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Abstract

Biological data is often tabular but finding statistically valid connections between entities in a sequence of tables
can be problematic - for example, connecting particular entities in a drug property table to gene properties in a
second table, using a third table associating genes with drugs. Here we present an approach (CRIT) to find
connections such as these and show how it can be applied in a variety of genomic contexts including
chemogenomics data.

Background
Understanding the relationship between two or more
variables is a driving motivation of many biological
questions. The past several decades has seen a rapid
increase in our ability to discern such relationships at
multiple levels from molecular to cellular to whole
populations. However, our ability to understand the
relationships between different scales and different types
of data is still limited [1].
Here we introduce Cross Pattern Identification Tech-

nique (CRIT) as a means of integrating at least three
matrices which do not all share the same index. The
goal of CRIT is to systematically combine information
from multiple tables with different indices allowing one
to not only stack features in a single dimension but also
to span across multiple ones. Thus, CRIT captures a
new type of relationship between different types of data
(for example drugs and their protein targets) which we
term a ‘cross pattern.’ What is a cross pattern and how
does this differ from the more traditional integration
methods? There are two main differences: (1) It pre-
serves the underlying structure of the individual datasets
allowing for greater transparency and more importantly
(2) it does not rely on a single index for querying. In
other words, cross patterns are conceptually related to
correlation but are not correlations as there is no

obvious way to correlate two differently indexed objects.
To better illustrate these differences, in Figure 1, we are
given three pieces of information: the properties of a set
of drugs, the properties of a set of proteins, and which
drugs targeted which proteins. Our goal is to determine
if there are any properties of drugs that are related to
any property of the protein target. As a test query, in
Figure 1b, we narrow our question to Which types of
proteins are disrupted by aromatic drugs? Understanding
these types of relationships could provide additional
details about general mechanisms of drug-protein bind-
ing and how to design drugs to disrupt a particular
function. Investigating this question though would
require integration across two different object types:
proteins and drugs.
As shown in Figure 1a, principal component analysis

(PCA) captures the set of drug properties with the most
variance, but without further collapsing of the tables, it is
not possible to discern what types of proteins are most
affected by aromatic drugs. Similarly, both canonical cor-
relation analysis (CCA) and biclustering can define rela-
tionships amongst datasets that share the same index
[2,3]. Namely, they can identify relationships between
either drug properties and their protein targets or protein
properties and their drug targets but cannot span across
a differently indexed dataset. Although methods are
available for integrating more than three matrices when
all share the same index variable (see discussion in [4]),
how to integrate features when they do not all share the
same index remains an open question. We suggest that
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Figure 1 Difference between CRIT and previous techniques. (a) Data in a single matrix can be investigated using techniques such as PCA.
Techniques such as CCA are applicable to two matrices with a common index. CRIT allows working with three or more matrices that do not
share a common index. (b) An overview of CRIT. (c) A simple example showing how proteins can be labeled as sensitive to a particular drug
property. See text for more details.
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cross patterns provide the flexibility and intuitiveness to
allow for the formal definition of these types of relation-
ships. In the remainder of the text, we describe CRIT and
apply it to three different types of problems: breast can-
cer gene expression, yeast regulatory networks, and a
further explication of the above example in chemoge-
nomics data. Example datasets, code, and documentation
for CRIT can be found at [5].

Algorithm
Cross-integration (CRIT)
Figure 1b shows an overview of the entire method and
Figure 1c illustrates the individual functions of CRIT.
CRIT has three generic types of functions: a labeler, a
slicer, and a discriminator. The labeler transfers a label
from one dataset to another (rows to columns or the
reverse). The slicer partitions this new dataset into sepa-
rate ‘slices’ on the basis of the label generated in the
previous step. Finally, the discriminator applies a statisti-
cal test to the slices to generate a new set of labels.
More generally, the discriminator determines if there
are any features in the second dataset that ‘discriminate’
among the labeled slices based on the parameter in the
first dataset. The entire process is iterated until all of
the matrices have been used.
In the instance in Figure 1b, c, the first label is gener-

ated by simply assigning each drug to be aromatic or not
aromatic. Next, this label is transferred via the labeler to
the second matrix containing the drugs and their asso-
ciated protein targets. The slicer partitions this matrix
into two slices (aromatic and non-aromatic drug treat-
ments). Finally, the discriminator examines if the label is
meaningful for any of the protein targets. If aromaticity
were significant in determining the disruptiveness of a
particular drug to that protein, one should see two dis-
tinct fitness populations as shown in Figure 1b. However,
should this label be non-discriminatory that is the aroma-
ticity of the drug is not a factor in determining its effec-
tiveness on the protein of interest, the label should not
split the drug treatments into distinct populations. Those
proteins which illustrated sensitivity to the aromaticity of
the drug are then labeled aro-sensitive and this label is
propagated to the next matrix and so on.

Results and Discussion
Overview
Below, we applied CRIT to three different types of pro-
blems: extracting general trends from properties of tran-
scription factors and their associated targets in the yeast
regulatory network, relationships between gene proper-
ties such as expression and binding status and breast
cancer type, and finally using chemogenomics, chemoin-
formatics, and functional genomics data we investigated
the relationship between properties of drugs and

properties of their associated targets. In all cases, we dif-
ferentiate between three different levels of significance
in discussing the individual cross patterns. The level of
confidence in each cross pattern is further distinguished
by the thickness of the line as shown in each of the
three result figures (see Additional file 1 for investiga-
tion of method robustness using synthetic datasets).

Regulation: transcription factors and their target
properties
Cis-regulatory elements as a means of regulating gene
expression have been extensively studied. However,
beyond such motifs, are there inherent properties of the
targets themselves that make them more or less likely to
be regulated by a given class of transcription factors
(TFs)? As an example, do essential transcription factors
preferentially regulate essential targets? Are there gen-
ome composition features such as GC or codon bias
that influence which targets are regulated by which TFs?
There is no meaningful way of correlating properties

of TFs on top of properties of their downstream targets
as the number of targets of each TF is variable. These
two objects do not share the same index. However,
despite the dissimilarity of object types, such integration
is critical to identify principles governing transcriptional
regulatory evolution as such patterns would not be
observable from just looking at a single TF or single set
of targets.
Datasets
Nineteen transcription factor and gene target properties
were taken from an extensive meta-analysis in [6] (Addi-
tional file 2). A genome-wide mapping of transcription
factor and targets as defined in [7] was used as the con-
nector matrix. The intersection between TFs mapped by
Harbison et al. and TF and protein properties from Xia
et al. resulted in 201 TFs and 5,125 gene targets.
Evaluating significance
For each TF property, TFs were labeled as either above
or below median value (given the number of TFs, break-
down into finer classes yielded numbers too small to
perform meaningful statistics). This label was then
transferred to the connector matrix where the rows
represented the individual transcription factors and the
columns potential gene targets. Each element of this
matrix was a score of how likely the TF would be to
regulate the specific target. The rows of this matrix
were then partitioned via the labeling generating two
different distributions of gene target scores. The likeli-
hood that the scores were obtained from the same
distribution was evaluated using Welch’s t-test and
q values were generated through FDR-correction of
associated P values. Those targets with q < 0.05 were
considered to be more likely to be regulated by one type
of TF than another are defined as TF-property (for
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example essentiality-sensitive) targets. This label (sensi-
tive/insensitive) was applied to the columns of the TF/
target matrix and propagated to the rows of the target/
target-property matrix. The process was then repeated
where the target/target-property matrix was partitioned
on the basis of sensitivity and those target properties
that were able to discriminate between the TF property-
sensitive targets and TF property-insensitive targets. The
end result was a set of cross patterns connecting a spe-
cific property of a transcription factor to a specific prop-
erty of a target.
Results
In total, we identified 13 significant cross patterns relat-
ing properties of TFs and properties of targets suggest-
ing an overall pattern of these TFs exhibiting
‘preferences’ or ‘sensitivities’ to particular attributes of
targets (Figure 2).
Many of these cross patterns were between the physi-

cochemical and composition properties of TFs and tar-
gets suggesting that the composition and evolutionary
history of the gene target may be a useful complement
to the presence or absence of a given motif in predicting
transcription factor binding.
As an example, we identified a subset of seven tran-

scription factors that exhibited a strong preference for
either essential or inessential targets (q < 0.05, FDR-cor-
rected). One-hundred-thirty-five targets were preferen-
tially regulated by either an essential or nonessential TF.
The number of protein-protein interaction partners of a
given TF was connected to the level of gene duplication
of the genes the TF targeted. In addition, TF expression
was also connected to the level of gene duplication.

Breast cancer: ER status and ER binding
In our second application, we applied CRIT to a well
characterized system. Estrogen receptor (ER) activation
is one of the primary molecular features used to differ-
entiate breast cancer subtypes through immunohisto-
chemical staining. Activation of this receptor results in
strikingly different cancer phenotype due to extensive
downstream remodeling of transcriptional programs,
and the genes and molecular mechanisms affected by
this dichotomy are of particular interest. Identification
of gene signatures of specific tumor types is critical in
the development of more targeted therapeutics. van’t
Veer and colleagues identified two breast cancer sub-
types distinguished by differences in the immunohisto-
chemical stain for estrogen receptor (ER). Further,
through supervised methods they identified 550 addi-
tional genes that were signatures of this status [8].
Datasets
Maps of ER to target genes were obtained from [9].
Definition of target defined as in [9]. ER status, microar-
ray data, and patient metadata were all taken from [8].

Evaluating significance
A slight modification of CRIT was required to accom-
modate binary features. We used the hypergeometric
distribution in order to calculate the significance of
overlap of differentially expressed ER+ and ER- genes.
To be explicit, the problem can be described in terms of
determining the probability of drawing x white balls
from an urn of m white balls and n black balls after tak-
ing out k balls. Thus, we regard the ER binding genes as
the total number of white balls(x) and non-binding
genes as black balls (n). The total number of differen-
tially expressed genes (ER+ vs ER-) represents the sam-
ple withdrawn and x of these are also ER targets (that is
sampled white balls). Thus, we calculate the significance
of overlap by summing P(X >= x).
Results
We applied CRIT to the van’t Veer patient metadata, sig-
nature genes, and estrogen binding information from
Carroll et al. [9] (Figure 3a). In this manner, we were
able to recapitulate the observed relationship between ER
(+) tumors and the expression of genes that are bound by
estrogen (P < 2 × 10-4) (Figure 3b). Although this applica-
tion serves as an important validation, the result is
already well known. To show the potential of CRIT, we
applied it to a more complex problem domain.

Chemogenomics: drug properties and target properties
To investigate more complex non-obvious connections,
we applied CRIT to identify relationships between small
molecule properties and properties of their protein tar-
gets (Figure 4a). Numerous papers have attempted to
find relationships between particular drugs and particu-
lar targets [10-12]. Here, we investigated a slightly dif-
ferent question. Rather than looking at individual drugs
and individual targets, we examined whether there are
classes of drugs that are particularly disruptive to a class
of proteins.
As an example, we tested the hypothesis that the sub-

set of proteins bound or more indirectly affected by a
structural parameter may also share physicochemical or
other types of properties by posing questions in the
form: Do positively charged proteins exhibit a tendency
to interact with negatively charged compounds?
Datasets
Hillenmeyer et al. tested 291 unique compounds on the
heterozygous yeast deletion collection under a number of
different concentrations (Additional file 1). We selected
profiles generated using the minimum drug concentra-
tion since specificity decreases as drug concentrations
approach toxicity. Small molecules were converted to
text strings called SMILES [13] (Additional file 3) and
small molecule properties were computed [14] (Addi-
tional file 4, 5). Only compounds with no missing values
were kept, resulting in 281 unique compounds.
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Yeast strains with defects in transport machinery, lipid
permeability, and drug efflux pumps, and so on [15]
were removed from the connector matrix as in [16] as
such mutants are affected by drugs in a non-specific
manner [17]. Analogously, if the variance of a single tar-
get’s growth scores across all small molecule perturba-
tions is too low, one would only be in the noise. Only
ORFs which had a variance of growth scores across the
different drug treatment greater than 1.5 were included.
After removal of ORFs missing values in the target-fea-
ture datasets (see below), 1,170 ORFs remained. Finally,
there were a few cases where the ORF grew better in
the presence of the drug, suggesting resistance. In this
analysis, we do not investigate this scenario.
Physicochemical properties were obtained from SGD

including molecular weight, isoelectric point, protein
length, GRAVY (hydropathicity index), and aromaticity
[18] as were the gene composition features (codon adap-
tation index (CAI) and frequency of optimal codons
(FOP)) and GO categories [19]. The localization data
was taken from [20]. We used two types of networks:
protein-protein interactions and gene regulatory [21]
(genetic interaction and phosphorylome [22] had too
few nodes to determine significance). All topological sta-
tistics (degree, clustering coefficient, betweenness,
eccentricity, shortest path) were computed for each
node in the network using tYNA [23]. The environmen-
tal stress response data were taken from [24].
Evaluating significance
For each drug property, drugs were labeled as either
above or below median value. This label was then trans-
ferred to the connector matrix where the rows repre-
sented the individual drugs and the columns
represented a protein. Each element of this matrix was a

fitness defect score measuring the level of disruptiveness
of a particular drug treatment on a particular protein
target.
For each protein, we considered whether the protein’s

disruption (as measured by fitness defect) is significantly
different when subjected to the lo- versus hi-labeled
drugs by computing a sensitivity score:

S =
X̂H − X̂L

SX̂H−X̂L

where the numerator is the difference of the mean
growth scores for a protein treated with drugs labeled as
high and low, and the denominator is simply the differ-
ence between the standard error for high and low.
Welch’s t-statistic was used to compute P values, and
proteins with P < 0.05 were considered sensitive to the
particular drug property (DP) used for the partitioning
(see Additional file 1).
For each continuous-valued protein property, we com-

puted a sensitivity score as shown above. Localization is
a categorical variable requiring special treatment to gen-
erate the sensitivity score. This variable was first trans-
formed to a series of binary features where each
compartment was treated as a separate feature (one if
the protein was localized to the compartment of interest
and zero otherwise). Enrichment for a particular locali-
zation category was determined via the hypergeometric
distribution.
Results
We identified a large number of proteins that we term
‘sensitive’ to a particular drug property (Table 1). These
proteins had different fitness defects after treatment with
drugs with either a high or low value of a particular
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Figure 4 Chemogenomics cross patterns. Analogous to Figure 3. (a) Three matrices integrated in the chemogenomics network example. (b)
Lines connecting properties of a drug and properties of its associated targets represent the cross patterns identified. Three line thicknesses
correspond to differing levels of significance of cross pattern: thickest P < 10-3, thicker P < 0.01, and thin P < 0.05. (c) Summary table including
the significance scores for each cross pattern reported.

Gianoulis et al. Genome Biology 2011, 12:R32
http://genomebiology.com/2011/12/3/R32

Page 7 of 12



descriptor (Methods; Additional file 6). As an example,
YGL084C is involved in glycerol transport. Interestingly,
YGL084C is also MlogP-sensitive (P < 1(-4)) as might be
expected for a protein whose main function is the trans-
port of a highly hydrophobic molecule (Figure 5c). Simi-
larly, YAL010C is responsible for the assembly and
import of beta barrel proteins and was shown to be
aromatic-ring sensitive (P < 0.01) (Figure 5b). Finally,
YAL008W is a mitochondrial protein of unknown
function that showed a preference for smaller drugs
(P < 0.02) (Figure 5a).
We identified numerous other cross patterns that we
discuss in more detail below. They are summarized in
Figure 5 and Table 1.

Direct properties of small molecules are sometimes
mirrored by those of their protein targets
In order to disrupt a protein’s function, a small mole-
cule must either bind directly to the protein or act
indirectly by interfering with another component up or

downstream. In the former case, there is a logical intui-
tion that the composition of the small molecule would
constrain the types of proteins that it could affect or
that certain properties of a small molecule would be
more favorable in disrupting a particular type of target
proteins. Using the GRAVY score (a standard means of
measuring protein hydrophobicity) [25], we found that
the 102 charge-sensitive proteins were more hydropho-
bic in nature (Welch’s t-test P < 0.05) than the charge-
insensitive proteins. Since low charge compounds would
be expected to more easily interact and thus more easily
disrupt the function of membrane proteins, this finding
is concordant with membrane protein physiology.
In addition, the seventy AR-sensitive proteins had a

higher degree of aromaticity than the AR-insensitive set
(P < 0.05). Such compounds would be particularly effec-
tive in disrupting aromatic proteins because of their
ability to disrupt stacking interactions.

Localization constrains physicochemical properties of
drugs
Since a small molecule must be able to reach its protein
to disrupt function, the localization of the protein will
have a profound effect restricting the entrance of com-
pounds with one set of physicochemical characteristics
and enhancing favorable access of others. Likewise,
topological properties of the networks, such as degree,
can be used to infer additional constraints on the physi-
cochemical property of the drugs [26]. Using CRIT, we
identified global cross patterns between the physiological
conditions encountered in the protein’s compartment
and the compound’s corresponding physicochemical
properties. Proteins that responded differently to drugs
that were charged as opposed to those that were
uncharged, are more likely to localize to the Golgi

Table 1 Number of proteins sensitive to each small
molecule descriptor

MW Ms nAB ARR Hy MlogP

MW 77 170 119 143 153 261

Ms 9 102 136 162 158 253

nAB 5 13 47 95 126 229

ARR 4 10 22 70 145 253

Hy 6 26 3 7 82 249

MlogP 12 45 14 13 29 196

Matrix showing the total number of proteins sensitive to each drug property.
For each drug property pair (row, column), we report both the number of
proteins that are sensitive to both properties (lower triangle, intersection) and
the total number of proteins sensitive to either property (upper triangle,
union). The diagonal is the total number of proteins that were sensitive to the
particular drug property.
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(highly hydrophobic) or the nucleus than proteins which
were as affected or unaffected by charged as with
uncharged drugs (charge-insensitive proteins).
We identified forty-seven proteins that were sensi-

tive to compounds containing aromatic bonds (AB-
sensitive proteins) and showed that these proteins
have a tendency to be localized to mitochondria and
vacuoles. From this cross pattern, one could infer that
access to mitochondrial or vacuolar proteins is par-
tially determined by the aromatic nature of the com-
pound. Interestingly, a recent drug screen identified
six highly aromatic compounds as being particularly
effective in modulating these mitochondrial functions
[27].
Further, we found that AR-sensitive proteins had

higher degree in the regulatory interaction network rein-
forcing the importance of disrupting aromatic interac-
tions in this class of proteins.

GO-specific disruption
To understand what features underly disruption of a
particular functional class (for example cell wall synth-
esis), we calculated the GO enrichment [28]. We found
enrichment in RNA metabolism for both AR and AB-
sensitive proteins and in DNA binding for AR and
hydrophilicity-sensitive proteins. In addition, charge-sen-
sitive proteins showed an enrichment in transferase
activity and MlogP in transcriptional regulator activity
and protein catabolism. Thus, suggesting a specific func-
tional class can be related to the compounds’ physico-
chemical properties.

Environmental stress response
In a study by Gasch et al., it was shown that there is
both a ‘core’ of yeast genes that respond in a character-
istic manner to a diverse array of stresses and a set that
respond in a stress-specific manner [24]. We applied
CRIT to investigate whether molecular properties can
reveal similarities that unify common stress responses or
conversely provide a more mechanistic reasoning for the
observed specificities (dissimilarities) in responding to
stress.
We observed structural feature-specificity in a number

of yeast genes including TOR1, CYC7, GPM2, and SSA3
with known stress-specific responses (Additional file 7).
As an example, TOR1 (protein of rapamycin) is a kinase
that controls response to amino acid starvation, and it
also exhibits a sensitivity to a compound’s charge (P <
0.04). Similarly, SSA3, involved in protein unfolding and
heat shock response, is MlogP-sensitive (P < 0.01). One
intriguing possibility is that one can use the connection
with specific drug features to track an underlying mole-
cular reasoning for similarities and conversely dissimila-
rities in stress response.

One of the hallmarks of the general environmental
stress response (ESR) in yeast is that only one of a pair
of isozymes may have a role in stress response at all, or
both may have roles but each under a different set of
stress conditions [29]. It is possible that isozymes’ subtly
different amino acid sequences results in dissimilar bio-
chemical properties that may render one isozyme more
suitable than another under a given set of conditions.
We observed differential drug property sensitivities
between several pairs of isozymes (Additional file 7).
The non-ESR regulated glutathione transferase, GTT1,
exhibits charge sensitivity (P < 0.01), but GTT2 showed
no specificity in its response to drug treatments. This
suggests that differential drug sensitivity may prove use-
ful in tracking these underlying biochemical differences
and how they impact stress response regulation.
Finally, it has been shown that different perturbations

can sometimes induce the same type of stress [30]. As
an example, oxidative stress can be triggered in yeast
through the application of either hydrogen peroxide or
menadione among others [31]. We identified a cross
pattern between MlogP and hydrogen peroxide treat-
ment; however, we found no significant cross pattern
between the MlogP and the menadione profile. Interest-
ingly, differential response to hydrogen peroxide, mena-
dione, and two other types of oxidants was observed in
S. pombe [32]. Differences in structural parameter sensi-
tivities may reflect the specific requirements in respond-
ing to each of the different types of reactive species
generated. Thus, cross patterns may prove useful in
teasing apart differences between closely related stress
responses.

Guilt by association to predict function or mechanism of
compound action
CRIT is able to generate testable hypotheses related to
predicting function and mechanism of compound
action. Akin to building a compendium of a protein’s
response to small molecules, the cross patterns
described can also be aggregated to generate a profile of
a protein’s sensitivity to drug properties across a num-
ber of different small molecule applications (drug prop-
erty-sensitivity profiles). Including additional features of
these small molecules can allow sophisticated structure-
based profiles to be built (Additional file 5, 6) allowing
for possible inference of function. Using just these six
well-characterized molecular descriptors, we see evi-
dence that proteins whose sensitivity profiles overlapped
were also functionally similar. Thus, it is likely that by
applying traditional guilt-by-association rules using
these profiles [33], we can generate hypotheses about
the role of uncharacterized proteins, such as YCR101C,
which is both molecular weight (P < 0.05) and aromatic-
bond sensitive (P < 0.03). Five proteins had a similar
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DP-sensitivity profile to YCR101C including the glycerol
transporter YGL084C. The shared DP-sensitivities also
mapped to osmotic stress response and a proclivity to
be localized to the vacuoles. The physiological role of
the vacuole during osmotic stress is unclear; however, it
is known that phosphoinositides quickly accumulate sti-
mulating actin patch-formation and that disruption of
this pathway causes abnormal vacuole morphology.
Based on these observations, we would suggest that
YCR101C plays a role in cytoskeletal reorganization in
the vacuole.

Generality of CRIT
The amount of available multidimensional data will
continue to grow. A number of current datasets can be
formulated in terms of connector matrices and thus be
amenable to the CRIT framework. The derivation of
the connector matrix can be trivial such as mapping
transcription factors to their binding sites or splice
sites to their corresponding gene. However, the real
power lies in more subtle mappings. As an example,
metagenomics provides a catalogue of nucleotide
sequences for an environment. Genes derived from
these datasets have not only a specific function but
also environmental context. Thus, using such a con-
nector matrix provides the potential to identify more
subtle connections between properties of genes and
analogously, properties of the sites the genes are
derived from (for example temperature). Similarly,
whereas direct integration only allows for identification
of tissue-specific or tumor-specific expression, CRIT
can connect more global properties of tissues to sets of
gene properties or metabolites as it preserves the
direct connection between features. CRIT in theory is
not limited to three levels. As an example, one can
integrate clinical state alongside a person’s microbial
community structure. Such responses can then be
linked to specific metabolites, and the interaction
between the human and microbial metabolite comple-
ments and its effect on disease progression could be
mapped. However, currently available datasets are not
yet amenable to this treatment. Further, one caveat of
such cascades is that although the means to evaluate
the significance of each individual step of CRIT is well
understood, generation and evaluation of such complex
chains of inferences requires further investigation. We
have begun such an investigation through the use of
synthetic datasets, but only further experimental and
computational characterization can reveal the true uti-
lity and justification for integration in such high
dimensional space. Further, we have discussed only the
simplest implementation of CRIT as a framework for
the exploration of such multidimensional data
integration.

Conclusions
At the moment, yeast represents a special case in terms
of the range of available system-wide datasets; however,
yeast is a harbinger for other systems. Technological
and computational advances are leading to a dramatic
increase in system-wide datasets for many model organ-
isms. The unprecedented scale and diversity of these
datasets present both opportunities for new discoveries
and interesting computational challenges. Straightfor-
ward integration, as currently done in genomics, does
not provide enough flexibility when the dataset can no
longer be indexed on a gene or protein or even a single
class of variable. We have introduced a method to dis-
cover cross patterns between differently indexed meta-
data. We applied CRIT to identify cross patterns
connecting small molecule descriptor sensitivities to dis-
parate types of systems-wide and transcription factor
features to features of those their target genes. Further,
we showed that this type of integration can reveal novel
and non-obvious connections between many different
and not necessarily gene-centric types of data. In a
broader context, to fully leverage the coming deluge of
systems-wide datasets will require the development of
new types of spanning techniques as more model organ-
isms join the ranks of yeast in terms of both quantity
and diversity of data. Mining such complexity requires a
robust infrastructure and new computational models.

Materials and methods
Formal definition of CRIT
CRIT requires at least three matrices M1, M2, and M3,
although conceptually it can be applied to n matrices.
We indicate the set of rows and columns indexing a
matrix by using capital letters, for example M[I, J] is a
matrix whose rows and columns are indexed by the sets
I and J, respectively. M[i, j] is the element at row i and
column j.
It is required that the columns of each matrix are

indexed over the same set as the rows of the next. Thus,
we refer to the nth matrix’s rows as In-1 and its columns
as In, instead of I and J as above. The (n + 1)th matrix’s
rows would then be In, giving the desired correspon-
dence between the columns and rows of adjacent
matrices. The sequence of matrices our algorithm oper-
ates on is thus:

M1[I0, I1]

M2[I1, I2]

. . .

Mn[In−1, In]

We label the columns of each matrix, and refer to
these as L1, L2, ..., Ln. As an example, consider.
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L = [a b a a ] (1)

so that L[1] = a, L[2] = b, and so on. Given such a
vector it will be necessary to extract the set of indices
that are assigned the labels a and b. If the vector is
indexed by I = {1,2,3,4}, then we would have

Îa = {1, 3, 4} and Îb = {2}. The hat notation Î just
reminds us that these sets are subsets of I.
Given a labeling Ln-1 for matrix Mn-1, we can then

immediately transfer the labels to the rows of matrix Mn

since they are indexed by the same set.
The next step is to slice Mn along its rows such that

each resulting partition has only rows with one label.
For example, În−1

a gives the indices labeled a by the

previous matrix and so the slice Mn[În−1
a , In] gives just

those rows of the current matrix that were labeled a by
the previous.
Finally, let fn denote the discriminator function

employed to label the columns of Mn. It first partitions
the rows of Mn by each label obtained from the previous
matrix. It then considers whether each column j of Mn

differs amongst these row slices, and sets Ln[j] to a or b
accordingly. The method for determining whether col-
umns ‘differ’ is dependent on the specific problem, and
we will discuss the standard statistical techniques we
used in the particular applications investigated in this
work. Our framework is meant to be general and does
not restrict the choice of statistical methods that can be
employed. Tests that partition the columns into more
than two sets could also be employed.
In essence, the nth discriminator takes as input matrix Mn

and the previous labeling Ln-1, and it returns a new labeling
Ln. In other words, Ln = fn(Mn, Ln-1), for n = 1, 2, ..., n.
The final output of the algorithm defines a new type

of relationship between a row i Î I0 of the initial matrix
and a column j Î In of the final matrix such that j is
labeled as being interesting (according to the particular
application) through the propagation of labelings from
L0 through Ln. We call such relationships cross patterns.
We notate the set of cross patterns between all the rows
of the initial matrix and all the columns of the final
matrix by I0 ↦In. The specific cross pattern would be
defined as i ↦ j.
On the first iteration, numbered 1, an initial labeling

L0 must be obtained from an external procedure. In the
next section, we show that our specific application of
CRIT does not require this, or alternatively that it con-
sists trivially of a single label. Thus, the initial discrimi-
nator f1 differs slightly in that it does not compare
values between multiple slices, but uses another test to
assign labels to the first set of columns. CRIT considers
each feature separately. Thus if two features are corre-
lated they will each generate a cross pattern, and both

will be agged as significant. The decision of how to treat
such features is left to the user.

Pseudocode
M_1, M_2, ..., M_n = load matrices from
data file
L_0 = compute initial labeling using cus-

tom method
for i in 1.. n do
Ihat_a_(i-1) = indices labeled ‘a’ in L_

(i-1)
Ihat_b_(i-i) = indices labeled ‘b’ in L_

(i-1)
L_i = ttest(M_i[Ihat_a_(i-1), J], M_i

[Ihat_b_(i-1), J])
done
Above we have written simply ttest but a different sta-

tistical test can be used on each iteration of the loop
and in fact the tests should be selected as appropriate
for the specific data being studied. Also we have used
the labels ‘a’ and ‘b’ but more intuitive names are used
in the main text. When the loop is complete, we have
the final labeling L_n. Depending on the particular pro-
pagation of labels that is relevant for the specific appli-
cation, we can now see which of the initial rows of M_1
are related to the columns of M_n.

Additional material

Additional file 1: Supplementary materials. Further description of
methods in the text and results of synthetic cross patterns.

Additional file 2: Table of TF-target properties. Full listing of
transcription factor and gene target properties from the regulatory
network example.

Additional file 3: Table of SMILES. 291 small molecules and their SMILE
representations.

Additional file 4: Table of molecular descriptors index. Index of all
molecular descriptors calculated (only six used in main text).

Additional file 5: Table of molecular descriptors values. The values
for all the molecular descriptors calculated (only six used in the main
text).

Additional file 6: Table of sensitivity scores for each drug-protein
treatment. Listing of the sensitivity score for each protein for each of
the six molecular descriptors used in the text.

Additional file 7: Summary table of the findings from the
environmental stress response.
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