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Abstract

Sequencing targeted DNA regions in large samples is necessary to discover the full spectrum of rare variants. We report
an effective Illumina sequencing strategy utilizing pooled samples with novel quality (Srfim) and filtering (SERVIC'E)
algorithms. We sequenced 24 exons in two cohorts of 480 samples each, identifying 47 coding variants, including 30
present once per cohort. Validation by Sanger sequencing revealed an excellent combination of sensitivity and
specificity for variant detection in pooled samples of both cohorts as compared to publicly available algorithms.

Background

Next-generation sequencing and computational genomic
tools permit rapid, deep sequencing for hundreds to thou-
sands of samples [1-3]. Recently, rare variants of large
effect have been recognized as conferring substantial risks
for common diseases and complex traits in humans [4].
There is considerable interest in sequencing limited geno-
mic regions such as sets of candidate genes and target
regions identified by linkage and/or association studies.
Sequencing large sample cohorts is essential to discover
the full spectrum of genetic variants and provide sufficient
power to detect differences in the allele frequencies
between cases and controls. However, several technical and
analytical challenges must be resolved to efficiently apply
next-generation sequencing to large samples in individual
laboratories. First, it remains expensive to sequence a large
number of samples despite a substantial cost reduction in
available technologies. Second, for target regions of tens to
hundreds of kilobases or less for a single DNA sample, the
smallest functional unit of a next-generation sequencer (for
example, a single lane of an Illumina Genomic Analyzer II
(GAII) or HiSeq2000 flow cell) generates a wasteful excess
of coverage. Third, methods for individually indexing hun-
dreds to thousands of samples are challenging to develop
and limited in efficacy [5,6]. Fourth, generating sequence
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templates for target DNA regions in large numbers of sam-
ples is laborious and costly. Fifth, while pooling samples
can reduce both labor and costs, it reduces sensitivity for
the identification of rare variants using currently available
next-generation sequencing strategies and bioinformatics
tools [1,3].

We have optimized a flexible and efficient strategy that
combines a PCR-based amplicon ligation method for
template enrichment, sample pooling, and library index-
ing in conjunction with novel quality and filtering algo-
rithms for identification of rare variants in large sample
cohorts. For validation of this strategy, we present data
from sequencing 12 indexed libraries of 40 samples each
(total of 480 samples) using a single lane of a GAII Illu-
mina Sequencer. We utilized an alternative base-calling
algorithm, Srfim [7], and an automated filtering program,
SERVIC’E (Sensitive Rare Variant Identification by
Cross-pool Cluster, Continuity, and tailCurve Evalua-
tion), designed for sensitive and reliable detection of rare
variants in pooled samples. We validated this strategy
using [llumina sequencing data from an additional inde-
pendent cohort of 480 samples. Compared to publicly
available software, this strategy achieved an excellent
combination of sensitivity and specificity for rare variant
detection in pooled samples through a substantial reduc-
tion of false positive and false negative variant calls that
often confound next-generation sequencing. We antici-
pate that our pooling strategy and filtering algorithms
can be easily adapted to other popular platforms of tem-
plate enrichment, such as microarray capture and liquid
hybridization [8,9].

© 2011 Niranjan et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
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Results and discussion

An optimized sample-pooling strategy

We utilized a PCR-based amplicon-ligation method
because PCR remains the most reliable method of tem-
plate enrichment for selected regions in a complex gen-
ome. This approach ensures low cost and maximal
flexibility in study design compared to other techniques
[9-11]. Additionally, PCR of pooled samples alleviates
known technical issues associated with PCR multiplex-
ing [12]. We sequenced 24 exon-containing regions (250
to 300 bp) of a gene on chromosome 3, GRIP2 (encod-
ing glutamate-receptor interacting protein 2; [GenBank:
ABO051506]) in 480 unrelated individuals (Figure 1). The
total targeted region is 6.7 kb per sample. We pooled 40
DNA samples at equal concentration into 12 pools,
which was done conveniently by combining samples
from the same columns of five 96-well plates. We sepa-
rately amplified each of the 24 regions for each pool,
then normalized and combined resulting PCR products
at equal molar ratio. The 12 pools of amplicons were
individually blunt-end ligated and randomly fragmented
for construction of sequencing libraries, each with a
unique Illumina barcode [13]. These 12 indexed libraries
were combined at equal molar concentrations and
sequenced on one lane of a GAII (Illumina) using a 47-
bp single-end module. We aimed for 30-fold coverage
for each allele. Examples of amplicon ligation, distribu-
tion of fragmented products, and 12 indexed libraries
are shown in Figure 2.

Data analysis and variant calling

Sequence reads were mapped by Bowtie using strict
alignment parameters (-v 3: entire read must align with
three or fewer mismatches) [14]. We chose strict align-
ment to focus on high quality reads. Variants were
called using SAMtools (deprecated algorithms [pileup
-A -N 80]; see Materials and methods) [15]. A total of
11.1 million reads that passed Illumina filtering and had
identifiable barcodes were aligned to the human genome
(hgl9), generating approximately 520 megabases of data.
The distribution of reads for each indexed library ranged
from 641 k to 978 k and 80% of reads had a reported
read score (Phred) greater than 25 (Figure 3a, b). The
aggregate nucleotide content of all reads in the four
channels across sequencing cycles was constant (Figure
3c), indicating a lack of global biases in the data. There
was little variability in total coverage per amplicon pool,
and sufficient coverage was achieved to make variant
calling possible from all amplicon pools (Additional file
1). Our data indicated that 98% of exonic positions had
an expected minimum coverage of 15x per allele
(approximately 1,200x minimum coverage per position)
and 94% had an expected minimum coverage of 30x
(approximately 2,400x minimum coverage per position).
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Figure 1 Schematic diagram of the sequencing strategy.
Sample pools of 40 samples x 12 pools were generated from a
cohort of 480 individuals for PCR amplification of individual exons.
After blunt-ended ligation and random fragmentation, PCR
amplicons from individual sample pools were used to generate
indexed sequence libraries. The 12 indexed libraries were combined
in equal molar amounts and sequenced in one lane of a flow cell

using an lllumina GAIl.

Overall average expected allelic coverage was 68x. No
exonic positions had zero coverage. To filter potential
false positive variants from SAMtools, we included only
high-quality variant calls by retaining variants with
consensus quality (cq) and SNP quality (sq) scores in
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Figure 2 Amplicon ligation, fragmentation and indexed Illumina libraries. (a) Amplicon ligation and fragmentation: L-1, low molecular
weight marker; lane 1, PCR amplicons before ligation; lane 2, PCR amplicons after ligation; lane 3, random fragmentation using Fragmentase
(NEB). "The bracket indicates fragments of desired length. (b) Indexed lllumina libraries: L-2, 1-kb ladder; lanes 1 to 12, size distribution of 12
indexed lllumina libraries.
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Figure 3 Quality assessment of the Illumina sequence data. (a) Number of reads with barcodes that passed Illumina filtering and aligned to
the reference templates using Bowtie from individually indexed libraries (n = 12). Range, 641 k to 978 k reads; mean + standard deviation, 809 k
+ 107 k. (b) Percentage of total (unaligned) reads that fall into a mean Phred quality interval. Note > 80% of the reads have mean Phred quality
scores >25. (c) Nucleotide content as a function of sequencing cycles (n = 47). Note that the nucleotide proportions closely match the expected
proportions as determined from the templates.
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95% of the score distributions (cq > 196, sq > 213;
Figure 4a). This initially generated 388 variant calls
across the 12 pools. A fraction of these variant calls
(n = 39) were limited to single pools, indicating poten-
tial rare variants.

Tailcurve analysis

Initial validations by Sanger sequencing indicated that
approximately 25% or more of these variant calls were
false positives. Sequencing errors contribute to false posi-
tive calls and are particularly problematic for pooled sam-
ples where rare variant frequencies approach the error
rate. To determine the effect of cycle-dependent errors on
variant calls [7], we analyzed the proportions of each
nucleotide called at each of the 47 sequencing cycles in
each variant. We refer to this analysis as a tailcurve analy-
sis due to the characteristic profile of these proportion
curves in many false-positive variant calls (Figure 5; Addi-
tional file 2). This analysis indicated that many false posi-
tive calls arise from cycle-dependent errors during later
sequencing cycles (Figure 5d). The default base-calling
algorithm (BUSTARD) and the quality values it generates
make existing variant detection software prone to false
positive calls because of these technical biases. Examples
of tailcurves reflecting base composition by cycle at speci-
fic genetic loci for wild type, common SNP, rare variant,
and false positive calls are shown in Figure 5.

Quality assessment and base calling using SRFIM

To overcome this problem, we utilized Srfim, a quality
assessment and base-calling algorithm based on a statisti-
cal model of fluorescence intensity measurements that
captures the technical effects leading to base-calling
biases [7]. Srfim explicitly models cycle-dependent effects
to create read-specific estimates that yield a probability
of nucleotide identity for each position along the read.
The algorithm identifies nucleotides with highest prob-
ability as the final base call, and uses these probabilities
to define highly discriminatory quality metrics. Srfim
increased the total number of mapped reads by 1% (to
11.2 million), reflecting improved base-calling and quality
metrics, and reduced the number of variant calls by 20%
(308 variants across 12 pools; 33 variant calls present in
only a single pool).

Cross-pool filtering using SERVIC’E

Further validation by Sanger sequencing indicated the
persistence of a few false positive calls from this dataset.
Analysis of these variant calls allowed us to define statis-
tics that capture regularities in the base calls and quality
values at false positive positions compared to true var-
iant positions. We developed SERVIC'E, an automated
filtering algorithm designed for high sensitivity and reli-
able detection of rare variants using these statistics.
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Our filtering methods are based on four statistics
derived from the coverage and qualities of variant calls
at each position and pool: (1) continuity, defined as the
number of cycles in which the variant nucleotide is
called (ranges from 1 to 47); (2) weighted allele fre-
quency, defined as the ratio of the sum of Phred quality
scores of the variant base call to the sum of Phred qual-
ity scores of all base calls; (3) average quality, defined as
the average quality of all base calls for a variant; and (4)
tailcurve ratio, a metric that captures strand-specific tail-
curve profiles that are characteristic of falsely called var-
iants. SERVIC*E employs filters based on these four
statistics to remove potential false-positive variant calls.
Additionally, SERVIC?E searches for patterns of close-
proximity variant calls, a hallmark of errors that have
been observed across different sequenced libraries and
sequencing chemistries (Figure 6), and uses these pat-
terns to further filter out remaining false positive var-
iants. In the next few paragraphs we provide rationales
for our filtering statistics, and then define the various
filters employed.

The motivation for using continuity and weighted allele
frequency is based on the observation that a true variant is
generally called evenly across all cycles, leading to a con-
tinuous representation of the variant nucleotide along the
47 cycles, and is captured by a high continuity score. How-
ever, continuity is coverage-dependent and should only be
reliable when the variant nucleotide has sufficient sequen-
cing quality. For this reason, continuity is assessed in the
context of the variant’s weighted allele frequency. Exam-
ples of continuity versus weighted allele frequency curves
for common and rare variants are shown in Figure 7.
Using these two statistics, SERVIC*E can use those pools
lacking the variant allele (negative pools) as a baseline to
isolate those pools that possess the variant allele (positive
pools).

SERVIC'E uses a clustering analysis of continuity and
weighted allele frequency to filter variant calls between
pools. We use k-medioid clustering and decide the num-
ber of clusters using average silhouette width [16]. For
common variants, negative pools tend to cluster and are
filtered out while all other pools are retained as positives
(Figure 7a, b). Rare variant pools, due to their lower allele
frequency, will have a narrower range in continuity and
weighted allele frequency. Negative pools will appear to
cluster less, while positive pools cluster more. SERVIC*E
will retain as positive only the cluster with highest conti-
nuity and weighted allele frequency (Figure 7c, d).

The second filter used by SERVIC?E is based on the
average quality of the variant base calls at each position.
One can expect that the average quality score is not sta-
tic, and can differ substantially between different sequen-
cing libraries and even different base-calling algorithms.
As such, the average quality cutoff is best determined by
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Figure 4 Distribution of quality score from SAMtools Pileup. Filtering was conducted at the 95th percentile of the consensus and SNP
quality distributions reported by SAMtools; only the distribution of SNP quality values is depicted here. The blue bar is the 95th percentile score
cutoff, discounting variants with max score. (@) SNP quality scores derived from Illumina base calls. (b) SNP quality scores derived from Srfim
base calls.
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Figure 5 Representative base reads and tailcurves for common and rare variants and error calls. (a) Position with no variant. (b) Position
with a common variant. (c) Position with a rare variant. (d) Position with a false positive call.

the aggregate data for an individual project (Figure 8).  refined average quality cutoff score can be manually pro-
Based on the distribution of average qualities analyzed, vided to SERVIC*E, which will override the default clus-
SERVIC*E again uses cluster analysis to separate and  tering method. For our datasets, we used automated
retain the highest quality variants from the rest of the clustering to retain variants with high average quality.
data. Alternatively, if the automated clustering method is The third filtering step used by SERVIC*E captures
deemed unsatisfactory for a particular set of data, a more  persistent cycle-dependent errors in variant tailcurves
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Figure 6 Local pool patterns for error analysis. X-axes denote position in a local sequence. Position 16 is the variant site being analyzed,
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that are not eliminated by Srfim. Cycle-specific nucleo-
tide proportions (tailcurves) from calls in the first half
of sequencing cycles are compared to the proportions
from calls in the second half of sequencing cycles. The
ratio of nucleotide proportions between both halves of
cycles is calculated separately for plus and minus
strands, thereby providing the tailcurve ratio added sen-
sitivity to strand biases. By default, variant calls are fil-
tered out if the tailcurve ratio differs more than ten-
fold; we do not anticipate that this default will need
adjustment with future sequencing applications, as it is
already fairly generous, chiefly eliminating variant pools
with clearly erroneous tailcurve ratios. This default was
used for all our datasets.

The combination of filtering by average quality and
tailcurve structure eliminates a large number of false
variant calls. Additional file 3 demonstrates the effect of
these filtering steps applied sequentially on two sets of
base call data.

In addition to these filtering steps, SERVIC'E employs
limited error modeling. The pattern of errors observed
in many libraries may be dependent on the sequence
context of the reads, the preparation of the library being
sequenced, the sequencing chemistry used, or a combi-
nation of these three factors. We have observed that
certain erroneous variant calls tend to aggregate in
proximity. These clusters of errors can sometimes occur
in the same positions across multiple pools. These
observations appeared in two independent datasets in
our studies. Importantly, many of the false positive calls
that escaped our tailcurve and quality filtering fell within
these clusters of errors. To overcome this problem, SER-
VIC*E conducts error filtering by analyzing mismatch
rates in proximity to a variant position of interest and
then determining the pattern of error across multiple
pools. This pattern is defined as the most frequently
occurring combination of pools with high mismatch
rates at multiple positions within the isolated regions.
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Figure 8 Average quality versus weighted allele frequency for
variant pools after filtering by clustering. The X-axis is average
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The similarity between a variant call of interest and the
local pattern or error across pools can then be used to
eliminate that variant call (Figure 6). The consequences
of these sequential filtering steps on variant output are
outlined in Table 1 for both cohorts tested in this study.
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Table 1 Effect of sequential filtering by SERVIC’E on
variant output

Dataset 1 Dataset 2
llumina  Srfim  lllumina
Number of variant-pools after filtering

Prior to cluster analysis 1,656 1,056 7,272
After cluster analysis 929 905 5123
After average quality filtering 437 342 422
After tailcurve filtering 341 340 412
After error-modeling 333 334 378

Reported values indicate the total number of variant positions (across all
pools) that remain after each filtering step. Dataset 1: sequencing output of
GRIP2 exons in a first cohort of 480 samples. Dataset 2: sequencing output of
GRIP2 exons in a second independent cohort of 480 samples.

Finally, SERVIC*E provides a trim parameter that
masks a defined length of sequence from the extremes
of target regions from variant calling. This allows for
SERVIC?E to ignore spurious variant calling that may
occur in primer regions as a result of the concatenation
of amplicons. By default, this parameter is set to 0; for
our datasets, we used a trim value of 25, which is the
approximate length of our primers.

Reliable detection of rare variants in pooled samples
Using SERVIC*E, we identified 68 unique variants (total
of 333 among 12 pools), of which 34 were exonic var-
iants in our first dataset of 480 samples (Additional file
4). For validation, we performed Sanger sequencing for
all exonic variants in individual samples in at least one
pool. A total of 4,050 medium/high-quality Sanger
traces were generated, targeting approximately 3,380
individual amplicons. Total coverage in the entire study
by Sanger sequencing was approximately 930 kb
(approximately 7.3% of total coverage obtained by high-
throughput sequencing). Sanger sequencing confirmed
31 of the 34 variants. Fifteen rare exonic variants were
identified as heterozygous in a single sample in the
entire cohort.

A comparison with available variant calling algorithms
We compared our variant calling method to publicly
available algorithms, including SAMtools, SNPSeeker,
CRISP, and Syzygy [1,3,15,17]. Because some variants
are present and validated in multiple pools and each
pool is considered as an independent discovery step, we
determined the detection sensitivity and specificity on a
variant pool basis. Results are shown in Table 2.

To call variants with SAMtools [15], we used the
deprecated Maq algorithms (SAMtools pileup -A -N
80), as the regular SAMtools algorithms failed to iden-
tify all but the most common variants. As a filtering cut-
off we retained only the top 95th percentile of variants
by consensus quality and SNP quality score (cq = 196
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Table 2 Validation analysis of variant calling from first cohort samples

lllumina Srfim
SNPSeeker SAMTools* CRISP Syzygy SERVIC’E SAMTools* CRISP Syzygy SERVIC’E

Variant identification and validation

True positive 56 83 79 85 88 80 78 80 84

True negative 72 41 44 49 62 60 50 51 61

False positive 2 32 29 24 1 13 23 22 12

False negative 34 7 1 5 2 10 12 10 6
Statistical analysis (%)

Sensitivity 62.22 9222 87.78 94.44 97.78 88.89 86.67 88.89 9333

Specificity 97.26 56.16 6027 6712 84.93 82.19 6849  69.86 83.56

PPV 96.55 7217 7315 7798 88.89 86.02 7723 7843 87.50

NPV 67.62 8542 80.00 90.74 96.88 85.71 80.65 83.61 91.04

FPR 274 43.84 39.73 32.88 15.07 17.81 31.51 30.14 1644

FDR 345 27.83 26.85 22.02 " 13.98 2277 2157 12.50

Accuracy 7791 76.07 7546 8221 92.02 85.89 7853 8037 88.96

MCC 61.78 52.79 50.54 65.05 84.22 7141 56.50 60.37 77.72
Rare exonic variant detection and validation

Detected total variants (n = 15) 7 15 13 14 15 14 12 10 15

Detection rate (%) 46.67 100 86.67 9333 100 9333 80.00 66.67 100

Descriptions of calculations used in statistical data analysis are provided in Materials and methods. FDR, false discovery rate; FPR, false positive rate; MCC,
Matthews correlation coefficient; NPV, negative predictive value; PPV, positive predictive value. SNPSeeker: variant called uses the first 15 cycles (author
recommended). P-value cutoff of 0.05 gave the best results. SAMTools* pileup -A -N 80: filtered for variants with consensus quality score > 194 and SNP quality
scores > 213. CRISP: all 47 cycles used in alignment. Minimum base quality set to a default of 10. Syzygy: default parameters used. SAMTools* pileup -A -N 80:
filtered for variants with consensus quality score = 161 and SNP quality scores > 184. SERVIC’E: default parameters used.

and sq = 213 for standard Illumina base calls, Figure 4a;
cq = 161 and sq > 184 for Srfim base calls, Figure 4b).

SNPSeeker [1] uses large deviation theory to identify
rare variants. It reduces the effect of sequencing errors
by generating an error model based on internal negative
controls. We used exons 6 and 7 as the negative con-
trols in our analysis (total length = 523 bp) as both
unfiltered SAMtools analysis and subsequent Sanger
validation indicated a complete absence of variants in
both exons across all 12 pools. Only Illumina base calls
were used in this comparison because of a compatibility
issue with the current version of Srfim. The authors of
SNPSeeker recently developed a newer variant caller
called SPLINTER [18], which requires both negative and
positive control DNA to be added to the sequencing
library. SPLINTER was not tested due to the lack of a
positive control in our libraries.

CRISP [17] conducts variant calling using multiple cri-
teria, including the distribution of reads and pool sizes.
Most importantly, it analyzes variants across multiple
pools, a strategy also employed by SERVIC*E. CRISP was
run on both Illumina base calls and Srfim base calls
using default parameters.

Syzygy [3] uses likelihood computation to determine
the probability of a non-reference allele at each position
for a given number of alleles in each pool, in this case 80
alleles. Additionally, Syzygy conducts error modeling by
analyzing strand consistency (correlation of mismatches

between the plus and minus strands), error rates for
dinucleotide and trinucleotide sequences, coverage con-
sistency, and cycle positions for mismatches in the read
[19]. Syzygy was run on both Illumina and Srfim base
calls, using the number of alleles in each pool (80) and
known dbSNP positions as primary input parameters.

SERVIC'E was run using a trim value of 25 and a total
allele number of 80. All other parameters were run at
default. The focus of our library preparation and analy-
sis strategy is to identify rare variants in large sample
cohorts, which necessitates variant calling software with
very high sensitivity. At the same time, specificity must
remain high, primarily to ease the burden during valida-
tion of potential variants. In addition to calculating sen-
sitivity and specificity, we calculated the Matthews
correlation coefficient (MCC; see Materials and meth-
ods) for each method (Table 2) in order to provide a
more balanced comparison between the nine methods.

For validation of our dataset, we focused primarily on
changes in the exonic regions of our amplicons. Any
intronic changes that were collaterally sequenced suc-
cessfully were also included in our final analysis (Table
2). Sixty-one exonic positions were called as having a
variant allele in at least one pool by one or more of the
nine combinations of algorithms tested. We generated
Sanger validation data in at least one pool for 49 of the
61 positions identified. Genotypes for validated samples
are indicated in Additional file 5.
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SNPSeeker (with Illumina base calls) performed with
the highest specificity (97.3%), but with the worst sensi-
tivity (62.2%), identifying less than half of the 15 valid
rare exonic variants (Table 2). This is likely due to an
inability of this algorithm to discriminate variants with
very low allele frequencies in a pool; 84% of SNPSeeker’s
true positive calls have an allele frequency > 1/40, while
only 13% of the false negative calls have a frequency =
1/40 (Additional files 4 and 6). SNPSeeker’s MCC score
was low (61.8%), due in large part to its very low false
positive rate.

SAMtools alone with Illumina base calls achieved a
92.2% sensitivity, identifying all 15 rare exonic variants;
however, these results were adulterated with the highest
number of false positives, resulting in the worst specificity
(56.2%) and MCC score (52.8%) among the nine methods
(Table 2). Incorporation of Srfim base calls cut the num-
ber of false positives by 60% (from 32 to 13) without a
sizeable reduction in the number of true positive calls
(from 83 to 80). Fourteen of the fifteen valid rare exonic
variants were successfully identified, which while not per-
fect, is an acceptably high sensitivity (Table 2). Srfim made
noticeable improvements to individual base quality assess-
ment as reflected in a substantial reduction in low quality
variant calls (Figure 4) by reducing the contribution of low
quality base calls to the average quality distribution (Figure
8b) and by reducing the tailcurve effect that leads to many
false positives (Additional file 3a, b). Most low quality var-
iant calls eliminated when transitioning to Srfim were not
valid; nonetheless, three low quality valid variant calls
were similarly affected by Srfim, and their loss resulted in
a slight reduction in the true positive rate.

CRISP using Illumina base calls achieved a sensitivity
slightly lower than SAMtools (87.8% versus 92.2%).
Additionally, CRISP identified only 13 of the 15 valid
rare exonic variants. Though this is lower than SAM-
tools, it is a large improvement over SNPSeeker; for the
purposes set forth in our protocol, the > 75% sensitivity
for extremely rare variants achieved by CRISP (using
either base-calling method) is acceptable (Table 2).

Syzygy achieved the second highest sensitivity (94.4%)
using Illumina base calls, but specificity remained low
(67.1%). Fourteen of the fifteen rare exonic variants
were successfully identified. CRISP and Syzygy achieved
relatively average MCC values (50.5% and 65.0%, respec-
tively), reflecting better performance than SAMtools
with Illumina base calls.

SERVIC®E using Illumina base calls achieved the high-
est sensitivity (97.8%) and identified all 15 valid rare
exonic variants. Both sensitivity and specificity were
improved over SAMtools, CRISP, and Syzygy (Table 2),
reflected in the highest MCC score of all the tested
methods (84.2%). Taken together, the combination of
SERVIC*E with either base-calling algorithm provides
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the highest combination of sensitivity and specificity in
the dataset from pooled samples.

As previously mentioned, Srfim greatly improved var-
iant calling in SAMtools, as is reflected in the 19%
increase in SAMtools’ MCC value (from 52.8% to 71.4%).
CRISP, Syzygy, and SERVIC’E benefited little from using
Srfim base calls: the MCC value for CRISP improved by
only 6% (from 50.5% to 56.5%), Syzygy diminished by
4.6% (from 65.0% to 60.4%), and SERVIC*E diminished
by 6.5% (from 84.2% to 77.7%). Importantly, use of Srfim
base calls with Syzygy diminished its capacity to detect
rare variants by a third. These three programs are
innately designed to distinguish low frequency variants
from errors using many different approaches. As such, it
can be inferred from our results that any initial adjust-
ments to raw base calls and quality scores by the current
version of Srfim will do little to improve that innate capa-
city. In contrast, SAMtools, which is not specifically built
for rare variant detection and would therefore have more
difficulty distinguishing such variants from errors, bene-
fits greatly from the corrective pre-processing provided
by Srfim.

In addition to performance metrics like sensitivity and
specificity, we analyzed annotated SNP rates, transition-
transversion rates, and synonymous-non-synonymous
rates of the nine algorithms on a variant-pool basis
(Additional file 7).

The variant pools with the greatest discrepancies
between the various detection methods tended to have an
estimated allele frequency within the pool that is less than
the minimum that should be expected (1/80; Additional
files 4, 6, and 8). Such deviations are inevitable, even with
normalization steps, given the number of samples being
pooled. This underscores the importance of having careful,
extensive normalization of samples to minimize these
deviations as much as possible, and the importance of
using variant detection methods that are not heavily reli-
ant on allele frequency as a filtering parameter or are
otherwise confounded by extremely low allele frequencies.

Validation using data from an independent cohort of
samples

To further assess the strength of our method and analy-
sis software, we sequenced the same 24 GRIP2 exons in
a second cohort of 480 unrelated individuals. The same
protocol for the first cohort was followed, with minor
differences. Firstly, we pooled 20 DNA samples at equal
concentration into 24 pools. The first 12 pools were
sequenced in one lane of a GAII and the last 12 pools
were sequenced in a separate lane (Additional file 9).
Additionally, the libraries were sequenced using the
100-bp paired-end module, and sequencing was con-
ducted using a newer version of Illumina’s sequencing
chemistry. These 24 libraries occupied approximately 5%
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of the total sequencing capacity of the two lanes. The
remaining capacity was occupied by unrelated libraries
that lacked reads originating from the GRIP2 locus

To map reads from this dataset, we initially used Bow-
tie’s strict alignment parameters (-v 3), as we had done
with our first dataset, but this resulted in a substantial
loss of coverage in the perimeters of target regions. This
is likely due to reads that cross the junctions between
our randomly concatenated amplicons; such reads,
which have sequence from two distant amplicons,
appear to have extensive mismatching that would result
in their removal. This effect became pronounced when
using long read lengths (100 bp), but was not noticeable
when using the shorter reads in our first dataset (Addi-
tional file 10). This effect should not be an issue when
using hybridization enrichment, where ligation of frag-
ments is not needed.

In order to improve our coverage, we used Bowtie’s
default parameter, which aligns the first 28 bases of
each read, allowing no more than two mismatches. To
focus on GRIP2 alignments, we provided a fasta refer-
ence of 60 kb covering the GRIP2 locus. A total of 6.4
million reads (5.6% of all reads) aligned to our reference
template of the GRIP2 locus. The depth of coverage for
each amplicon pool is shown in Additional file 11. For
exonic positions, the average allelic coverage was 60.8x,
and the minimum coverage was 10x; 99.9% of exonic
positions were covered at least 15x per allele, and 98.5%
were covered at least 30x per allele.

We did not apply Srfim base calls to our variant call-
ing as Srfim has not yet been fully adapted to the newer
sequencing chemistry used with this cohort. For variant
calling, we tested Syzygy and SERVICE, the two most
sensitive software identified in our first dataset when
using only the standard Illumina base calls (Table 2).
Syzygy was provided with a template-adjusted dbSNP
file and a total allele number of 40 as input parameters.
All other parameters were run at default. Syzygy made a
total of 474 variant calls across 24 pools (74 unique var-
iant calls). Of the 74 unique calls made, 36 were exonic
changes. SERVIC*E was run using a trim value of 25
and a total allele number of 40. All other parameters
were run at default. SERVIC*E made a total of 378 var-
iant calls across 24 pools (68 unique variant calls). Of
the 68 unique calls made, 33 were exonic changes.
Between Syzygy and SERVICE, a total of 42 unique
exonic sequence variant calls were made (Additional
files 12 and 13).

For validation of these results, we again targeted var-
iants within exons for Sanger sequencing. Sanger data
were successfully obtained from individual samples in at
least one pool for 41 of the 42 exonic variants. Geno-
types for validated samples are indicated in Additional
file 14. Results are summarized in Table 3 and include
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Table 3 Validation analysis of variant calling from second
cohort samples

lllumina
Syzygy  SERVIC’E
Variant identification and validation
True positive 47 53
True negative 38 60
False positive 26 4
False negative 8
Statistical analysis (%)
Sensitivity 8545 96.36
Specificity 59.38 93.75
PPV 64.38 9298
NPV 8261 96.77
FPR 40.63 6.25
FDR 3562 7.02
Accuracy 7143 94.96
MCC 45.90 89.93
Rare exonic variant detection and validation
Detected total variants (n = 16) 13 16
Positive detection rate (%) 81.25 100

Descriptions of calculations used in statistical data analysis are provided in
Materials and methods. FDR, false discovery rate; FPR, false positive rate; MCC,
Matthews correlation coefficient; NPV, negative predictive value; PPV, positive
predictive value For both algorithms, an allele count of 40 was used. Syzygy:
default parameters used. SERVICE: trim value of 25 used. Default used for all
other parameters.

any intronic variant pools that were collaterally Sanger
sequenced successfully. Of the 41 exonic variants
checked, 29 were valid. Sixteen were identified as occur-
ring only once in the entire cohort of 480 individuals.
Syzygy achieved a high sensitivity of 85.5% but a fairly
low specificity of 59.4%. Of the 16 valid rare exonic var-
iants, 13 (81.25%) were identified. The MCC score was
low (45.9%), primarily as a result of the low specificity
(Table 3). SERVIC’E achieved a higher sensitivity of
96.4% and a higher specificity of 93.8%. All 16 valid rare
exonic variants were identified and a high MCC score
(89.9%) was obtained. The combined analysis of the first
and second cohorts identified 47 valid coding variants,
of which 30 were present only once in each cohort.

Conclusions

We have developed a strategy for targeted deep sequen-
cing in large sample cohorts to reliably detect rare
sequence variants. This strategy is highly flexible in study
design and well suited to focused resequencing of candi-
date genes and genomic regions from tens to hundreds of
kilobases. It is cost-effective due to substantial cost reduc-
tions provided by sample pooling prior to target enrich-
ment and by the efficient utilization of next-generation
sequencing capacity using indexed libraries. Though we
utilized a PCR method for target enrichment in this study,
other popular enrichment methods, such as microarray
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capture and liquid hybridization [8-10], can be easily
adapted for this strategy.

Careful normalization is needed during sample pool-
ing, PCR amplification, and library indexing, as varia-
tions at these steps will influence detection sensitivity
and specificity. While genotyping positive pools will be
needed for validation of individual variants, only a lim-
ited number of pools require sequence confirmation as
this strategy is intended for discovery of rare variants.

SERVIC™E is highly sensitive to the identification or rare
variants with minimal contamination by false positives. It
consistently outperformed several publicly available analy-
sis algorithms, generating an excellent combination of sen-
sitivity and specificity across base-calling methods, sample
pool sizes, and Illumina sequencing chemistries in this
study. As sequencing chemistry continues to improve, we
anticipate that our combined sample pooling, library
indexing, and variant calling strategy should be even more
robust in identifying rare variants with allele frequencies
of 0.1 to 5%, which are within the range of the majority of
rare deleterious variants in human diseases.

Materials and methods

Sample pooling and PCR amplification

De-identified genomic DNA samples from unrelated
patients with intellectual disability and autism, and nor-
mal controls were obtained from Autism Genetics
Research Exchange (AGRE), Greenwood Genomic Cen-
ter, SC, and other DNA repositories [20]. An informed
consent was obtained from each enrolled family at the
respective institutions. The Institutional Review Board at
the Johns Hopkins Medical Institutions approved this
study.

DNA concentration from each cohort of 480 samples
in 5 x 96-well plates was measured using a Quant-iT™
PicoGreen®™ dsDNA Kit (Invitrogen, Carlsbad, CA, USA)
in a Gemini XS Microplate Spectrofluorometer. These
samples were normalized and mixed at equal molar
ratio into 12 pools of 40 samples each (first cohort) or
24 pools of 20 samples each (second cohort). For conve-
nience, first cohort samples from the same column of
each 5 x 96-well plate were pooled into a single well
(Figure 1). The same principle was applied to the second
cohort, with the first two and a half plates combined
into the first 12 pools, and the last two and a half plates
combined into the last 12 pools (Additional file 9). PCR
primers for individual amplicons were designed using
the Primer3 program. PCR reaction conditions were
optimized to result in a single band of the expected size.
Phusion Hot Start High-Fidelity DNA Polymerase (Finn-
zymes, Thermo Fisher Scientific, Waltham, MA, USA)
and limited amplification cycles (n = 25) were used to
minimize random errors introduced during PCR amplifi-
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cation. PCR reactions were carried out in a 20- pl sys-
tem containing 50 ng of DNA, 200 uM of dNTP, 1x
reaction buffer, 0.2 pM of primers, and 0.5 units of Phu-
sion Hot Start High-Fidelity Polymerase in a thermocy-
cler with an initial denaturation at 98°C for 30 seconds
followed by 25 cycles of 98°C for 10 seconds, 58 to 66°C
for 10 seconds, and 72°C for 30 seconds. The annealing
temperature was optimized for individual primer pairs.
Successful PCR amplification for individual samples was
then verified by agarose gel electrophoresis. The concen-
tration for individual PCR products was measured using
the Quant-iT™ PicoGreen™ dsDNA Kit (Invitrogen) on
Gemini XS Microplate Spectrofluorometer, and con-
verted to molarity. PCR amplicons intended for the
same indexed library were combined at equal molar
ratio, purified using QIAGEN (Hilden, Germany) QIA-
quick PCR Purification Kit, and concentrated using
Microcon YM-30 columns (Millipore, Billerica, MA,
USA).

Amplicon ligation and fragmentation

The pooled amplicons were ligated using a Quick Blunt-
ing and Quick Ligation Kit (NEB, Ipswich, MA, USA)
following the manufacturer’s instructions. For blunting,
a 25- yl reaction system was set up as follows: 1x blunt-
ing buffer, 2 to 5 pg of pooled PCR amplicons, 2.5 pl of
1 mM dNTP mix, and 1 pl of enzyme mix including T4
DNA polymerase (NEB #M0203) with 3° — 5’ exonu-
clease activity and 5" — 3’ polymerase activity and T4
polynucleotide kinase (NEB #M0201) for phosphoryla-
tion of the 5’ ends of blunt-ended DNA. The reaction
was incubated at 25°C for 30 minutes and then the
enzymes were inactivated at 70°C for 10 minutes. The
blunting reaction products were purified using a MinE-
lute PCR purification column (QIAGEN) and then con-
centrated using a Microcon YM-30 column (Millipore)
to 5 pl volume in distilled water. For ligation, 5 pl of 2x
Quick-ligation buffer was mixed with 5 pl of purified
DNA. Quick T4 DNA ligase (1 pl; NEB) was added to
the reaction mixture, which was incubated at 25°C for 5
minutes and then chilled on ice. The reaction product
(0.5 ul) was checked for successful ligation using 1.5%
agarose gel electrophoresis. The ligation products were
then purified using a MinElute PCR purification column
(QIAGEN). Random fragmentation of the ligated ampli-
cons was achieved using either one of the two methods:
(1) nebulization in 750 pl of nebulization buffer at 45
psi for 4 minutes on ice following a standard protocol
(Agilent); or (2) using a NEBNext dsDNA Fragmentase
Kit following the manufacturer’s instructions (NEB).
One-twentieth of the product was analyzed for success-
ful fragmentation to a desired range using 2% agarose
gel electrophoresis.
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Library construction and Illumina sequencing

The Multiplexing Sample Preparation Oligonucleotide
Kit (Illumina PE-400-1001) was used to generate 1 x 12
(first cohort) and 2 x 12 (second cohort) individually
indexed libraries following the manufacturer’s instruc-
tions. The indexed libraries were quantified individually
and pooled at equal molar quantity. The concentration of
the final pooled library was determined using a Bioanaly-
zer (Agilent). All 12 pooled libraries from the first cohort
were run in one lane of a flow cell on an Illumina Geno-
mic Analyzer II (GAII). The first 12 pooled libraries from
the second cohort were run in one lane of a GAII, while
the last 12 pooled libraries were run in another lane in
the same flow cell. Illumina sequencing was done at the
UCLA DNA Sequence Core and Genetic Resource Core
Facility at the Johns Hopkins University.

Sequence data analysis

Raw intensity files and fastq-formatted reads were pro-
vided for both cohort datasets. Output had been calibrated
with control lane PhiX DNA to calculate matrix and phas-
ing for base calling. A custom script was used on first
cohort sequence data to identify the 12 Illumina barcodes
from the minimum edit distance to the barcode and assign
a read to that pool if the distance index was unique
(demultiplexing). Second cohort sequence data were pro-
vided to us already demultiplexed. Read mapping was
done independently on each pool using BOWTIE (options:
-v 3 for first cohort, default for second cohort). As refer-
ence templates, hgl9 was used for the first cohort and a
60-kb fragment of the GRIP2 regions was used for the sec-
ond cohort (GRIP2 region- chr3:14527000-14587000).

Variant calling using SAMtools was done independently
on each pool using SAMtools’ deprecated algorithms
(options: pileup -vc -A -N 80). Variants identified were
first filtered by eliminating non-GRIP2 variants, and then
filtered by consensus quality and SNP quality scores (cq =
196 and sq = 213 for Illumina base calls; cq > 161 and sq
> 184 for Srfim base calls). Deprecated (Maq) algorithms
were used, as the current SAMtools variant-calling algo-
rithms failed to call all but the most common SNPs. Qual-
ity cutoff is based on the 95th percentile of scores in the
quality distributions observed amongst all reported SAM-
tools variants in the GRIP2 alignment region, after exclud-
ing variants with the maximal quality score of 235). Reads
were base-called using Srfim using default filtering and
quality parameters.

SERVIC”E was given the location of sorted alignment
(BAM) files. Though alignment files are maintained sepa-
rately for each pool, the locations of each file are given all
together. A trim value was set at 25. This trims 25 bases
away from the ends of aligned amplicons, so that variant
calling is focused away from primer regions. Use of
shorter primers during library preparation allows for a

Page 13 of 15

smaller trim value. Hybridization enrichment will always
result in a trim value of zero, regardless of what trim
value is actually set. The total number of alleles in each
pool was also provided as input (80 alleles for the first
cohort; 40 alleles for the second cohort). SERVIC*E
(release 1) does not call insertions or deletions.

SNPSeeker was run on first cohort data using author
recommended parameters. Reads (Illumina base calls)
were converted to SCARF format. Srfim base calls could
not be used due to an unknown formatting issue after
SCAREF conversion. Alignment was conducted against
GRIP2 template sequences. Exons 6 and 7 reference
sequences were merged so that their alignments could be
used as a negative control to develop an error model. All
47 cycles were used in the alignment, allowing for up to
three mismatches. Alignments were tagged and concate-
nated, and an error model generated using all 47 cycles,
allowing for up to three mismatches, and using no pseudo-
counts. The original independent alignment files (pre-
concatenation) were used for variant detection. As per
recommendation by the authors, the first third of cycles
was used for variant detection (15 cycles). A P-value cutoff
of 0.05 was used. Lower cutoffs generated worse results
when checked against our validation database.

CRISP was run using default parameters. A CRISP-spe-
cific pileup file was generated using the author-provided
sam_to_pileup.py script and not generated using the
pileup function in SAMtools. A separate pileup was gener-
ated for each pool for both alignments from Illumina base
calls and alignment from Srfim base calls. A BED file was
provided to focus pileup at GRIP2 loci. CRISP analysis for
variant detection was conducted using all 47 cycles and a
minimum base quality of 10 (default). All other para-
meters were also kept at default.

Syzygy [3,19] was run on both cohorts using 80 and 40
as the total number of alleles, respectively. A dbSNP file
was provided for known chromosome 3 variants. A TGF
file was provided to focus variant calling at GRIP2 target
regions. Hgl9 was used as the reference sequence for the
first cohort, while the same abridged GRIP2 sequence
that was used by SERVIC*E was also used by Syzygy for
the second cohort. All other parameters were run at
default.

Reads used for analysis, both Illumina and Srfim base
calls, are available through the public data repository at
the NCBI (accession number SRP007694). Srfim is avail-
able as an R package, while SERVIC?E is available as a
set of R scripts. Both are available for download online
[21].

Validation by Sanger sequencing

Sanger sequencing of positive pools for variant valida-
tion was conducted using the BigDye Terminator v3.1
Cycle Sequencing Kit on an ABI3100 automatic DNA
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analyzer (Applied Biosystems, Foster City, CA, USA) fol-
lowing the manufacturer’s instructions.

Sanger sequencing was done on each sample within a
pool separately (40 traces per pool with the first cohort,
20 traces per pool for the second cohort). Only traces
with low quality or ambiguous calls were sequenced
bidirectionally. In the event that a positive sample was
verified at least once in the pool, further sequencing of
that pool was halted. Sequencing primers were the same
primers used in target enrichment to build the libraries
for next-generation sequencing.

Standard sequence alignment software (CodonCode,
MacVector) followed by manual investigations of the chro-
matograms was used to identify any variants that might
have been missed by all nine combinations of programs.

Calculations

Matthews correlation coefficient

The MCC is intended as a measure of true positives
(TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs), without being influenced by poten-
tial extreme sizes by one or more of the groups. An
MCC = 1 indicates perfect correlation between pre-
dicted results (variants identified by next-generation
sequencing and various combinations of base-calling
and variant-calling algorithms) and the observed results
(validation by Sanger sequencing). An MCC = 0 indi-
cates that the algorithm is no better than random. An
MCC = -1 indicates an inverse correlation. MCC = (TP
x TN-EP x EN)/SQRT [(TP + EP) x (TP + EN) x (TN
+ FP) x (TN + FN)]. Sensitivity (true positive rate,
recall): TP/(TP + EN). Specificity (true negative rate):
TN/(FP + TN). Positive predictive value (precision): TP/
(TP + FP). Negative predictive value: TN/(TN + FN).
Accuracy: (TP + TN)/(TP + TN + FP + EN). False posi-
tive rate (fall-out): 1-True negative rate. False discovery
rate: FP/(FP + TP).

Additional material

Additional file 1: Depth of coverage for each amplicon pool derived
from first cohort sequencing data. Blue line depicts absolute coverage
for plus-strand aligned reads. Green line depicts coverage of minus-
strand aligned reads. Scales of X- and Y-axes are identical for all graphs
depicted for each exon. Light red line indicates presumptive mismatch
rate determined from plus-strand aligned reads. Light orange line
indicates presumptive mismatch rate determined from minus-strand
aligned reads. Ratio of mismatch rate between plus and minus strands is
later incorporate into the tailcurve factor used in filtering by SERVIC’E.

Additional file 2: Description of tailcurve (nucleotide proportion at
individual cycles along the sequence read). With perfect random

fragmentation, a given position and its associated base calls (consensus
and variant) should be represented at multiple sequencing cycles. With
high coverage, a particular base call will be present for that position at
all or most cycles. Example: for a sequencing module of 25 cycles with
several hundred (24 shown) overlapping reads covering the highlighted
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position, all the cycles are represented by ‘G', with variant reads
producing the T at a handful of cycles (potential variant).

Additional file 3: Diagrammatic output of first three filtering steps
using SERVIC’E on first cohort data. Left-hand panel uses lllumina base
calls. Right-hand panel uses Srfim base calls. Individual filtering steps
progress while moving down each panel. Colored dots incorporate
validation data for visualization purposes; blue dots are valid variant
pools and red dots are invalid variant pools. Within each panel, the
graphs on the left are Average quality versus Weighted allele frequency
distributions. X-axis is average Phred quality for each variant-pool. Y-axis
is logyo of weighted allele frequency. Histograms on the right depict the
frequency of evaluated tailcurve ratios across bins of length = 2.

Additional file 4: Variant call results from first cohort analysis. All
positions are given in reference to chromosome 3 of hg19. For each
program, a ‘+' value indicates that a variant call was made by that
program for that variant position and pool. Column ‘P" indicates the
position is in exonic sequence (not intronic). Column ‘Valid" indicates
validation results for each variant-pool tested; ‘+' indicates a valid call
and “indicates an invalid call. Column ‘Dist’ indicates the position of the
variant call in each amplicon.

Additional file 5: Genotyping results for individual first cohort
samples. For all samples validated by Sanger sequencing, homozygous
wild types are indicated by -, heterozygotes are indicated by +', and
homozygous mutants are indicated by “++".

Additional file 6: Variant call output of SERVIC’E on the first cohort
using lllumina base calls.

Additional file 7: Comparisons of annotated SNPs, transition-
transversion ratios, and synonymous-non-synonymous ratios.
Calculated metrics for annotation rates, transition-transversion rates, and
synonymous-non-synonymous rates for first cohort data only.

Additional file 8: Variant call output of SERVIC’E on the first cohort
using Srfim base calls.

Additional file 9: Pooling strategy for second cohort samples.
Example: Normalized DNA samples from column 12 of plates 1 and 2 as
well as samples from plate 3, column 12, rows A, B, C, and D are pooled
together to form pool 12. Normalized DNA samples from column 1 of
plates 4 and 5 as well as samples from plate 3, column 1, rows E, F, G,
and H are pooled together to form pool 13.

Additional file 10: Effect of strict alignment on coverage from
concatenated amplicons. Panel 1 indicates targets for amplification
(primers denoted by black half-arrows). Color-coding for each unique
target region is retained in all panels. Panel 2 depicts ligation
(concatenation) of amplicons. Only two amplicons are depicted; in
practice many amplicons ligate together in a row. Darker shaded regions
are from primer sequence. Panel 3 depicts random fragmentation to
generate 150- to 200-bp segments for sequencing. Panel 4 depicts
subsequent strict alignment of short (left) and long (right) reads to
genomic reference sequence.

Additional file 11: Depth of coverage for each amplicon pool
derived from second cohort sequencing data. Blue line depicts
absolute coverage for plus-strand aligned reads. Green line depicts
coverage of minus-strand aligned reads. Scales of X- and Y-axes are
identical for all graphs depicted for each exon. Light red line indicates
presumptive mismatch rate determined from plus-strand aligned reads.
Light orange line indicates presumptive mismatch rate determined from
minus-strand aligned reads. Ratio of mismatch rate between plus and
minus strands is later incorporated into the tailcurve factor used in
filtering by SERVIC’E.

Additional file 12: Variant call results from second cohort analysis.
All positions are given in reference to chromosome 3 of hg19. For each
program, a '+ value indicates that a variant call was made by that
program for that variant position and pool. Column ‘P" indicates the
position is in exonic sequence (not intronic). Column "Valid’ indicates
validation results for each variant-pool tested; ‘+' indicates a valid call
and ' indicates an invalid call. Column ‘Dist’ indicates the position of the
variant call in each amplicon.
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Additional file 13: Variant call output of SERVIC’E on the second
cohort using lllumina base calls.

Additional file 14: Genotyping results for individual second cohort
samples. For all samples validated by Sanger sequencing, homozygous
wild types are indicated by -, heterozygotes are indicated by ‘+', and
homozygous mutants are indicated by “++'.

Abbreviations

bp: base pair; cg: consensus quality score generated by SAMtools pileup;
GAll: Genome Analyzer Il (Illumina Sequencing Machine); GRIP2: glutamate-
receptor interacting protein 2; MCC: Matthews correlation coefficient; PCR:
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