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Abstract

RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological
processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA)
libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge.
Here, we describe novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi
screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient
screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library
technology.

Background
RNA interference (RNAi) facilitates the assessment of
gene function by silencing gene expression using syn-
thetic anti-sense oligonucleotides or plasmids. It exploits
a physiological mechanism that represses gene expres-
sion, primarily by causing the degradation of mRNA
transcripts. In mammalian cells, physiological RNAi is
primarily mediated by non-protein-coding RNA tran-
scripts, known as microRNAs (miRNAs). miRNAs are
produced in a similar manner to mRNAs, but miRNAs
are processed into shorter RNA species containing a hair-
pin structure, known as short-hairpin RNAs (shRNAs).
shRNAs are in turn processed into short double-stranded
pieces of RNA known as short interfering RNAs (siR-
NAs). Within the multi-protein RNA-induced silencing
complex (RISC), one strand of a siRNA duplex binds a
protein-coding mRNA transcript that bears a comple-
mentary nucleotide sequence. This interaction allows a
nuclease in the RISC to cleave and destroy the protein-
coding mRNA, therefore silencing the expression of the
gene in a relatively sequence-specific manner.

The experimental use of synthetic siRNAs and shRNA-
expressing plasmids has profoundly changed the way in
which loss of function experiments can be performed. Pre-
viously, techniques that were either more time consuming
(gene targeting), or capricious (antisense RNA), were used.
Now libraries of RNAi reagents can be purchased and
used to silence almost any gene at will. While siRNAs are
typically used in multiwell plate-based screening, shRNAs
are commonly used for pooled competitive screening
approaches, often called barcode screening.
Barcode screening offers improvements in speed and

scale compared to plate-based screening. In barcode
screening, a large population of cells is infected or trans-
fected with a pool of different shRNA vectors. Cells are
then split into two groups and one group is treated dif-
ferently from the other - for example, with a drug. After
this selective pressure is applied, cells are harvested from
both populations and integrated hairpins extracted from
the genomic DNA of each population by PCR. The rela-
tive quantity of each hairpin in the two populations is
then compared, to identify those genes that modulate the
response to the perturbation in question. For example, in
the case of drug screens, hairpins that are over- or
under-represented in the drug treated sample compared
to the control sample could be considered as targeting
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genes that modulate sensitivity or resistance to the drug,
respectively.
Traditionally, Sanger sequencing has been used as a

readout for positive selection screens. However, this
approach is costly, time consuming and in general not
scalable. In the case of negative selection screens, micro-
array hybridization is frequently used as a readout [1,2].
This approach requires the production of custom micro-
array chips for each library, has a limited dynamic range
and is restricted by the varying effectiveness of individual
probes. Next generation sequencing (NGS) technologies
have recently emerged as a cost-effective means of gener-
ating large quantities of sequence data in a short time.
Using massively parallel sequencing in place of Sanger
sequencing or microarray-based approaches offers several
potential advantages in terms of flexibility of input
library, scalability and dynamic range.
Already, a small number of laboratories have used

shRNA screens coupled to NGS [1,3-5]. One critical
issue that limits the wider exploitation of this technology
is the absence of a freely available and simple package for
the analysis of shRNA NGS data. With this in mind, we
describe here detailed protocols for pooled shRNA
screening coupled to NGS screen deconvolution. As part
of our optimization of this technology, we have also
developed a computational pipeline to analyze NGS data
from shRNA screens and describe two open source ana-
lysis packages, shALIGN and shRNAseq, designed to
simplify barcode screen analysis. Using shRNA pools
with engineered depletion, we also assess the sensitivity
and reproducibility of this method. As the cost of both
shRNA libraries and NGS is rapidly decreasing, these
methods and analytical tools may aid the wider adoption
of this powerful technology.

Results and discussion
shRNA barcode screening is a lengthy procedure that
required considerable optimization. Here we describe
how methods were selected from principles and proce-
dures established by McManus [3], Hannon, Elledge and
Lowe [2,4,5] and optimized for the entire shRNA barcode
screening workflow from library production to statistical
analysis (Figure 1).

Bacterial culture
One factor that could affect screen performance is the
variation of representation of individual hairpins within a
screening pool. Since library production relies on the
growth of thousands of bacterial cultures, it is inevitable
that there will be some variation in growth in individual
wells within a plate, and between plates within a screen-
ing pool. Consequently, it is important to be systematic
about the generation and pooling of bacterial cultures.
First, all liquid handling was performed robotically to

ensure that most errors are systematic and can be easily
traced. Second, growth temperatures and times were
tightly controlled. Culture plates were stacked evenly to
ensure even air circulation to all plates and wells. Hairpin
plasmids were grown in small batches (ten plates) to
facilitate quality control. Since recombination was a pro-
blem in previous generations of shRNA libraries, the
quality of plasmid DNA was checked by restriction
enzyme digest following plasmid purification. Once
screening pools had been constructed, the plasmid pool
was sequenced on the Illumina Genome Analyzer IIx
(GAIIx) to determine hairpin representation (Figure 2a),
using a shRNA targeted sequencing procedure described
by Zuber [4], Silva [5] and colleagues. Although it is
somewhat difficult to normalize the representation of
individual hairpins in large screening pools, it is impor-
tant to minimize the variation within the population to
reduce the chances that observed screen results can be
attributed to issues in starting hairpin abundance.
Although these issues can be partially mitigated at the
statistical analysis stage (see below), careful library pre-
paration and quality control can minimize variance in
shRNA representation.

Lentiviral packaging
Packaging of hairpin plasmid into lentiviral vectors
requires large numbers of packaging cells and high trans-
fection efficiency to ensure faithful representation of the
plasmid pool in the viral supernatant. We have success-
fully employed two approaches to transfection of shRNA
plasmids into packaging cell lines, calcium phosphate-
and lipid-based transfection. Both methods were routi-
nely used and returned viral supernatants of similar titer
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Figure 1 Workflow of a typical shRNA barcode screen. The
steps in blue boxes represent the experimental phase, whereas the
steps in red boxes represent the computational analysis phase.
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(data not shown). cDNA generated from viral superna-
tant was sequenced and compared to the plasmid DNA
to ensure good representation of the library has been
achieved (Figure 2a). Typically, cDNA from viral super-
natant showed slightly greater variance in hairpin repre-
sentation than the plasmid pool. Furthermore, hairpin
representation at early time points post-viral integration
demonstrated better correlation with plasmid representa-
tion than with virus (Figure 2a). This suggested that the
viral cDNA preparation step was a considerable source of
noise and thus plasmid shRNA sequence most likely
represents a better reference for starting hairpin repre-
sentation than virus. This analysis also demonstrated a
high concordance between technical replicates, where the
same DNA library was sequenced on different GAIIx
runs.
Typically, lentiviral stocks were transduced using a

multiplicity of infection (MOI) of 0.7 to reduce the likeli-
hood of multiple integrations per cell and the emergence
of combinatorial phenotypes. Accurate determination of

viral titer in target cell lines allowed subsequent infection
of screening cell lines at intended efficiencies. We tested
a wide range of breast tumor cell line models and the
majority infected at >60% using viral titers of 106 to 107

TU/ml (Figure 2b). Those that did not infect at high effi-
ciency were puromycin selected to give a final green
fluorescent protein (GFP)-positive cell population of
>90% (Figure 2c).

Viral transduction and cell sampling
Regardless of the design of a particular screen, the man-
ner in which the viral transduction and subsequent cell
culture are performed is crucial to the success of the
screen. The maintenance of hairpin representation (the
number of cells infected with each shRNA) and logarith-
mic cell growth are of particular importance [3-5].
Throughout all shRNA barcode screens, we maintained
an average representation of 1,000 cells per shRNA con-
struct to maximize the potential for phenotypic effects
from each shRNA being observed in the final analysis.
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A549 pre-puromycin selection  
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Figure 2 GIPZ library plasmid/viral pool production and target cell line infection. (a) Scatter plots showing pair-wise comparisons of log2
normalized read counts from shRNA plasmid, virus and two technical replicates of shRNA constructs amplified from genomic DNA 3 days post-
infection of MCF7 and HeLa cells. Numbers indicate Pearson correlation between conditions. Technical replicates show high correlation. Plasmid
shows high correlation with infected cells in both cell lines. Virus shows weaker correlation with both plasmid and infected cells. (b) Test
infection of a panel of breast cancer cell lines. Most cell lines show >60% green fluorescent protein (GFP)-positive cells 3 days after infection.
Those that did not were puromycin selected to increase the population of GFP-positive cells to >90%. (c) Fluorescence-activated cell sorting
(FACS) profiles showing the percentage of GFP-positive cells before and after puromycin selection in A549 cells.
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Previous screens have shown similar levels of shRNA
representation to be suitable for the detection of shRNA
depletion and enrichment [3,4]. Since barcode screening
is a competitive growth screen, ensuring cells are in log
growth at all times during the screen is critical to mini-
mize changes in representation caused by localized
restriction of cell growth due to over-confluence. Conse-
quently, we recommend ensuring that cells are never
allowed to achieve more than 70% confluence.
After viral integration and puromycin selection were

complete, cultures were divided into two or more sets,
depending on the experimental design. For example, in
a typical drug sensitivity/resistance screen, cultures are
divided into reference (vehicle treated) and test (drug
treated) sets. Alternatively, in a simple viability screen, a
sample of cells can be taken and stored for analysis at
each passage, to generate a viability time-course. One of
the strengths of the lentiviral system is the stable inte-
gration of hairpins; this allows the use of longer experi-
mental time-courses than could generally be performed
using siRNA screening. As a consequence, final screen
results were typically assessed 2 to 3 weeks after divid-
ing the cells into two arms. Every time the cultures
were divided or sampled, aliquots were taken to assess
the cell number (to construct growth curves) and the

percentage of GFP-positive cells (to assess the number
of cells required to maintain hairpin representation). To
minimize screen variability, we use the same passage
cells for each screen replicate. We also maintain consis-
tent batches of media, serum, viral supernatant and tis-
sue culture plasticware for all screen replicates, again to
minimize experimental variation.

Barcode recovery
We used next generation sequencing to identify the fre-
quency of each shRNA construct in screen cell popula-
tions. To facilitate this we used PCR amplification of
genomic DNA from screen cell populations, based upon
methods previously described by McManus [3], Hannon,
Elledge and Lowe [2,4,5] and Quail [6]. PCR primers
complementary to constant regions found in all shRNA
constructs (Figure 3) were used to amplify the shRNA
target sequence that is specific to each individual shRNA
construct. The PCR primers also encompassed p5 and p7
sequences that allow sequence capture and sequencing-
by-synthesis on the Illumina GAIIx platform.
To enable sufficient representation of each shRNA in

the screening pool, multiple PCR reactions were per-
formed in parallel to generate the sequencing library
from each shRNA pool. For example, to maintain a
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Figure 3 PCR amplification, quantitative PCR and Illumina sequencing schema. (a) Diagrammatic representation of the complete
integrated shRNA construct. LTR, long terminal repeat; Ze, zeomycin resistance bacterial selectable marker; tGFP, turbo GFP; IRES, internal
ribosome entry site; Puro, puromycin mammalian selectable marker; RRE, Rev response element; sinLT, self-interacting LTR. (b) The structure of
the shRNAmir construct. The sense and antisense shRNA sequences hybridize to form a hairpin loop structure. (c) PCR primer alignment to the
shRNA construct. The PCR primers incorporate p7 and p5 sequences to enable capture on an Illumina flowcell. (d) Sequencing primer,
quantitative PCR (qPCR) primer and qPCR dual label probe alignment to the shRNA PCR product. CMV, cytomegalovirus; DLP, dual-labeled probe.
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representation of 1,000 cells per shRNA in a pool of
10,000 shRNAs at an MOI of 0.7, PCR amplification
from 1 × 107 cells is required. Since a diploid human
cell contains approximately 6 pg genomic DNA, we per-
formed PCR amplification from 60 μg total genomic
DNA using 30 parallel PCR reactions, each with 2 μg of
genomic DNA.

DNA quantification for next generation sequencing
Accurate quantification of purified PCR products is
required to achieve optimal cluster densities (the density
of template clusters on the flowcell surface) in Illumina
sequencing. Insufficient or excessive template results in
poor sequencing yield with either scarce or overlapping
signals. Real-time PCR has previously been used in Illu-
mina sample preparation protocols to overcome the
detection limits of capillary electrophoresis (typically 10
to 0.1 ng/μl) and enable standardization of cluster num-
ber per tile [6]. This led us to develop two robust quan-
tification assays for Illumina DNA libraries (Figure 4).

First, we utilized the complement of the Illumina
adapter sequences (p5 and p7, common to all Illumina
sequencing libraries) as amplification primers in an
intercalating dye-based quantitative PCR (qPCR) assay
(SybrGreen). This is similar to an approach applied to
the quantification of 454 Roche pyro-sequencing sam-
ples [7]. Second, for the quantification of DNA con-
taining hairpin inserts in shRNA-derived Illumina
libraries, we established a second strategy that utilized
a dual-labeled probe (DLP) hydrolysis qPCR assay
(Taqman). Here we designed a DLP complementary to
a constant internal region in shRNA-specific Solexa
PCR products. We based this approach on a reported
alternative Taqman assay defined for an established
Illumina sequencing application, pair-end RNA sequen-
cing (RNAseq) [6]. Overall, the implementation of both
of these innovative strategies allowed us to reliably
quantify shRNA templates prior to massively parallel
sequencing, leading to high numbers of mapped reads
passing quality filters.

(a) (b)

(c)

qPCR Accurate Quanitification

Figure 4 Quantitative PCR quantification of PCR products. Quantitative PCR (qPCR) assay designed to detect and quantify all amplifiable
solexa molecules (using oligos p5/p7 and SybrGreen) or shRNA-specific PCR products (using Taqman, amplification primers p5/p7 and a dual-
labeled probe). (a) shRNA PCR products quantified against a library of known concentration. (b) Standard curve constructed using a ten-fold
dilution series covering 100, 10, 1 and 0.1 pM. (c) Agilent electrophoresis profile of reference library.
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Sequencing data analysis
Raw images from the Illumina GAIIx were processed
using the GApipeline (version 1.4 or higher) and result-
ing quality filtered short reads were aligned to the refer-
ence shRNA library using the shALIGN script. We
developed shALIGN to circumvent a number of issues
associated with other open source aligners commonly
used in NGS analysis. Aligners such as Bowtie [8] and
BWA (Burrows-Wheeler Aligner) [9] are specifically
designed to align short reads to large genome sequences,
rather than short shRNA sequences. Aligning reads to
the genome would cause complications in the down-
stream analysis. First, using a whole genome alignment,
reads could align to multiple genomic regions, which
could allow the same read to be counted multiple times,
or assigned at random to a particular location. Second,
when using a whole genome alignment, reads with PCR
or sequencing errors could align in different regions to
unaltered reads, again giving a false picture of the num-
ber of reads mapping to a particular target. In contrast,
shALIGN aligns reads directly to the target shRNA
library, aligns each read to a single library construct, and
ensures that all ambiguous reads are excluded from the
final analysis. Typically, >90% of short reads aligned to
the reference shRNA sequence library using this method.
Resulting read counts per hairpin were statistically ana-
lyzed using a bespoke R-based package, shRNASeq. This
analysis revealed systematic pool-specific biases in the
log ratio of read counts from different screen arms at dif-
ferent levels of read abundance (Figure 5a). As a

consequence, the log ratio was normalized to the average
hairpin abundance using loess regression, and the nor-
malized scores were re-scaled by the pool median abso-
lute deviation (MAD; a robust estimator of variance) to
ensure comparable distributions (Figure 5b). In some
cases, we observed considerable heterogeneity in the dis-
tribution of normalized scores from biological replicates
from the same screen, prompting us to perform a rank
normalization across replicates to ensure identical
distributions.

Screen performance
We performed a number of experiments to evaluate screen
performance in terms of sensitivity and reproducibility.
To establish the sensitivity of the screening system, we per-
formed a series of engineered depletion experiments (Addi-
tional file 1). To do this, we manually altered the
representation of subsets of hairpins in a single screening
pool, then performed a short-term screen (long enough for
viral integration, but minimizing hairpin viability effects)
and examined the difference in hairpin representation
between the non-manipulated reference set and the sys-
tematically depleted set. These experiments demonstrated
that we could detect 75% or 50% depletion in hairpin
abundance with high accuracy in a single biological repli-
cate (Figure 6a,b). Indeed, for the 75% depleted shRNA set,
only seven depleted hairpins (0.74% of total depleted)
could not be distinguished from the main population of
non-manipulated hairpins at a threshold that detected no
false positives (Table 1). The false negative rate was slightly

(a) (b)

Figure 5 Processing screen data to remove biases associated with differential hairpin abundance. Plotting of the log ratio of paired
samples (for example, reference-depletion) frequently revealed biases with respect to average hairpin abundance. Consequently, the data were
normalized using loess regression to remove this bias. (a) The loess fit lines from four biological replicates of a 10k pool viability screen in MCF7
cells when the log ratio is plotted against log mean hairpin abundance. (b) The same plot post-loess normalization showing the standardization
of the curves.
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increased in the 50% depleted hairpin set. Even when the
shRNA constructs were depleted by 25%, half could still be
distinguished from the main hairpin population with a 0%
false positive rate (Table 1). The majority of false negatives
in the 50% and 75% depleted hairpin groups were in hair-
pins with low starting representation. Filtering of the data
to remove hairpins with low representation in the reference
set resulted in a reduced false negative rate associated with
a 0% false positive rate (Table 1). This appears to represent
a considerable improvement in sensitivity in comparison
with microarray-based methods. Previous work assessing
the use of custom designed microarray sets to deconvolute
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Figure 6 Assessing the sensitivity and reproducibility of the screening platform. We systematically depleted subsets of hairpins by 25%,
50% or 75% within a 10k pool and compared them to a non-depleted reference set 3 days after infection of MCF7 cells (see also Additional File
1). (a) Scatter plot of log2 normalized read counts from reference and depletion sets. (b) Density plot showing the distributions of the depleted
hairpin subsets: 25% depleted hairpins are plotted in red, 50% depleted in green and 75% depleted in blue. The screening methodology was
capable of detecting 50% depletion in hairpin representation with high accuracy in a single experiment. (c) Scatter plot of the depletion-
reference log ratio from two biological replicates, indicating a high correlation (r2 = 0.92) and thus a reproducible screening method. (d) Plot
depicting the false positive rate at a fixed false negative rate of 5% in a reference depletion experiment using different numbers of PCR cycles,
indicating a decrease in the false positive rate with decreased PCR cycles.

Table 1 Detection of depleted hairpins in reference
depletion screens

Un-filtered Filtered

Depletion Min FPR FNR Min FPR FNR

25% 0.00% 50.05% 0.00% 49.95%

50% 0.00% 4.21% 0.00% 2.89%

75% 0.00% 0.74% 0.00% 0.00%

The false positive and false negative rates at a range of log ratio thresholds
were calculated by comparing each depletion group to the non-depleted
hairpins. This was repeated for all hairpins and after filtering to exclude
hairpins with low representation (<100 raw reads) in the reference set. The
minimum false positive rate (Min FPR) found is shown along with the
associated false negative rate (FNR).
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shRNA screens showed that even the best-performing
microarrays (barcode tiling arrays) gave a mean test/refer-
ence ratio of 0.78 for a 50% depletion [10], whereas our
method offers a ratio of 0.54. Furthermore, barcode tiling
arrays detected an 80% depletion with a test/reference ratio
of 0.49 [10], whereas our NGS method gave a ratio of 0.33
for a depletion of 75%. Thus, the NGS-based approach
provides a greater range of measurements and is better
able to discriminate true depletions from background
noise.
Although NGS performs better than microarray hybridi-
zation for screen deconvolution, the barcode screening
format is subject to a significant degree of stochastic
noise regardless of the hairpin frequency detection
method, and biological replication of screens is almost
certainly required to overcome this. We performed two
biological replicates of the reference depletion screen.
There was a good correlation between log normalized
read counts from replicate screens (reference arm r2 =
0.89). Similarly, a high correlation of depletion-reference
log ratios was observed between biological replicates
(r2 = 0.92; Figure 6c), suggesting that screens are highly
reproducible. As expected, higher levels of noise were
observed between biological replicates than between
technical replicates.
Using the reference-depletion experimental frame-

work, we also titrated the number of PCR cycles
required to give faithful representation of the starting
material. This demonstrated that PCR amplification
acted as a source of noise in the experiment and that
reducing the number of PCR cycles resulted in a
decreased false positive rate at a set false negative rate
of 5% (Figure 6d). Consequently, we opted to use 26
PCR cycles as this generated a visible band on the gel
but still resulted in a relatively low error rate.
We also made use of the reference depletion dataset

to assess the minimum amount of sequencing reads
required to detect a reduction in shRNA representation.
Many of the more novel sequencing platforms, such as
the Illumina MiSEQ, are able to generate five million
reads in a single run, offering the potential to use these
cheaper platforms for shRNA screen deconvolution. We
sampled reads from one reference depletion experiment
to generate two additional datasets that contained either
approximately 5 million reads or approximately 2.5 mil-
lion reads, rather than the 10 million reads used in the
previous analysis. This analysis revealed that a 50%
reduction in shRNA representation could be detected
with high sensitivity and specificity even in 2.5 million
reads (Table 2; Additional file 2).
To test sensitivity in a genuine screen setting using dif-

ferent screening pool sizes, we performed a series of
screens for viability in MCF7 cells. To assess screen per-
formance, we used a number of genes where previous

observations had shown that siRNA silencing inhibited
MCF7 cells as measured using a viability assay based on
cellular ATP levels [11]. We validated the viability effects
of a set of GIPZ library shRNAs targeting these genes
using single hairpin GFP competition studies. We also
validated a number of negative control non-targeting
shRNAs using this method. This revealed a total of six
shRNAs, which caused a >50% depletion in GFP-positive
cells over 2 weeks, along with 11 non-targeting hairpins
that showed no viability phenotype in the same period
(Additional file 3).
Increased pool size leads to fewer reads per shRNA,

and reduces screen sensitivity and potentially reliability.
Therefore, we decided to compare the performance of
pools containing 10,000, 5,000 or 2,000 shRNA con-
structs in a 14 day cell viability screen. To facilitate
screen comparison, the 2,000 shRNA pool was a subset
of the 5,000 shRNA pool and the 5,000 shRNA pool was
a subset of the 10,000 shRNA pool, and the set of vali-
dated positive and negative control shRNAs described
above were added to each pool. When the 2,000 shRNAs
represented in all three pools were examined, there was a
high correlation between different pool sizes (Figure 7a).
Furthermore, five out of six positive control hairpins
were identified as hits in all three screening pool sizes
(Figure 7b). There was a clear distinction between vali-
dated positive and negative control scores in all screens
(Figure 7b). However, there was a larger than expected
variation in the negative control score, with validated
controls changing representation by up to 25%. This
effect was also seen in the distribution of 101 non-target-
ing shRNAs within the 10,000 shRNA pool (Figure 7c).
Furthermore, the depletion observed in positive control
hairpins was smaller than expected based on single hair-
pin GFP competition assays (Figure 7b).

Table 2 Comparison of reference-depletion screens at
different read depths

Total reads Depletion Min FPR FNR

10 million 25% 0.00% 49.95%

10 million 50% 0.00% 2.89%

10 million 75% 0.00% 0.00%

5 million 25% 3.41% 42.35%

5 million 50% 0.02% 1.28%

5 million 75% 0.00% 0.00%

2.5 million 25% 9.65% 49.95%

2.5 million 50% 1.70% 1.07%

2.5 million 75% 0.00% 0.00%

The false positive and false negative rates at a range of log ratio thresholds
were calculated by comparing each depletion group to the non-depleted
hairpins after filtering to exclude hairpins with low representation (<100 raw
reads) in the reference set. The minimum false positive rate (Min FPR) found
is shown along with the associated false negative rate (FNR). We were able to
consistently detect a 50% depletion in hairpin representation using a total of
only approximately 2.5 million reads.
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These results suggested that the scoring system per-
forms consistently regardless of pool size and the screen
is as sensitive in a 10,000 shRNA pool as in a 2,000
shRNA pool. Therefore, to maximize throughput and
minimize expense, we decided to use 10,000 shRNA
pools for screening. Since the genome-wide library
encompasses approximately 60,000 reagents, we reasoned
that a pool size of approximately 10,000 shRNAs would
be an ideal choice for this library. This would enable a
genome-wide screen to be run on a single eight-lane Illu-
mina flow-cell along with appropriate sequencing con-
trols. Furthermore, a 10,000 shRNA pool size would

require approximately 15,000,000 cells to be maintained
in tissue culture over the course of the experiment,
assuming an MOI of 0.7 and a representation of 1,000
cells per hairpin. This pool size enabled us to maintain
the simplicity and reproducibility of the associated tissue
culture work, which might become cumbersome in larger
pool sizes.
To establish the reproducibility of the screening metho-

dology, we repeated the screen for cell viability in MCF7
cells in a total of four biological replicates. The replicates
showed high correlation despite being performed by differ-
ent researchers at different times, suggesting that the

(c) 

(b) (a) 

(d) 
 

Figure 7 MCF7 viability screen performance in different pool sizes. (a) Scatter plots of 2,000 hairpins common to the 2,000, 5,000 and
10,000 shRNA pools showing high correlation of normalized scores (median of four replicates) between different pool sizes. Numbers indicate
Pearson correlation between pools. (b) Plot of observed barcode screen log ratios for validated positive and negative controls in the 2,000, 5,000
and 10,000 shRNA pools versus expected scores based on single hairpin GFP competition assay scores. Positive controls are in blue and negative
controls are in red. The horizontal dotted line indicates the threshold used for hit calling in the screen. Based on this threshold, 5 out of 6 valid
positive controls were called hits whereas 0 out of 11 negative controls did not score as hits. (c) Distribution of log ratios of 101 non-targeting
hairpins in the 2k pool. (d) Scatter plots of z-scores from four biological replicates of the 10k pool MCF7 viability screen, indicating a good
agreement between replicates. Numbers indicate Pearson correlation between replicates.
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screening method is robust (Figure 7d). Furthermore,
>98% of library hairpins were identified in all screen repli-
cates, compared to 49% of half-hairpin probes and 82% of
barcode tiling probes having intensity above background
in microarray-based approaches [10]. This suggests a
greatly improved sensitivity for the NGS profiling
approach.

Conclusions
Here we describe detailed and optimized methods for
high-throughput shRNA screening using NGS. Using
massively parallel sequencing in place of microarray
hybridization for deconvolution of shRNA barcode
screen results offers several advantages. Firstly, we
demonstrate that NGS profiling offers greater sensitivity,
enabling more hairpins to be detected above background.
Secondly, we show that NGS profiling has a better
dynamic range when compared to literature examples of
microarray-based approaches, since sequencing cannot
be easily saturated in the same way that hybridization
can, thus enabling a greater separation of true effects
from background noise. Thirdly, sequencing of tags is
both scalable and flexible, enabling new hairpins to be
incorporated into the work schema without having to
print a new batch of custom microarrays. Finally, our
computational pipeline offers the ability to identify
sequences where bases are not called due to sequencing
errors, or mutated during PCR, since short reads can be
matched inexactly to the reference library of shRNA
barcode sequences.
We do note that one of the major limitations of any

shRNA library is the efficacy of gene silencing, an issue
we have not addressed here. However, the ability to
rapidly assess silencing capacity and thus develop algo-
rithms that would predict effective gene knockdown is
improving [12]. In addition, an increase in the redun-
dancy of shRNA libraries (the number of different
shRNA constructs per gene) will also improve the gen-
eral effectiveness of pooled RNAi screens. Finally,
improvements in sequencing technology will undoubt-
edly increase read number per lane; these developments
will thus enable the use of larger shRNA pool sizes that
could accommodate libraries with higher levels of
redundancy. Nevertheless, even with the existing com-
mercial shRNA libraries and also the ever-increasing
availability of cost-effective NGS, the methods we
describe here should enable the wider applicability of
this powerful technology.

Materials and methods
shRNA library
Although the following methods are suitable for most viral
shRNA libraries, the work described here used the

Thermo Scientific Open Biosystems GIPZ Lentiviral
human shRNAmir library (version 2). These methods
could be used for other shRNA libraries, such as the RNAi
consortium library [13], with altered PCR and sequencing
primers. The GIPZ Lentiviral human shRNAmir library
we used encompasses 61,416 distinct hairpin constructs
targeting 15,739 human protein coding genes (based upon
the Ensembl 56 build). In the GIPZ vector the 19-nucleo-
tide siRNA sense sequence is inserted into a human mir-
30 backbone [14]. shRNA sequences are designed to have
destabilized 5’ ends in the antisense strand to encourage
stand-specific incorporation into the RISC [14]. The vector
backbone includes a GFP-coding sequence that is tran-
scribed as part of a bicistronic transcript with the shRNA
sequence allowing the visualization of shRNAmir expres-
sing cells, and a puromycin resistance marker for selecting
infected cells.

Bacterial culture
LB media (1 ml) containing 50 μg/ml ampicillin was
added to 96-deep-well microplates using a multidrop
(Thermo Fisher, Waltham, MA, USA), and 1 μl of each
bacterial inoculant (extracted from fully thawed 96-well
glycerol stocks) was seeded per well using a Beckman
FX robot. Culture plates were stacked evenly in shaking
incubators (200 rpm) ensuring even air circulation.
Following 16 hours of incubation at 37°C, cultures from
a single batch of plates were pooled and plasmid DNA
was isolated using a Plasmid Maxi kit (Qiagen, Crawley,
UK) and normalized to a standard concentration
(0.5 μg/ml). Plasmid DNA pools were combined in
equal concentrations to create screening pools of differ-
ent complexities.

Lentiviral packaging
For both calcium phosphate- and lipid-based transfection
using lipofectamine 2000, 293T cells were seeded onto
10 cm dishes (50 to 80% confluent), and co-transfected
with the desired shRNA library pool, along with the packa-
ging plasmids psPAX2 and pMD2.G [15], in a Safety Cate-
gory II facility. Thirty-six hours post-transfection,
supernatant was collected, supplemented with 4 μg/ml
polybrene and filtered through a 0.45 μm membrane. Viral
supernatant from multiple 10 cm dishes was pooled, ali-
quoted and stored at -80°C for future use. Determination
of viral titer allowed subsequent infection of screening cell
lines at intended efficiencies. For this, both target and
reference 293T cells were infected with 1:2 serial dilutions
of the virus. Virus was removed 24 hours later and cells
incubated for a further 48 hours at 37°C, after which the
proportion of GFP-positive cells was determined by fluor-
escence-activated cell sorting (FACS) to provide an esti-
mate of the fraction infected and viral titer.
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Viral transduction and cell sampling
Cells were infected with viral pools using a MOI of 0.7
and media replenished after 16 hours. Seventy-two hours
post-infection, when viral integration was presumed
complete, cells were exposed to 1 mg/l puromycin for
2 days to select for cells with viral integration. Following
puromycin selection, cultures were divided into two or
more replica cultures, and continuously cultured for 2 to
3 weeks, dividing cultures regularly to ensure continued
logarithmic growth and to maintain hairpin representa-
tion at approximately 1,000 cells per shRNA [4,5]. Cells
were harvested in suspension and either stored frozen at
-20°C or processed immediately as described below.

Barcode recovery
Genomic DNA extraction and purification from cultured
cells was carried out using a Gentra Puregene kit (Qiagen).
shRNA sequences integrated into genomic DNA were
recovered by PCR amplification using the following primers
and a procedure based upon that described by Hannon,
Elledge and Lowe [4,5]: p5+mir30, 5’-AATGATACGGC-
GACCACCGACTAAAGTAGCCCCTTGAATTC-3’; p7+
Loop, 5’-CAAGCAGAAGACGGCATACGATAGTGAAG
CCACAGATGTA-3’. PCR was performed on PTC-225
3DNA Engine Tetrads (Bio-Rad, Hemel Hempstead, UK)
using Amplitaq Gold polymerase and 20 to 33 cycles of
denaturation (95°C, 30 s), annealing (52°C, 45 s) and exten-
sion (72°C, 60 s). In general, 2 μg genomic DNA was used
per 100 μl PCR reaction and 48 PCR reactions were per-
formed per 10,000 shRNA pool. PCR products from multi-
ple parallel reactions were subsequently pooled,
concentrated and purified using a QIAquick gel extraction
kit (Qiagen).

Quantitative PCR DNA quantification
For absolute DNA quantification, real-time PCR was per-
formed using two alternative strategies: SybrGreen and
TaqMan. Both approaches used the appropriate universal
2X PCR mix from Applied Biosystems and the following
oligonucleotides at 250 nM each: P5, AATGATACGGC-
GACCACCGA (20-mer); and P7, CAAGCAGAA-
GACGGCATACGA (21-mer). For TaqMan only, 250 nM
of a 21-mer DLP was included (CCCTTGAATTCC-
GAGGCAGTA), with 5’ reporter (6FAM fluorescein) and
3’ quencher (tetramethylrhodamine (TAMRA)) as detec-
tors, and ROX passive reference dye. Forty-cycle measure-
ments of triplicate 25 μl reactions containing 10%
template sample at a theoretical concentration of 10 pM
(as defined by Agilent Bioanalyzer) were carried out in an
ABI 7900 instrument. Solexa library concentrations were
then inferred by comparing measurements to the standard
curve using the Sequence Detection System (SDS) v2.2.1
software. To generate the standard curve, a 10-fold

dilution series of a standard 100 nM sample (7.7 ng/μl for
117 bp) was used (final range 0.1 to 100 pM).

Barcode sequencing
Following quantification, denatured shRNA-seq libraries (3
pM in NaOH) were pumped through eight-lane flowcell
channels using the cluster station of an Illumina GAIIx
sequencing platform. Bridge PCR was executed using the
manufacturer’s protocol (Amplification-linearization-
blocking and multiple primer hybridization version 3). The
sequencing primer (TAGCCCCTTGAATTCCGAGG-
CAGTAGGCA) was designed to sequence from two bases
upstream of the 19 bp shRNA sense sequence. Twenty-six
cycles of sequencing-by-synthesis (single read) were per-
formed on an Illumina GAIIx according to the manufac-
turer’s protocol (version 4).

Image analysis and base calling
Raw image data were analyzed using GA pipeline v1.4.
PhiX was run as a control to ensure correct phasing.
Base calling was performed by the Bustard package
using the Chastity filter with a threshold of 0.6. The
Chastity filter was applied to bases 3 to 21 of the 26
bases sequenced (the shRNA sense sequence) only. A
maximum of two uncalled bases were allowed in these
19 bases. FASTQ files from this study are available at
the ROCK web page [16] and at the European Nucleo-
tide Archive [17].

shRNA library alignment
FASTq files generated by the GA pipeline were mapped to
reference shRNA libraries using a bespoke Perl program,
shALIGN. shALIGN trims short reads to the 19 bp sense
sequence based on user-defined base positions, and groups
identical reads disregarding sequence quality scores. shA-
LIGN employs a hamming distance algorithm to align
binned short read sequences to a user-defined reference
shRNA library provided in a standard tab-delimited text
format. The user is able to specify the maximum number
of mismatches permissible between the short read and the
reference. This alignment is equivalent to using Bowtie
with the flowing flags: –best –strata -v 2 -m 1 -a. However,
using shALIGN negates the need to construct and index a
specific Bowtie reference library by inserting the sense
sequence of each shRNA into a longer sequence. It also
saves the need to write a script to parse the Bowtie output
to count the number of reads mapped to each library con-
struct at each edit distance. For the GIPZ library this was
set at two mismatches as the vast majority of library
sequences were separated by an edit distance of greater
than two. All short reads that match to more than one
library sequence at the same distance were excluded from
further analysis, and logged as ambiguous. The shALIGN
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program outputs the total number of short reads matching
to each library hairpin in each lane. We routinely load
screen results into the ROCK breast cancer functional
genomics database [18], where screen reagents are fully
annotated to the latest genome build. ROCK provides a
mechanism for the sharing and publication of raw and
processed RNAi screen results. Source code and linux bin-
aries for the shALIGN program are available from the
ROCK web page [16].

Statistical analysis
To facilitate statistical analysis of screen results, we have
developed a novel R package, shRNAseq. This package
is based on the NChannelSet class in Bioconductor [19],
originally designed to handle microarray gene expression
data, and serves as a single user-friendly package
encompassing all of the steps required. shRNAseq reads
in matrices of short read counts per shRNA construct,
generated by shALIGN, along with annotations of
shRNA constructs and sequenced samples.
The package is designed to compare a pair of related

screen conditions. For example, in a viability screen one
would compare the hairpin representation in the starting
population (which could be from the plasmid, virus or an
early time point post-viral integration) to the hairpin
representation at the end of the screen (for example, after
2 weeks). Alternatively, for a drug screen one would com-
pare the drug and vehicle treated arms at the same time
point. The package can analyze multiple screen replicates
simultaneously. Each screen condition is loaded into the
package separately, and annotated using files describing
the shRNA constructs and the sample treatments. After
data loading, read counts per hairpin are log2 transformed
and then the ratio of the two screen conditions is calcu-
lated. This log ratio is normalized using a loess fit to the
log mean read count for each screening pool. The distri-
bution of normalized scores per pool is then rescaled by
dividing by the pool MAD. If appropriate, screen biological
replicates can be quantile (rank) normalized to ensure
identical distributions, and scores can be summarized
across replicates using a variety of methods (for example,
median, regularized t-test). Finally, the package plots
screen distributions before and after normalization and
reports a table of normalized scores. The R package is
accompanied by a detailed vignette describing the metho-
dology and usage at the ROCK web page [16].
Hit detection was performed using three different meth-

ods. In the first method, replicate scores for each hairpin
were summarized using the median and a hit threshold
estimated from a quantile-quantile plot, identifying hairpin
scores that significantly differed from the normal distribu-
tion. Second, the Gene Set Analysis R package [20] was
used to look for enrichment or depletion of sets of hair-
pins targeting the same gene. This approach makes use of

the hairpin redundancy within the library and works best
in libraries containing multiple hairpins per gene. Finally,
the RIGER algorithm [21] in the GENE-E java package
[22] was also used to look for enrichment of shRNAs tar-
geting the same gene. Here we used the log fold change
metric and weighted average method. Source code and
documentation for the shRNAseq R-package are available
from the ROCK web page [16].

Supplementary methods
Full methods, including a detailed screening manual, are
provided in Additional file 4.

Additional material

Additional file 1: Engineered depletion of shRNAs. To establish the
sensitivity of the screening system, we performed a series of engineered
depletion experiments. We manually altered the representation of
constructs in a 10,000 shRNA screening pool so that approximately 1,000
hairpins were depleted by 75%, approximately 1,000 depleted by 50%
and approximately 1,000 depleted by 25%.

Additional file 2: Detection of hairpin depletion at reduced read
counts. Reads were sampled at random from an engineered depletion
experiment involving approximately 10 million reads to give datasets of
either approximately 5 million or approximately 2.5 million reads in total.
shRNA depletion was estimated from these new datasets to show that
depletion of 50% could be observed in datasets containing
approximately 2.5 million reads.

Additional file 3: Positive and negative controls for the MCF7
viability screen were established using a single hairpin GFP-
competition assay. The bar chart indicates the proportion of GFP
positive cells remaining after 2 weeks of culture. The bar represents the
average from three biological replicates. The error bars indicate the
standard deviation.

Additional file 4: Detailed shRNA screening protocols. This Word
document describes in detail all of the steps of the shRNA screening
protocol from library generation to massively parallel sequencing.

Abbreviations
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