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Abstract

inactive Nek to the cytoplasm.

Background: The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a
minimal genome of broad evolutionary and biological interest.

Results: To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three
sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and
Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote
that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA
repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the
presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence
analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and
phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively
expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very
divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced
during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one

Conclusions: The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent
sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's
massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton.

Background

Protein kinases modulate most cellular pathways, parti-
cularly in the co-ordination of complex cellular pro-
cesses and in response to environmental signals. About
2% of genes in most eukaryotes encode kinases, and
these kinases phosphorylate over 30% of the proteome
[1]. Kinases regulate the activity, localization and turn-
over of their substrates. Most kinases have dozens of
substrates, and operate in complex, multi-kinase cas-
cades. Hence, organisms with reduced kinomes can pro-
vide simple model systems to dissect kinase signaling.
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The unicellular human gut parasite Giardia lamblia
cycles between a dormant cyst stage and a virulent tro-
phozoite, both of which are adapted to survival in differ-
ent inhospitable environments [2]. The life cycle starts
with the ingestion of the cyst by a vertebrate host. Expo-
sure to gastric acid during passage through the host sto-
mach triggers excystation and the parasite emerges in
the small intestine after stimulation by intestinal factors
[3,4]. The excyzoite [5] quickly divides into two equiva-
lent binucleate trophozoites that attach to and colonize
the small intestine. Trophozoites carried downstream by
the flow of intestinal fluid differentiate into dormant
quadrinucleate cysts. Cysts are passed in the feces, and
can survive for months in cold water until they are
ingested by a new host. Trophozoites are half-pear
shaped and are characterized by four pairs of flagella, a
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ventral attachment disk and a median body (Figure 1).
Each pair of flagella has a distinct beating pattern and
likely has dedicated functions in swimming and attach-
ment [6,7].

The recent genome sequencing of strains from three
assemblages (broadly equivalent to subspecies) of Giar-
dia lamblia (syn. intestinalis) [8-10] revealed a compact
genome of approximately 6,500 ORFs that is highly
divergent in sequence from other eukaryotes. Many con-
served pathways have substantially fewer components
than in similarly sized genomes [8]. Its minimal genome
and the ability to culture and induce its complex life
and cell cycle in vitro make Giardia an appealing model
for studying the signaling underlying entry into and
emergence from dormancy in a pathogen.

Few kinases and phosphorylation patterns have been
studied in Giardia (Table 1) [11,12]. Functional studies
[13-16] suggest that regulation of protein phosphoryla-
tion by kinases and phosphatases plays a central role in
modulating the dramatic remodeling of the parasite’s
morphology as it cycles between the dormant infectious
cyst and the motile, virulent trophozoite (Table 1).
Many of the known signaling proteins localize to cytos-
keletal structures unique to Giardia, which may confer
functional specificity (Figure 1).

Protein kinases are well-studied in other organisms,
control most aspects of cellular functions, and are
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proven therapeutic targets. Hence, analysis of the Giar-
dia kinome may give valuable insight into this parasite’s
biology and the evolution of signaling.

Results and discussion

We cataloged the Giardia kinome using hidden Markov
model (HMM) profiles and Blast searches of genomic
and EST sequences from three sequenced strains: two
established human pathogens, WB (assemblage A) [8]
and GS (assemblage B) [9], that appear to span the
divergence of isolates infectious to humans, and a
recently isolated porcine strain, P15 (assemblage E) [10].
Despite their shared genus name, these genomes are
quite divergent, with an average of 90% protein
sequence identity between WB and P15, and approxi-
mately 79% between these two strains and GS [10].

We found 278 protein kinases in the WB strain (Table
2; Additional file 1), 272 in GS, and 286 in P15, using
release 2.3 of the Giardia genomes [17]. These include
46 new gene predictions and 86 sequences not pre-
viously annotated as kinases. We also extend 30 frag-
mentary gene predictions from WB to longer
pseudogene sequences. Remarkably, over 70% of the
kinome belongs to a huge expansion of one family, the
Nek kinases. Since these have so many unusual charac-
teristics, we will refer to the 80 non-Nek kinases as the
core kinome and consider the Nek expansion separately.

Anterior flagella/PFR
NEKs (5375, 92498)*
PP2Ac (5010)

PKAc (11214)

PKATr (9117)

PAK (5358)*

Nuclei
AK (5358)
ERK2 (22850)

Median bodies
NEK (92498)*
ERK1 (17563)
pAurK (5358)*

Posterior-lateral Flagella/

PFR

NEKSs (5375, 16279, 92498, 101534)*
PP2Ac (5010)

Caudal flagella/PFR
NEKs (5375, 16279, 92498, 101534)*
ERK1 (17563), ERK2 (22850)
PKAc (11214), PKAr (9117)
PP2Ac (5010)

Figure 1 Cartoon of an interphase Giardia trophozoite showing kinases that have been immunolocalized to date. The localizations of
previously described kinases, PP2A and the Nek kinases reported in this study are shown. In most cases, the kinases localize to the intracellular
flagella-associated paraflagellar dense rods (PFRs), rather than to the axonemes. (Modified from [64].)

Basal body region
NEKs (16279, 92498)*
PP2Ac (5010)
ERK1 (17563)
PKAC (11214)
PKAr (9117)
pAurK (5358)*

Disk
NEKSs (16279, 92498)*
PP2Ac (5010)
ERK1 (17563)
pAurK (5358)*

Cytoplasm
NEK (15409, 101534)*

Ventral flagella

* localized in this study

+AurK is phosphorylated and
relocalizes in mitosis
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Table 1 Giardia protein and lipid kinases and protein phosphatases published to date

Kinase ORF  Localization (immunofluorescence, tag or specific antibody) Protein Reported function Reference
ID expression
(immunoblot)
Aurora 5358 Interphase: nuclei. Mitosis: activated by phosphorylation. pAurk: Constant in Mitosis, cell cycle [52]
kinase centrosomes, spindle, anterior PFR, median body, parent attachment — encystation (inhibitors)
(AurK) disk
PKAC 11214 Basal bodies, anterior, caudal PFR. Encystation: basal bodies only Constant in Encystation, [13,14]
encystation excystation (inhibitors)
PKAr 9117 Basal bodies, anterior, caudal PFR. Encystation: greatly decreased Strongly decreased Decreases activity of [14]
in encystation PKAC
Akt (PKB) 11364 (47]
ERK1 17563 Median body, outer edge of attachment disk Gradually reduced  Reduced activity in [16]
during encystation  encystation
ERK2 22850 Nuclei, caudal flagella. Encystation: cytoplasmic, punctate Not greatly Reduced activity in [16]
changed in encystation
encystation
PI3K1 14855 Growth (inhibitors) [48,49]
PI3K2 17406 Growth (inhibitors) [48,49]
PI4K 16558 Growth (inhibitors) [48]
PKA 86444 [Reported as a PKCB] [24]
TOR 35180 [48,50]
Protein
phosphatase
PP2Ac 5010 Basal bodies, anterior, caudal, posterior-lateral PFR. Encystation: Highest in cysts, Encystation, [15]

localization to anterior PFR lost, cyst wall

excystation (inhibitor,
antisense)

stage | excystation

PFR, paraflagellar rod. See Additional file 4 for definitions.

The core kinome

The core kinome of 80 kinases is completely conserved
between the three genomes. Sixty-one core kinases can
be classified into 49 distinct classes (families or subfami-
lies) that are conserved in many other eukaryotes
[18-23]; the remaining 19 include 5 in two small Giar-
dia-specific families, and 14 with no close homologs
(Table 2; Additional file 1). Giardia sequences are typi-
cally the most divergent of any within their families:
comparison of a set of nine universally conserved kinase
domain orthologs from human to various deep-branch-
ing lineages showed an average sequence identity of
only 40% for Giardia, compared with 46% for the
related excavate Trichomonas vaginalis, and 46 to 50%
for other deep-branching lineages (ciliates, plants, fungi)
(Additional file 2). This indicates that Giardia sequences
are remarkably divergent, even for an early-branching
lineage, and provides a useful resource to study the lim-
its of how sequences can vary while still retaining their
family-specific functions. Thus, Giardia encodes the
smallest and most sequence-divergent of studied eukar-
yotic kinomes, other than those of parasites that have
not been cultured axenically. No core kinome class has
more than three members in Giardia, suggesting a lack
of recent duplication and expansion into specialized
functions.

Two previously predicted kinases could not be found:
a protein kinase C (PKC) was inferred earlier by reactiv-
ity to antibodies against mammalian PKCs and by PKC-
selective inhibitors [24], but no clear PKC homolog is
seen in the genome sequence. Similarly, although an
insulin-like growth factor receptor (IGFR) kinase was
inferred by antibody binding and association with phos-
photyrosine [25], we could not find an IGFR in the gen-
omes of Giardia or any other protist.

Evolutionary origin and functional repertoire of the
Giardia kinome

To probe the origin of the Giardia kinome, we anno-
tated the kinomes of two other excavates, Trichomonas
vaginalis [26] and Leishmania major [27] (Additional
file 3). The excavates are one of about six anciently
diverged ‘supergroups’ of eukaryotes, whose relation-
ship to each other is uncertain [28]. Excavates include
free-living, symbiotic, and parasitic protists, many fla-
gellated and often with reduced mitochondria. Com-
parison of the three excavate kinomes predicts a rich
kinome of 68 distinct kinases in their common ances-
tor, with substantial losses of core kinases in extant
species, possibly due to their reduced parasitic life-
styles [29] (Figure 2, Table 2). These losses provide a
valuable model to explore the effect of gene deletion
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Notes

Metabolic rate control
Mitotic exit, morphology, centrosomes

Lipid signaling, AGC master kinase
cAMP responsive kinase

Potential flippase kinase
Calcium-dependent signaling
Energy metabolism

Absent from ciliates and plants

Master kinase of cell cycle

Non-cell cycle CDK

Functions unknown

Diverse functions, hundreds of substrates
Splicing and other functions

Not in ciliates, Trichomonas, or moss
Varied functions

Glycogen synthase kinase 3. Diverse functions
Canonical MAPK pathway

Variant MAPK gene

Meiosis, flagella

Flagellar regulation

Splicing

Mitotic kinase

Telomere associated (KEOPS complex)
CAMK kinase

Cell cycle

Not in ciliates or moss

Varied functions

Flagellar and centrosomal functions. Only Nek with clear non-excavate

orthologs

Response to amino acid starvation

Mitotic kinase. Lost in plants

Cryptic functions

Not in ciliates or moss

Varied functions

Autophagy

Uncharacterized. Lost in plants, fungi, animals
Vesicular transport, autophagy

Key cell cycle kinase

Osmotic balance

Metabolic rate control (mTOR/TOR)

Weakly similar to ATR, but may be a lipid kinase
Ribosome biogenesis

Ribosome biogenesis

Functions in mitotic exit; lost in plants and holozoans
MAP kinase kinase kinase

Group Family Subfamily Count ORF ID

Primordial kinases in Giardia strain WB (core kinome plus Nek1)

AGC Akt 1 11364

AGC NDR NDR- 2 8587, novel
unclassified

AGC PDK1 1 113522

AGC PKA 2 11214, 86444

AGC PTF FPK 1 221692

CAMK  CAMKI 1 11178

CAMK  CAMKL AMPK 3 14364, 16034,

17566

CK1 CK1 CK1-D 1 7537

CMGC  CDK CDC2 3 15397, 8037, 9422

CMGC  CDK CDK5 1 16802

CMGC  CDKL 1 96616

CMGC  CK2 1 27520

CMGC  CLK 1 92741

CMGC  DYRK DYRK1 1 101850

CMGC  DYRK DYRK2 3 137695, 17417,

17558

CMGC  GSK 2 17625, 9116

CMGC  MAPK ERK1 1 17563

CMGC  MAPK ERK7 1 22850

CMGC  RCK MAK 2 14172, 6700

CMGC  RCK MOK 1 14004

CMGC  SRPK 1 17335

Other  Aur 1 5358

Other  Bud32 1 16796

Other  CAMKK 1 96363

Other cbC7 1 112076

Other IKS 1 137730

Other NAK NAK- 2 12223, 2583
unclassified

Other NEK NEK1 1 137719

Other PEK GCN2 1 12089

Other PLK PLK1 1 104150

Other SCY1 1 8805

Other  TTK 1 4405

Other  ULK Fused 1 17368

Other ULK ULK 1 103838

Other Unit 1 16436

Other  VPS15 1 113456

Other  WEE WEE- 1 115572
unclassified

Other WNK 1 90343

PKL PIK FRAP 1 35180

PKL PIK PIK-unclassified 1 16805

PKL RIO RIO1 1 17449

PKL RIO RIO2 1 5811

STE STET1 CDC15 2 16834, 6199

STE STETT STE11- 1 1656
unclassified

STE STE20 FRAY 1 10609

Not in ciliates, usually co-occurs with Wnk
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Table 2 Summary of Giardia kinome classification (Continued)

STE
STE
STE
STE

STE20
STE20
STE20
STE7

Giardia-specific classes and unique kinases

Other
Other
Other
Other
Other

CMGC
Other

Other

CMGC

CAMK

CAMK

Nek
Nek
Nek
Nek
Nek

CMGC-GL1
Other-GL1

Other-
unique

CDK

CAMK-
unique

CAMKL

Non-protein kinases from PKL

PKL
PKL
PKL
PKL

CAK
CAK
PIK
PIK

MST 1 15514
PAKA 1 2796
YSK 1 14436
MEK1 1 22165
Nek-GL1 11 Table $1°
Nek-GL2 3 Table S1°
Nek-GL3 4 Table $1°
Nek-GL4 32 Table S1°
Nek- 147 Table S1°
Unclassified

2 17139, 21116

3 17392, 17378,

6624

8  Table S1°
CDK- 3 11290, 4191,
unclassified 14578

1 13852
CAMKL- 2 14661, 9487
unclassified
ChoK 1 4596
Fruk 1 2969
PI3K 2 14855, 17406
PI4K 1 16558

Basal kinases found in Trichomonas, but not Giardia

AGC
Atypical
CAMK
CK1
CMGC
CMGC
CMGC
Other
PKL
PKL
CMGC

TKL

MAST
TAF1
CDPK
TTBK
CDK
CDK
DYRK
TLK
PIK
PIK
CDK

MAST

CDK7
CDK12 (CRK?)
YAK

ATM
ATR
CDK20 (CCRK)

NDR kinase

Transduces membrane signaling from small GTPases
Universal STE20 kinase

MAP kinase kinase

Divergent pair of CMGC-like kinases
Trio of kinases with no specific homologs

Kinases with no specific homologs
Divergent cyclin-dependent kinase
Divergent CAMK group member

Divergent CAMKL family member

Choline and aminoglycoside kinase
Fructosamine kinase

Phosphatidyl inositol 3" kinase
Phosphatidyl inositol 4" kinase

Microtubule-associated serine kinases. Lost in fungi

Basal transcriptional machinery, TFIID subunit

Calcium-dependent protein kinase. Lost from unikonts

Tau tubulin kinase. Found in unikonts, some chromalveolates, and excavates
Transcription initiation and DNA repair: subunit of TFIIH

Phosphorylates CTD of RNA polymerase |l

Lost in metazoans. Possible function in splicing

DNA break repair. Lost in fungi, Dictyostelium

DNA break repair

DNA break repair

Cilium-associated, CDK-activating kinase. Found in unikonts, algae, and
Trichomonas

Diverse group related to tyrosine kinases

Basal kinases found in Leishmania but not Giardia or Trichomonas

PKL
PKL
PKL
HisK
HisK
CMGC
PKL

ABC1
ABC1
ABC1
PDHK
PDHK
DYRK
PIK

ABCT-A
ABC1-B
ABC1-C
BCKDK
PDHK
DYRKP
DNAPK

Mitochondrial kinase

Mitochondrial kinase

Mitochondrial kinase

Mitochondrial kinase

Mitochondrial kinase

Splicing? Also lost in animals, fungi, Dictyostelium

DNA break repair. Absent from fungi, nematodes, insects, some plants
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Basal kinases not found in excavates

Endoplasmic reticulum unfolded protein response

Endoplasmic reticulum unfolded protein response. Absent from ciliates
Secretory pathway function. Absent from ciliates

Mitotic spindle checkpoint. Absent from ciliates

Phosphorylates CTD of RNA polymerase |l

Mitotic spindle function? Absent from fungi

Splicing. Lost in fungi

Nonsense-mediated decay of spliced transcripts. Absent from ciliates
Histidine kinases. Absent from metazoans

Functions unknown. Absent from metazoans

cGMP-activated protein kinase. Absent from fungi, Dictyostelium
Mitochondrial kinase. Absent from ciliates

Function unknown. Absent from ciliates

Mitotic kinase. Absent from plants

Functions in mitosis. Absent from ciliates

Ribosomal S6 kinase. Excavates lack conserved substrates sites in tail of

ribosomal protein S6

Other  IRE

Other  PEK PEK
Other  NAK MPSK
Other  BUB

CMGC  CDK CDK8
CMGC  CDK CDK11
CMGC  DYRK PRP4
PKL PIK SMG1
HisK HisK

PKL Alpha VWL
AGC PKG

PKL ABC1 ABC1-D
Atypical G11

Other PLK SAK
Other  Haspin

AGC RSK

CAMK  CAMKL MARK

Other kinases shared between excavates and one other ancient group
Activator of other CAMKL kinases. Found in excavates and unikonts, lost in

Microtubule affinity-regulating kinase. Absent from plants

Giardia and L. major

CAMK  CAMKL LKB
CAMK CAMKL  CIPK 116235
K CKi CKly

Found in plants and excavates. CBL-interacting protein kinases
Found in plants and Trichomonas

?See Additional file 1 for details. BCKDK, branched chain ketoacid dehydrogenase kinase; mTOR, mammalian target of rapamycin; PDHK, pyruvate dehydrogenase
kinase; RSK, ribosomal S6 kinase; TLK, Tousled-like kinase; TOR, target of rapamycin. See Additional file 4 for definitions of other proteins.

on pathway evolution and organismal biology. All three
excavates lack 17 kinase classes found in at least two
other major eukaryotic groups (unikonts, plants, chro-
malveolates), suggesting a very early divergence of the
excavates [30] and/or even more losses across the

- 49
—12 Giardia
-7
61
17 % 7 vaginalis
68 -5
55 )
L. major
85 = -13
Unikonts , Plants,

Chromalveolates

Figure 2 Loss of kinases in the lineage leading to Giardia. Sixty-
seven kinase classes are shared between one of the three excavates
Giardia, Trichomonas vaginalis and Leishmania major and at least
two other major clades (unikonts, plants or chromalveolates). An
additional 17 kinases are missing from all three excavates but found
in at least two of the outgroups and may be excavate losses (giving
a primordial kinome of 84 kinase classes) or later eukaryotic
inventions if excavates were indeed the earliest-diverging lineage.
Kinase classes are listed in Table 2.

entire clade. This suggests that the common ancestor
of extant eukaryotes had 85 different kinase classes (or
68 if excavates are the earliest-diverging clade), sub-
stantially more than previous estimates [19,20], and
attesting to the many diverse conserved roles of
kinases. Several noteworthy themes emerge from these
losses (Table 2; see below).

Distinctive patterns of kinase losses in the Giardia lineage
Five of the seven ancient kinases lost from Giardia and
T. vaginalis, but found in L. major, are mitochondrial
kinases (ABC1-A, -B, -C, PDHK, BCKDK), consistent
with the degeneration of the mitochondrion to a mito-
some or hydrogenosome in these largely anaerobic spe-
cies [31]. A separate degeneration occurred in some
amoebozoa, and accordingly, these kinases are also sec-
ondarily lost from Entamoeba histolytica (GM, unpub-
lished). The other two are likely involved in DNA repair
and splicing (see below). The 17 kinases found in other
early branching lineages but absent from excavates
include IRE1 and PEK, which mediate endoplasmic reti-
culum stress responses, supporting the observed lack of
a physiological unfolded protein response in Giardia
[32] (see Additional file 4 for definitions of kinase
classes discussed in the text). Giardia has unusual dual
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mitotic spindles [33], and all three excavates also lack
the spindle-associated kinases BUB and cyclin-depen-
dent kinase (CDK)11. They all also lack the mitosis-
associated kinases SAK and Haspin, and their lack of a
ribosomal S6 kinase (RSK) correlates with the lack of a
regulatory substrate serine in the tail of ribosomal pro-
tein S6 in all excavates. Genes lost only from Giardia
include three encoding DNA repair kinases (ATR,
ATM, TLK) and two RNA polymerase kinases (CDK7,
CDK12). Despite having an elaborate microtubule cytos-
keleton, Giardia has lost the microtubule-associated
kinases MAST and TTBK (Tau tubulin kinase), while
microtubule affinity-regulating kinase (MARK) is miss-
ing from all excavates. Splicing and RNA-linked kinases
DYRKP, YAK, PRP4, and SM@G1, and basal transcription
factor kinases TAF1 and CDKS are also lost in different
patterns within the excavates, suggesting gradual diver-
gence or reduction in the regulation of these processes.

Losses of DNA repair kinases may explain sensitivity to
radiation and chemical DNA damage

The PIKKs (phosphatidyl inositol 3’ kinase-related
kinases) ATM, ATR, and DNAPK are involved in recog-
nition and repair of DNA breaks [34]. Deletions of these
in several organisms lead to increased radiation and
mutagen sensitivity. Giardia is the only eukaryote
known to lack all three, though it has one gene (GK009)
with very weak similarity to the ATR and ATM kinase
domains, yet lacks their conserved accessory domains.
Giardia also lacks the Chkl and Chk2 checkpoint
kinases that are activated by ATM and ATR, and the
downstream TLK kinases [35]. ATM, ATR, and TLK are
all found in T. vaginalis. Giardia does have homologs of
other DNA break repair proteins, including MRE11 and
RAD50 of the MRN complex, suggesting that aspects of
DNA break repair may be functional, but perhaps recog-
nized by a divergent mechanism. Giardia has a single
histone H2A with a H2Ax-like ATM/ATR substrate
site. Induction of double-stranded DNA breaks in tro-
phozoites results in anti-phospho-H2A antibody staining
[36]. This suggests that some ATM/ATR-like kinase
activity may be present, possibly acting through GKO009.
Giardia also lacks both DNAPK and its binding part-
ners, Ku70 and Ku80, indicating that DNA break repair
may be severely diminished or divergent in Giardia.
This lack of DNA repair kinases correlates with the
reported sensitivity of Giardia cysts to low doses of UV
light and inability to repair DNA breaks [37].

Transcription and splicing kinases

Several CDK family members control RNA polymerase
II by phosphorylation of a heptad repeat region in its
carboxy-terminal domain (CTD) in plants and animals.
These include CDK7, CDKS8, CDK9 [38] and CDK12

Page 7 of 19

(CRK7) [39]. Some protists, including ciliates and try-
panosomes, lack both the heptad repeat of RNA poly-
merase II and CDK7/8/9, but retain CDK12, and
several have many Ser-Pro (SP) motifs in the CTD,
suggesting that CDK12 may phosphorylate this tail. T.
vaginalis retains CDK7 and CDK12 and has 19 SP
sites in the CTD, while Giardia has only two SP sites
and has lost both kinases. CDK12 has also been asso-
ciated with splicing, which is common in ciliates and
trypanosomes, but very rare in Giardia. PRP4 is
another splicing-associated kinase lost from Giardia,
but other splicing kinases (SRPK, DYRK1, DYRK?2) are
retained, suggesting that these may have different func-
tions, or be retained for use in the rare cases of Giar-
dia splicing [8].

Giardia also lacks TAF1, an atypical kinase constitu-
ent of the general transcription factor TFIID that is
known to phosphorylate Ser33 of histone H2B. Giardia
H2B lacks this serine, and none of the other 13 subunits
of TFIID have been identified [40]. TAF1 and several
other TFIID complex members are found in 7. vagina-
lis, suggesting loss of this complex from Giardia.

Histidine and tyrosine phosphorylation

Unlike plants and most protists, Giardia lacks classical
histidine kinases. Tyrosine phosphorylation in Giardia
trophozoites can be seen by western blot (Figure 3),
[11], proteomics (TL, FG, unpublished), and immuno-
fluorescence (Figure 4). However, we found no classical
tyrosine kinases (TK group) or members of the related
tyrosine kinase-like (TKL) group. A number of other
serine-threonine-like kinases have been reported to
phosphorylate tyrosine, including Weel (cell cycle),
MAP2K (though only acting on the MAPK activation
loop), and TLK, while DYRK and glycogen synthase
kinase (GSK) family kinases can autophosphorylate on
tyrosine [41]. Phosphoproteomic profiling of the exca-
vate Trypanosoma brucei shows that more than half of
the recorded phosphotyrosine (pTyr) phosphorylation
events were found on these kinases [42]. Giardia has
one Wee, one MAP2K, one GSK, and four DYRK family
kinases. Giardia has no SH2 or PTB phosphotyrosine-
binding domains, supporting the lack of a phosphotyro-
sine signaling system as has been inferred in animals,
plants, and Dictyostelium [20,43]. By contrast, several
proteins with putative phosphoserine or phosphothreo-
nine binding domains are present: two clear forkhead-
associated (FHA) domains, one 14-3-3, one WW and
over 250 WD40 domains. Of these, only the 14-3-3 pro-
tein has been characterized and shown to bind phospho-
peptides [44]. Saccharomyces cerevisiae also lacks TK
and TKL group kinases, but shows substantial tyrosine
phosphorylation by phosphoproteomics [1]. These data
from both Saccharomyces and Giardia suggest that
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Figure 3 Distribution of serine, threonine and tyrosine
phosphorylated proteins. Western blot of total Giardia trophozoite
lysates individually labeled with antibodies recognizing
phosphoserine (P-Ser), phosphothreonine (P-Thr), or
phosphotyrosine (P-Tyr). The taglin loading control is shown at the
bottom of the figure.

dual-specificity or undetected tyrosine kinases may be
more important than previously thought.

Accessory domains are reduced or divergent

Most kinases from other genomes have additional
domains that help in regulation, localization, or scaffold-
ing. Many core Giardia kinases lack detectable accessory
domains. However, the domains that are present correlate
well with conserved family-characteristic domains [18]:
polo boxes in PLK family kinases; PBD/CRIB domains in
PakA; HEAT, FAT and FATC domains in TOR; and pki-
nase_C in one PKA and one NDR kinase (Additional file
1; see Additional file 4 for definitions of domains). Cryptic
PH domains are seen in Akt and PDK1, and the character-
istic pkinase_C domain is absent from other AGC kinases,
although this can be difficult to detect on such remote
sequences. Several other kinases have regions of novel
sequence outside of the kinase domain that may be ortho-
logous domains too divergent in sequence to be detect-
able. No kinase has a clear signal peptide, and only four
are predicted to have transmembrane domains. This is
consistent with the observed false positive rate for predict-
ing these regions, suggesting that Giardia has no receptor
kinases. Other unrelated parasitic protists, including Enta-
moeba histolytica, have a rich complement of receptor
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kinases [45]. The Nek kinases are highly enriched for
ankyrin repeats and coiled-coil regions (see below).

Catalytically dead kinases

In most kinomes, about 10% of kinases lack critical cata-
Iytic residues (K72, D166, D184) and are likely to be cat-
alytically inactive, yet may retain signaling functions as
scaffolds or kinase substrates [46]. In the WB strain,
10% (8 of 80) of the core kinome and 71% (139 of 195)
of Neks lack one or more of these three key residues
and are likely to be inactive (Additional file 1). The
eight inactive core kinases include Scyl, whose orthologs
are all inactive, and Ulk, which has some inactive homo-
logs in other species. The functions of both families in
any organism remain obscure. Four pseudokinases are
highly divergent proteins specific to Giardia; some
might have cryptic active sites that could not be found
by alignment to other kinases.

AGC signaling

The AGC kinase group (PKA/PKG/PKC kinases) mediates
a wide variety of intracellular signals, including nutrient,
phospholipid and extracellular signal responses. Giardia
has seven AGC kinases, including a very divergent PDKI,
Akt (GiPKB) [47], two PKAs (cyclic AMP-regulated
kinases) [13,14], a lipid flippase kinase (FPK) and two
NDR kinases. The Akt and PDK1 genes are particularly
divergent, but are partially validated by the presence of
weakly predicted phospholipid-binding PH domains, and a
likely PDK1 phosphorylation site that is seen in the activa-
tion loop of all Giardia AGC kinases. A possible PDK1-
binding ‘hydrophobic motif’ is found in Akt (FKDF) and in
one NDR kinase (YTYRA), but not in other AGC kinases,
and no neighboring phosphorylation site is seen.

Cyclic AMP-dependent signaling is confirmed by the
presence of two PKA catalytic subunits (Additional file
1), one regulatory subunit (Orf 9117 in GiardiaDB) [14],
and one homolog (Orf_14367) of adenylate and guany-
late cyclases. No clear AKAP (A kinase anchoring pro-
tein) was found. In many organisms, including Giardia,
PKA localizes to the basal bodies/centrosomes [13]. In
addition, both the catalytic (PKAc) and regulatory
(PKAr) subunits localize to the paraflagellar rods rather
than the flagellar axonemes [13,14] (Table 1, Figure 1).
PKAc and PKAr localization to the basal bodies is con-
stitutive, while their distribution to the paraflagellar rods
is influenced by external stimuli, such as growth factors,
encystation stimuli and cAMP levels [13]. Inhibitor stu-
dies indicate that PKAc activity is also required for the
cellular awakening of excystation [13].

Phospholipid signaling
The two Giardia phosphatidyl inositol kinases PI3K
and one PI4K have been cloned and are expressed in
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Figure 4 Immunolocalization of serine, threonine and tyrosine phosphorylated proteins in Giardia trophozoites. Interphase trophozoites
were labeled with antibodies against phosphoserine (pSer), phosphothreonine (pThr), or phosphotyrosine (pTyr). Phospholabeling is shown in
green, nuclei are labeled with DAPI and a merge image shows overlay between the two stains. Morphology is shown in a differential
interference contrast (DIC) image of each trophozoite. Scale bar = 10 um.
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trophozoites and encysting cells [48-50]. As in other
species, PI3K likely relays signals from transmembrane
receptors by activation of the protein kinase PDK1 to
phosphorylate the survival kinase Akt and several
other AGC group kinases, as well as the PI3K-like pro-
tein kinase TOR, which modulates energy level
responses. This suggests that Giardia has intact phos-
pholipid signaling pathways coupled to non-kinase
receptors.

MAPK cascade

The MAPK cascade consists of a relay of up to four
kinases that phosphorylate and activate each other,
usually to transmit signals from the cell surface to the
nucleus. The prototypical MAPK cascade involves the
Erk MAPK, which is phosphorylated on both serine and
tyrosine by a MAP2K (MEK, MKK, Ste7), which in turn
is serine phosphorylated by a MAP3K (MEKK, Stell),
and that by a MAP4K. MAP2K, some MAP3Ks, and
MAP4K make up the three families of the STE group of
kinases, while Raf and MLK MAP3Ks are from the TKL

group. All four kinase classes are found in all analyzed
eukaryotic kinomes, apart from Plasmodium [51]. Giar-
dia has one canonical Erk (Erkl), and a member of the
distinct Erk7 MAPK subfamily, called Erk2 [16]. Both
genes have the MAP2K dual phosphorylation motif (T
[DE]Y sequence). We found a single MAP2K, along
with three MAP3K and four MAP4K genes, one each
from the primordial FRAY, MST, PAKA and YSK subfa-
milies. The single MAP2K indicates either that all the
upstream kinases funnel though this single gene, or that
there are alternative pathways that bypass MAP2K, for
which Giardia may be a tractable model. Two of the
three MAP3Ks are homologs of S. cerevisiae Cdcl5,
involved in the mitotic exit network and cytokinesis.
These have orthologs in plants and other basal eukar-
yotes, but not in animals. The distinct functions of Erkl
and Erk2 are highlighted by their localization: in vegeta-
tive trophozoites, Erkl was found in the disk and med-
ian body while Erk2 was in the nuclei and caudal
flagella [16] (Figure 1). During encystation, their expres-
sion levels remained the same, but their phosphorylation
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and kinase activity were reduced and Erk2 became more
cytoplasmic (Table 1).

Cell cycle

Giardia has a full complement of basic cell cycle kinases
(Table 2). These include three CDK1/CDC2 kinases,
along with three mitotic (A/B) cyclins, a putative CDKS5,
three unclassifiable CDKs and two unclassifiable cyclin-
like genes, as well as a Weel homolog. We also found
single copies of the Aurora (AurK) and Polo (PLK)
mitotic kinases, which are activated in M phase and
involved in centrosome or kinetochore function, spindle
assembly and cytokinesis. Giardia AurK is exclusively
nuclear during interphase. During mitotic prophase, it is
activated by phosphorylation and migrates to the mitotic
spindle poles, as well as to the median bodies and ante-
rior paraflagellar rods (PFRs; Figure 1) [52]. Beginning
in metaphase, pAurK localizes to the parental attach-
ment disk, which persists until the daughter disks are
developed. AurK inhibitors decreased growth and led to
abnormal cytokinesis. Thus, AurK has a Giardia-specific
localization and likely function in addition to its univer-
sal function and location in the mitotic spindle. In
mammalian cells, Aur kinase is centrosomal, but inter-
estingly, in Chlamydomonas gametes, it is localized to
the flagellar tips or adhesion sites [53].

Expansion and divergence of the Giardia Nek kinase
family

The Nek kinase family is universal in eukaryotes, and its
members regulate entry to mitosis [54] and flagellum
length [55,56]. The Nek family is expanded in both cili-
ates and excavates, with 40 genes in Tetrahymena and
11 to 25 in trypanosomes [27,57], compared with only
11 in humans and one in yeast. Giardia strain WB has a
massive 198 Neks, making up 71% of its kinome and
about 3.7% of the entire proteome. These have remark-
ably divergent sequences (Figure 5; Additional file 5); all
but 56 have lost critical catalytic residues and are likely
pseudokinases, and many show detectable sequence
similarity only to other Neks but not to standard kinase
domain models. Most retain a number of structural
motifs (Additional files 6 and 7), but are so divergent in
overall sequence that our count may not be precise.

The Neks are evolutionarily dynamic, accounting for
all of the kinase gain and loss between Giardia strains.
While 99.7% of all 4,570 ‘core’” WB genes are found in
strains GS and P15 [10], the Neks are one of four
families (along with Protein 21.1, HCMP (high cysteine
membrane protein) and VSP (variable/variant surface
protein) genes) that are both highly expanded and poly-
morphic between strains, and may be responsible for
strain-specific characteristics. Seventy-nine Neks (30%)
are found in only one strain and a further 31 (12%) are
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found in two but are absent from the third, due to both
gene duplication and loss (Additional file 8). Within the
Neks, two patterns emerge: most are highly conserved
and slowly evolving between strains, while a subset
accounts for most of the gene gains and losses.

Of the Neks, 74% (147 of 198 genes in WB) have no
close paralogs (labeled ‘Nek-Unclassified’). Their average
sequence identity to the next closest Nek is only 34% in
the kinase domain, and for the most divergent 10% of
Neks, this drops to only 20%. This is less than that of
orthologous kinase domains between human and Giar-
dia (40%), and even less than that of many kinases from
different families, implying rapid diversification in
sequence and function. However, they are well con-
served between strains; 89% (131) have orthologs in all
three strains, and their sequences are only slightly less
conserved than those of core kinases (average kinase
domain identity of 88% between WB and P15, 78%
between WB and GS, compared with 92% and 84% for
core kinase domains), indicating that these Neks may be
quite ancient, rather than very rapidly evolving.

We classified 51 Neks (26% of Neks in WB) into 5
subfamilies, based on kinase domain sequence similarity:
Nek1, which is conserved throughout eukaryotes, and
GL1 to GL4, which are Giardia-specific. GL1 to GL3
are moderately sized subfamilies with 3 to 11 members
each. GL4 is dramatically different. It has 32 members
in WB, but only 5 of these genes are single copy in each
strain. In total, 87 genes across the three strains are not
three-way orthologs; 53 of these are found in 10 strain-
specific clusters. The rapid turnover of GL4 Neks is
further highlighted by our discovery of an additional 30
kinase pseudogenes in the WB strain (these are not
counted in the overall kinome), of which 29 are from
GL4. Moreover, five pairs of GL4 Neks are very recent
duplicates, with over 98% identity within the pairs. In
summary, the Giardia Nek expansion includes both
highly divergent but evolutionarily stable members,
small and largely stable families, and the GL4 family,
which is turning over at a remarkable rate.

Of the Giardia Neks, 67% (133 of 198) have an
amino-terminal kinase domain, followed by a variable
array of ankyrin repeats (1 to 26 repeats, median of 8),
which are not found in any core kinases. They are also
evolutionarily mobile, with related members of most
subfamilies having gained or lost these repeats. They are
divergent in sequence but form a distinctive subclass,
characterized by a four amino acid TALM motif at the
start and a conserved E at the end (Additional file 9).
Most other Giardia TALM-ankyrin (TA) repeats are
found in members of the poorly described Protein 21.1
family, which have a similar structure to Neks but lack
the amino-terminal kinase domain. Both families also
have some members with coiled-coil regions and
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Figure 5 Phylogenetic tree of Nek kinase domain sequences, from alignment S1. Most kinases have close orthologs between the strains
(WB is shown in dark blue, GS in green, and P15 in orange), but have very little similarity to orthologs. Deeper branches of defined subfamilies
are also labeled by arcs and colored: Nek1 (light blue), GL1 (cyan), GL2 (light red), GL3 (bright green), and GL4 (purple). See Additional file 5 for

carboxy-terminal RING domains (Additional file 1, Text
S1 in Additional file 2), and both are large and evolutio-
narily dynamic. Our examination of the amino-terminal
regions of 21.1 proteins revealed very divergent kinase
domains in 20, and cryptic kinase-like domains may
exist in other 21.1 proteins that are beyond our limit of
confident detection. The TA repeat is largely specific to
Giardia: 59% of the 3,355 Giardia ankyrin repeats have
an exact TALM motif, compared with just 2.6% (54 of
2,028) in human and 0.5% (24 of 4,602) in T. vaginalis.
Curiously, the only other organism with many TA

repeats is the mushroom Coprinopsis cinerea [58],
which has 73 proteins containing 271 TA repeats,
though none of them have kinase domains. Some are
chromosomally clustered, but their functions are
unknown (GM, unpublished).

Expression and localization of phosphorylated proteins in
Giardia

Signaling proteins often gain specificity by localization
close to their targets. This is especially relevant to Giar-
dia with its unique cytoskeleton that is remodeled
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during differentiation. Moreover, the protein kinases
characterized to date localize to distinct cytoskeletal
structures that are specific to Giardia and whose func-
tions remain unclear. We characterized major phospho-
proteins by western blot and immunofluorescence, using
antibodies against phosphoserine (pSer), phosphothreo-
nine (pThr), and pTyr (Figures 3 and 4). Despite the
lack of classical tyrosine kinases in Giardia, immuno-
blots showed strong staining of pTyr, along with pSer
and pThr. This corroborates a previous study [11].
Immunofluorescence of Giardia trophozoites with the
same antibodies revealed distinct patterns for each phos-
pho-amino acid (Figure 4). Consistent with the pre-
dicted absence of receptor kinases in Giardia, we did
not observe staining at the plasma membrane. Strong
pSer stain was seen in the intracellular and extracellular
portions of three of the four pairs of flagellar axonemes
(anterior, posterior-lateral, and caudal; Figure 1) as well
as the nuclear envelope, with weaker nuclear and ventral
flagellar staining. By contrast, pThr most strongly
stained the remaining (ventral) pair of flagella, which
beat in a sine wave pattern in both attached and swim-
ming trophozoites [6]. It also stained the rim of the ven-
tral attachment disk and polar regions of the nuclei,
possibly the nucleoli [59]. In contrast to the largely
cytoskeletal localization of pSer and pThr, pTyr staining
was concentrated in the nuclei. It is noteworthy that
pSer- and pThr-modified proteins tend to localize to the
intracellular and extracellular portions of the flagellar
axonemes. In contrast, the Ser/Thr kinases in published
studies and two of the four Nek kinases tend to localize
to intracellular flagellar-associated structures (Figures 1
and 6; see below). Thus, some of the actual phosphory-
lation may occur in the basal bodies, and the phos-
phorylated proteins are then incorporated into the
flagella.

Expression and localization of individual kinases

Gene expression profiling by serial analysis of gene
expression (SAGE) [60] confirms expression for 233
kinases, including 156 Neks (Additional file 1).
Twenty-seven kinases are categorized as differentially
expressed throughout the life cycle, of which 12
kinases, all Neks, were upregulated in trophozoites and
encyzoites (encysting cells), and 9 Neks and 4 other
kinases were selectively expressed in cysts and excy-
zoites (excysting cells) (Table 3). Overall, Neks are
slightly less likely to be expressed than other genes or
kinases, and slightly more likely to be differentially or
highly expressed, although the differences are not sta-
tistically significant. These data suggest that most Neks
are expressed and functional, despite their unusual
evolution.
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To begin to understand the roles of Neks in Giardia,
we epitope-tagged five Neks under their own promoters.
We observed a different localization pattern for each
protein (Figure 6). Orf_5375 (Nek-GL2 subfamily) loca-
lized prominently to the PFRs of the anterior and pos-
terior-lateral flagella and faintly to the caudal flagella.
Orf_16279 (Nek-Unclassified) localized prominently to
the outer half of the ventral attachment disk, to the
region of the basal bodies and to the caudal and poster-
ior-lateral flagella, but not to the PFRs. Similarly,
Orf_92498 (Nekl) localized to the basal bodies/centro-
some region in addition to three pairs of PFRs, as well
as to the median bodies, disorganized stacks of microtu-
bules unique to Giardia, whose functions are unknown
[6] (Figure 1). Orf_101534 (Nek-GL4) localized to the
posterior-lateral PFR and to the perinuclear regions and
cytoplasm. In contrast, Orf_15409 (Nek-Unclassified),
which has four ankyrin repeats and is catalytically inac-
tive (Additional file 1), localized diffusely to much of the
cytoplasm and to an anterior region that may be plasma
membrane associated (Figure 6b). Deletion of the most
conserved ankyrin repeat of Orf_ 15409 (amino acids
351 to 386) resulted in partial relocalization to the
plasma membrane (Figure 6b).

The distinct localization of these five Neks likely
mirrors their specific functions in the different subcel-
lular compartments. Basal body/centrosomal localiza-
tion of the conserved Nekl and the Nek-Unclassified
is similar to patterns seen in human (Nek2, Nek6,
Nek7, and Nek9), Chlamydomonas (Fa2p), Trypano-
soma brucei (TbNRKC), and Tetrahymena thermophila
(NRK17p and NRK20p) [55,57,61]. The Giardia flagel-
lar basal bodies become spindle poles during mitosis,
suggesting that these Neks may be involved in regulat-
ing mitotic progression. In other organisms, Neks have
also been localized to axonemes. For example, human
Nek8 and Chlamydomonas Fa2p are found in the
proximal region of primary cilia or flagella, respec-
tively, and Tetrahymena thermophila NRK1 and
NRK30p are located in various types of cilia, with the
latter three being involved in regulating flagella/ciliary
length [57,62,63]. All four active Neks (Orf_5375,
Orf_16279, Orf_92498, and Orf_101534) localize to
diverse Giardia cytoskeletal structures, and may be
involved in regulating flagellar assembly, beat, or cellu-
lar attachment [64]. In contrast, the inactive Nek
(Orf_15409) is found in the cytoplasm, which may
indicate a correlated loss of cytoskeletal association
and catalytic activity.

Conclusions
Giardia encodes the simplest known kinome of any
eukaryote that can be grown in axenic culture. Some



Manning et al. Genome Biology 2011, 12:R66
http://genomebiology.com/2011/12/7/R66

Page 13 of 19

(a)
DAPI

5375

92498

101534

15409 15409 ankyrin
deletion

Figure 6 Immunolocalization of Neks in Giardia trophozoites. (a) Giardia trophozoites expressing hemagglutinin (HA)-tagged putative active
Neks 5375, 16279, 92498, and 101534 were probed with an anti-hemagglutinin-FITC antibody. Each Nek had a distinct cytoskeletal (5375, 16279,
92498, and 101534) or cytoplasmic (101534) localization pattern. In addition to the PFRs, two Neks localized to the ventral attachment disk and
the median bodies (16279 and 92498). A trophozoite cartoon further illustrates each specific Nek localization. Nuclei are labeled with DAPI and a
differential interference contrast (DIC) image of each trophozoite is shown on the far right. Scale bar = 5 pm. (b) Giardia trophozoites expressing
full-length Nek 15409 and Nek 15409 with the deleted ankyrin repeat were probed with an anti-AU1 antibody and visualized with confocal
microscopy. Z-stack images, shown on top and to the right of each image, show that deletion of the ankyrin repeats altered the distribution of
15409 from solely cytoplasmic to a combination of plasma membrane-associated and cytoplasmic. Scale bar = 5 um.
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obligate intracellular parasites have even more highly
reduced genomes and kinomes (for example, the micro-
sporidian Encephalitozoon cuniculi (29 kinases) [65], and
Plasmodium falciparum (approximately 90) [51]), but
are dependent on their hosts for many basic cellular

functions, and their lost kinases may be functionally
replaced by host kinases.

Protein kinases modulate the vast majority of biologi-
cal pathways, and this minimal kinome still enables
Giardia to carry out the broad repertoire of eukaryotic
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Table 3 Differentially expressed kinase transcripts by SAGE
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ORF Group Family Subfamily Orthology Catalytically SAGE cluster R Maximum percentage x
active? 1,000
92498 Other  Nek Nek- 1:1:1 Active Cysts and excyzoites 9.56 385
Unclassified
17625 CMGC  GSK 1:1: Active Cysts and excyzoites 8.30 434
8350 Other  Nek Nek- 1:1:1 Active Cysts and excyzoites 9.10 44
Unclassified
14835 Other  Nek Nek- 1:1: Inactive Cysts and excyzoites 13.68 44
Unclassified
11364 AGC Akt 1:1: Active Cysts and excyzoites 10.05 63.2
15397 CMGC CDK cDbC2 1:1: Active Cysts and excyzoites 946 715
8805 Other  SCY1 1:1:1 Inactive Cysts and excyzoites 1393 743
17578 Other  Nek Nek- 1:1:1 Inactive Cysts and excyzoites 13.67 77
Unclassified
91451 Other  Nek Nek- 1:1:1 Active Cysts and excyzoites 19.69 879
Unclassified
95593 Other  Nek Nek-GL2 1:1:1 Active Cysts and excyzoites 16.11 929
3957 Other  Nek Nek- 1:1:1 Active Cysts and excyzoites 25.71 109.9
Unclassified
114307 Other  Nek Nek-GL1 1:1:1 Active Cysts and excyzoites 24.87 111.5
22451 Other  Nek Nek- 1:1:1 Inactive Cysts and excyzoites 4493 2556
Unclassified
113456 Other  VPS15 1:1:1 Active Differentiation 940 752
101307 Other  Nek Nek-GL1 311 Active Trophozoites and 10.11 378
encyzoites
86934_mod Other Nek Nek-GL1 3:1:1 Active Trophozoites and 10.11 378
encyzoites
16943 Other  Nek Nek- 1:1:1 Inactive Trophozoites and 11.98 397
Unclassified encyzoites
3677 Other  Nek Nek-GL4 1:1: Active Trophozoites and 10.31 54
encyzoites
113030 Other  Nek Nek-GL4 1:1: Inactive Trophozoites and 10.14 59.9
encyzoites
5346 Other  Nek Nek- 1:1:0 Active Trophozoites and 10.59 756
Unclassified encyzoites
101534 Other  Nek Nek-GL4 C Active Trophozoites and 1841 756
encyzoites
16824 Other  Nek Nek- 1:1:1 Inactive Trophozoites and 8.76 81.5
Unclassified encyzoites
90343 Other  WNK 1:1:1 Active Trophozoites and 1142 105.2
encyzoites
114495_mod Other Nek Nek-GL4 C Pseudogene Trophozoites and 27.04 174.5
encyzoites
24321 Other  Nek Nek- 1:1: Inactive Trophozoites and 3642 2132
Unclassified encyzoites
15409 Other  Nek Nek- 1:0:2 Inactive Trophozoites and 3587 5074
Unclassified encyzoites

R is a measure of differential expression, with R = 8 used as a cutoff. Max percentage is the percentage of all SAGE tags belonging to this transcript at its
maximum level. ORFs 101307 and 86934_mod are almost identical and share the same SAGE tags. Orthology is the number of orthologous kinases in WB:GS:P15;

C means a complex ratio.

cellular functions needed for its complex life and cell
cycles. Our comparison of the Giardia kinome to other
early branching eukaryotes indicates that the last com-
mon ancestor of sequenced eukaryotes had a rich
kinome of at least 67 kinase classes, from which Giardia
has lost at least 18. These include kinases involved in
central biological functions, such as DNA repair,

transcription, splicing, and mitochondrial metabolism.
Exploring how these pathways can function without
individual components may help to understand the
function of these pathways in more complex organisms.

Other missing kinases, such as those involved in endo-
plasmic reticulum stress response, are absent from all
excavates, and may represent either early losses or
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reflect that excavates are the earliest branching of eukar-
yotic lineages. Conversely, Giardia retains many ancient
kinases (Table 2) whose functions are still largely unex-
plored, despite their being essential for eukaryotic life.

The Giardia kinome is dominated by the expansion of
the Nek kinases. The recurrent loss of kinase catalytic
function coupled with the conservation of key structural
and Nek-specific residues suggest that many Neks main-
tain a kinase-like fold and serve as scaffolds. The GL4
subfamily is highly dynamic, with most of its members
being strain-specific, with loss of catalytic activity even
within a single strain, and showing rampant gene dupli-
cation and pseudogenization. This high variation rate
may underlie important strain differences. However, the
rate of pseudogenization also suggests that the rate of
duplication of this gene cluster may be enhanced and
that at least some copies are under little purifying selec-
tion. By contrast, most other Neks are shared between
strains and are likely to be anciently diverged, since
their paralogs are more remote than orthologs between
human and Giardia. While a homolog of the universal
Nekl was found, the vast majority of Neks are specific
to Giardia, and the association with ankyrin repeats is
not seen in any other species. The dual mitotic spindles
and eight flagella of Giardia may explain some of the
Nek expansion, but clearly not all of it. Ciliates are also
binucleate and have expanded Neks, but no specific
orthologs are found between the two clades, apart from
Nekl.

We found long runs of a specific class of ankyrin
repeat (TALM-Ankyrin: TA) in most Neks. These are
likely important for their subcellular localization or pro-
tein interactions. While the four active Neks examined
had very specific localization and did not contain
ankyrin repeats, the deletion within the ankyrin region
in Orf 15409 did alter its localization. Several genes
annotated as Protein 21.1 are now found to be Neks,
and the overall sequence and domain composition sug-
gests that the Neks and Protein 21.1 genes may form a
single family with related functions. The other two
large, dynamic Giardia families (VSP and HCMP) are
also related to each other and VSPs undergo antigenic
variation [66]. However, the roles and reasons for the
expansion and variability of HCMP, 21.1 and Nek
remain obscure. The arrays of divergent TA repeats and
our results with non-ankyrin-containing Neks indicate
that specific subcellular targeting is important for their
function, and may allow Giardia to regulate complex
processes within its single cell by targeting proteins to
specific organelles. The Neks constitute a major target
for exploration of Giardia-specific and strain-specific
biology, and their extreme sequence divergence will be
useful to explore the sequence limits of the protein
kinase-like fold.
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The few published studies and our current work on
the first five Nek kinases suggest that several signaling
proteins have distinct associations with the PFR, the dif-
ferent flagellar axonemes, or the unique ventral disk and
median bodies. The latter, like the basal bodies and fla-
gella, are microtubule-based. Several signaling proteins
are shared between the caudal flagella with its associated
structures and the disk - Neks 16279 and 92498, ERK1
and PP2Ac (protein phosphatase 2A) - suggesting that
they may function in the same signaling pathway.

Understanding the replication and segregation of the
two nuclei and complex cytoskeleton during the Giardia
cell cycle and life cycle has been challenging [67]. The
flagellar basal bodies migrate laterally during mitosis to
become spindle poles. Several of the Giardia kinases
and phosphatases studied to date localize to the basal
bodies during interphase, but most have not yet been
studied in mitosis or differentiation (Table 1, Figure 1)
and only AurK, PKA and PP2A phosphatase have been
partially functionally analyzed. The strong pSer and
pThr staining within the flagellar axonemes suggests
that substrates may be phosphorylated in the basal
bodies before incorporation into the axonemes. Analyses
of flagellar-associated kinases and signaling may help
better understand the roles of the four flagellar pairs in
Giardia swimming, attachment, and detachment, which
are central to disease [68], as well as to better under-
stand the roles of this almost universal organelle.

Taken together, our data may help to prioritize future
functional kinase studies, elucidate the signaling under-
lying the cell and life cycles and provide new drug tar-
gets to treat Giardia infections. Protein kinases are
proven drug targets, and the high divergence of Giardia
sequences suggests that specific inhibitors could be
developed that have minimal activity against human
kinases. Our findings help define the minimal kinase
complement of a single-celled eukaryote with a complex
life and cell cycle and add to our understanding of Giar-
dia biology, pathogenesis, and evolution.

Materials and methods

Software, data sets and databases

The G lamblia genome assemblies for all three strains
were from release 2.3 of GiardiaDB [69]. Sequenced
strains are from ATCC, accession numbers 50803
(assemblage A, WB clone C6), 50581 (assemblage B,
clone GS) and GLP15 (assemblage E, clone p15). T.
vaginalis sequences were from release 1.2 of TrichDB
[70], and L. major from release 2.5 of TriTrypDB [71].

Sequence analysis

We constructed profile HMMs for the ePK, PIKK, RIO,
ABC1, PDK, and alpha-kinase families with HMMer and
used these to search the ORF, genomic, and EST
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sequences using Decypher hardware-accelerated
HMMer implementation from Time Logic (Carlsbad,
CA, USA). Divergent Neks were identified with several
Nek-specific HMMs and Blast searches, followed by
manual inspection for conserved kinase motifs. Final
predicted kinase sequences were searched against the
Pfam HMM profiles, using both local and glocal models.
All matches with P scores < 0.01 were accepted and all
matches with scores of 0.01 to 1.0 were evaluated in
comparison with known, homologous sequences, inspec-
tion of the domain alignment, and reference to the lit-
erature. L. major sequences were classified in part using
psi-blast with orthologous sequences from other kineto-
plastids, and 7. vaginalis expansions were also classified
using psi-blast profiles built from paralogs. Signal pep-
tides were detected using SignalP and transmembrane
regions using TM-HMM [72] and coiled-coil domains
according to Lupas et al. [73]. Nek kinase domains were
aligned with ClustalW [74] and HMMalign [75], and
then extensively edited by hand using JalView [76]. The
Nek tree was built using the ClustalW neighbor-joining
algorithm and colored by hand using Adobe Illustrator.

Cultivation of Giardia

G. lamblia trophozoites (strain WB, clone C6, ATCC
50803) were cultured in modified TYI-S-33 medium
with bovine bile [77,78].

Western blot

Cells were washed with ice cold PBS and cell proteins
were precipitated in 6% TCA (trichloroacetic acid) for 2
hours on ice. Protein pellets were resuspended in redu-
cing SDS-PAGE sample buffer, neutralized with NaOH,
boiled for 5 minutes and stored at -80°C until use. Pro-
tein concentrations were determined by the Bradford
method (Biorad, Hercules, CA, USA). Proteins were
separated by 4-20% SDS PAGE and transferred to PVDF
filters. Filters were blocked with 1% milk in PBS supple-
mented with 0.1% Tween 20 (PBS-Tween) and incu-
bated for 1 hour with the FITC-labeled mouse
monoclonal antibodies against pSer, pThr or pTyr
(Sigma, St. Louis, MO, USA) in 1% milk. Blots were
then washed four times with PBS-Tween and incubated
with secondary antibody (goat anti-mouse-horse radish
peroxidase (HRP)) for 1 hour. The signal was developed
with ECL-plus (GE Healthcare, Waukesha, WI, USA).
As a protein loading control, blots were reprobed with
the mouse monoclonal anti-taglin antibody [79] and
goat anti-mouse-HRP. As a control for antibody specifi-
city, antibodies were incubated with pSer, pThr or pTyr
conjugated to bovine serum albumin (Sigma), respec-
tively, prior to immunolabeling of filters. As an addi-
tional control, total Giardia lysates were
dephosphorylated with protein phosphatase A (New
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England Biolabs, Ipswich, MA, USA) according to the
manufacturer’s protocol. Both controls eliminated signal
on western blot, confirming specificity of the antibodies
(data not shown).

Epitope tagging of proteins

The region containing the promoter (> 100 base pairs
upstream of the start codon) and coding sequences for
Orf_5375 were amplified from G. lamblia strain WB
clone C6 (ATCC 50803) genomic DNA with the primers
5’-taagggccccagcatctagetgaatgecga-3’ and 5'-taagatatc-
catcttatacttgtaagcgec-3’, Orf_92498 with primers 5’-
gggcccccggatgegegtetgttg-3’ and 5'-gatatccctgacagtatt-
gaacctgtcc-3’, Orf_16279 with primers 5’-gggcccggatce-
gaggtcatgege-3” and 5’-gatatcagaaaggegtctctgegtcaaaac-3’,
Orf_101534 with primers 5’-gggcccggectgactgegeatge-3’
and 5’-gatatcctgtctgagcatctcgcacage-3’, and Orf_15409
with primers 5’-tttaagcttccectgecgetgagtgaacat-3’ and 5'-
tttgggccccaggttcaggacctcacgeac-3’. The PCR products
and the vector encoding the carboxy-terminal AU1 tag
(Orf_15409) [80] or HA tag (all other Neks) [81] were
digested with the respective restriction enzymes.
Digested inserts and vectors were gel extracted using a
QIAquick Gel Extraction Kit (Qiagen, Venlo, The Neth-
erlands), and ligated overnight at 14°C. Plasmids were
transformed into Escherichia coli JM109 (Promega,
Fitchburg, WI, USA}). Bacteria were grown overnight in
Luria broth and plasmid DNA was purified using a
Maxiprep kit (Qiagen) and sequenced (Etonbio, San
Diego, CA, USA}). Trophozoites were electroporated
with 50 pg plasmid DNA and transfectants were main-
tained through puromycin selection [82]. Base pairs
1.051 to 1,158 from the ankyrin repeat region of
Orf_15409 were deleted by linking the upstream and
downstream PCR products together with the internal
primers 5’-agtccacatgtactggtctgtggaccctgectggtg-3’ and
5’-tccacagaccagtacatgtggactgcaaccatgtat-3’.

Immunofluorescence analysis

Trophozoites were harvested by chilling and allowed to
adhere to coverslips at 37°C for 10 minutes. Whole tro-
phozoites were fixed in situ with methanol (-20°C), per-
meabilized for 10 minutes with 0.5% Triton X-100 in
PBS [13] and blocked for 1 hour in 5% goat serum, 1%
glycerol, 0.1% bovine serum albumin, 0.1% fish gelatin
and 0.04% sodium azide. Coverslips were subsequently
incubated for 1 hour with the FITC-labeled mouse
monoclonal antibodies against pSer, pThr or pTyr
(Sigma) or with the rat anti-HA-FITC (Roche, Indiana-
polis, IN, USA). Cells that were expressing AU1-tagged
Nek (Orf_15409) were incubated with the primary anti-
body mouse anti-AU1 for 1 hour, washed four times
over 20 minutes, and incubated with the goat anti-
mouse Alexa 488 secondary antibody (Invitrogen,
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Carlsbad, CA, USA). Coverslips were washed, postfixed
with 4% paraformaldehyde, rinsed with PBS and
mounted with Prolong Gold with DAPI (Molecular
Probes, Eugene, OR, USA). As a control for antibody
specificity, antibodies were incubated with pSer-, pThr-
or pTyr-labeled albumin (Sigma), respectively, prior to
immunolabeling. Staining was monitored and photo-
graphed on a Nikon Eclipse E800 microscope with an
X-Cite™ 120 fluorescence lamp and 1,000 x magnifica-
tion (Nikon Instruments Inc.). Confocal images were
taken with the Leica TCS SP5 system attached to a DMI
6000 inverted microscope (Leica).

Additional material

Additional file 1: Table S1. Detailed annotation of all kinases in all
three strains, including sequences, SAGE expression, classification, and
catalytic ability.

Additional file 2: Text S1. Supplemental methods and notes.

Additional file 3: Table S2. Draft kinomes of Trichomonas vaginalis and
Leishmania major.

Additional file 4: Table S3. Definition of domain names and
abbreviations.

Additional file 5: Figure S4. Nek kinase tree, colored and annotated.
Additional file 6: Alignment S1. Nek kinase domain alignment.

Additional file 7: Figure S1. Logo alignment comparing patterns of
conserved residues in Giardia and non-Giardia Neks.

Additional file 8: Figure S2. Tree of Nek kinases showing gains and
losses between strains.

Additional file 9: Figure S3. Logo alignment comparing patterns of
conserved residues in Giardia TALM-ankyrin repeats and human ankyrin
repeats.
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