paralogs within their respective families 
(Figure 3c). Comparison of O, S and K with their paralogs 
grouped in terms of functional redundancy may provide 
insight into their mechanisms of action during 
reprogramming. The binding pattern in ES cells and 
DNA-binding specificity in vitro measured for Klf4 
overlaps substantially with Klf2 and Klf5 [87]. Only triple 
knockdown of all three of these proteins together is 
sufficient to induce the loss of pluripotency [87]. 
However, each of these factors may also play more 
nuanced roles in maintaining self-renewal of pluripotent 
cells [88]. During reprogramming, Klf2, Klf5 and another 
close family member, Klf1, have been reported to replace 
Klf4 with varying degrees of efficiency (Figure 3c) [15]. 
Sox2, on the other hand, can be replaced by several 
diverse family members from across its phylogenetic tree, 
but not others (Figure 3c) [15]. Interestingly, 
reprogramming activity can be activated in Sox17, a 
reprogramming-incompetent paralog, by point mutation 
of a single glutamate within helix 3 of its HMG domain to 
the corresponding lysine residue present in Sox2 [89]. 
This change enables cooperative binding with Oct4 at the 

canonical subset of sox-oct motifs [89]. Thus, the physical 
association between Sox2 and Oct4 when bound to DNA 
is likely to be critical for the induction of pluripotency. 
Oct4 cannot be replaced by Oct1 or Oct6 in 
reprogramming, suggesting that it may possess divergent 
activity not seen in other family members (Figure 3c) 
[15]. This difference in reprogramming activity among 
the different Oct factors may not be simply due to 
differences in DNA-binding preference. Oct1 and Oct4 
both bind cooperatively to sox-oct elements in the Fgf4 
enhancer, but only Oct4 promotes transcriptional 
activation of the gene due to its ability to form an active 
ternary complex with Sox2 [82,90].

Residues that lie outside of the highly conserved DNA-
binding domains in O, S and K are also important for 
their ability to activate transcription and mediate 
reprogramming (Figure 3a). Klf4 possesses an acidic 
transactivation domain (TAD) that interacts non-
covalently with SUMO-1 [91]. Oct4 contains TADs both 
amino-terminal and carboxy-terminal of its DNA-
binding domains, while Sox2 contains several regions 
with transactivation activity carboxy-terminal of its 
HMG box (Figure 3a) [92]. Since these regions were 
characterized using assays from different developmental 
contexts, future work is needed to determine which of 
these TADs function in reprogramming and to identify 
the co-activators that act through these domains.

Reprogramming efficiency can be enhanced by  
fusing TADs from other proteins to the reprogramming 
factors. Addition of a TAD from VP16 to Oct4 or Sox2 
increases reprogramming efficiency [93,94]. Fusion of the 
MyoD TAD to either terminus of Oct4 accelerates and 
enhances the induction of pluripotency [95]. This 
enhancement activity is highly specific, since a variety of 
other known TADs were unable to accomplish the same 
feat [95]. Additionally, the MyoD TAD was unable to 
replace the transactivation regions within the Oct4 
protein, indicating that these TADs are functionally 
distinct [95]. Collectively, these results imply that the 
Oct4 TADs make contact with reprogramming-specific 
cofactors that cannot be recruited by other well-studied 
TADs. However, the presence of these TADs fused to  
the full-length protein likely brings in additional  
co-activators that enhance the induction of pluri
potency.  Further investigation is needed to elucidate  
the exact mechanisms through which these TADs 
cooperate with the reprogramming factors to enhance 
reprogramming.

The reprogramming factors are likely to effect changes 
in transcription through interactions between their TADs 
and protein cofactors that recruit the RNA polymerase 
machinery or modify the local chromatin structure. 
Several of these cofactors have been identified thus far. 
For instance, Sox2 and Oct4 have been reported to bind 
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Figure 3. A closer look at the reprogramming factors Oct4, Sox2 and Klf4. (a) Important domains of each reprogramming factor, with 
DNA-binding domains indicated by colored boxes, and transactivation domains underlined in red. HMG, high-mobility group; POU, helix-turn-
helix. (b) Reprogramming factor DNA-binding motifs determined by de novo motif discovery. (c) Phylogenetic trees showing the evolutionary 
relationships between each reprogramming factor and its respective paralogs, based on sequence comparison of their DNA-binding 
domains. Colors highlight family members that have been tested in the reprogramming assay and are able (green) or unable (red) to mediate 
reprogramming [15].
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to a complex of XPC, RAD23B and CENT2 to mediate 
the transactivation of Nanog [96]. Loss-of-function 
experiments demonstrated that these proteins are 
important for ES cell pluripotency and somatic cell 
reprogramming [96]. Additionally, several proteomic 
studies have identified a multitude of candidate O,S,K-
interacting proteins that warrant further study [97-100].

Reprogramming factor activity can also be modulated 
by posttranslational modifications (PTMs). Oct4 
phosphorylation at S229 within the POU homeodomain 
reduces its transactivation activity, possibly by impairing 
DNA binding as a result of the disruption of a hydrogen 
bond with the DNA backbone [84,101]. Reprogramming 
activity is completely abolished in a phosphomimetic 
mutant (S229D) protein [102]. Additionally, Oct4 can be 
O-GlcNAcylated at T228 [102]. Mutation of this residue 
to alanine substantially reduces reprogramming activity, 
indicating that this PTM may be important for the 
induction of pluripotency [102]. Given these results, it 
will be important to examine the effects of other known 
PTMs within O, S and K during reprogramming.

Conclusion
Incredibly, somatic cells can revert to the pluripotent 
state through the forced expression of defined 
reprogramming factors. The identification and study of 
these factors has helped to provide insight into the 
mechanism of induced pluripotency. Conversely, the 
reprogramming process serves as a robust functional 
assay that allows us to advance our understanding of 
Oct4, Sox2, Klf4 and other essential regulators. Much 
remains to be learned regarding the logic of where these 
factors bind in the genome and the transcriptional 
changes that they then induce at these sites. This is not a 
trivial task given the heterogeneity and inefficiency of the 
reprogramming process. In a broad sense, knowledge 
gained through the study of somatic cell reprogramming 
may be applicable to other gene regulatory events that 
transform the epigenome and drive embryonic 
development.
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