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Abstract

To facilitate identification and characterization of genomic functional elements, we have developed a chromatin
architecture alignment algorithm (ArchAlign). ArchAlign identifies shared chromatin structural patterns from high-
resolution chromatin structural datasets derived from next-generation sequencing or tiled microarray approaches
for user defined regions of interest. We validated ArchAlign using well characterized functional elements, and used
it to explore the chromatin structural architecture at CTCF binding sites in the human genome. ArchAlign is freely
available at http://www.acsu.buffalo.edu/~mjbuck/ArchAlign.html.

Rationale

The development of protein and DNA sequence align-
ment algorithms in the 1970s and 1980s revolutionized
the functional characterization of unknown proteins and
genes [1,2]. Since then sequence-based alignments have
become so accepted that when a pairwise percentage
identity is high enough, a gene or protein is now assigned
a function without biochemical confirmation [3]. Similar
to the explosion of sequence data in the 1980s, today
there is an exponential growth in chromatin structural
data. The majority of chromatin data are being generated
by next-generation DNA sequencing combined with
chromatin immunoprecipitation (ChIP), FAIRE (formal-
dehyde-assisted isolation of regulatory elements), DNAse
I hypersensitivity, or micrococcal nuclease (MNase)
digestion assays [4]. Analysis of these high resolution
datasets has discovered shared chromatin architectures at
previously defined functional elements in the genome;
however, identification of new functional elements and
their chromatin signatures remains limited.

Currently, the only way to characterize chromatin
architecture is to have an accurately mapped functional
element in the genome. Functional elements include
genes for protein and non-coding RNAs, and regulatory
sequences that direct essential functions such as gene
expression, DNA replication, and chromosome inheri-
tance. With an accurately mapped functional element,
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chromatin structural data are aligned by the genomic
coordinates and an average profile is created. For exam-
ple, transcription start sites (TSSs) in Saccharomyces cer-
evisiae have a well documented nucleosome-depleted
region approximately 50 to 100 bp upstream of the TSS,
flanked by a non-canonical acetylated nucleosome con-
taining the histone variant H2A.Z [5]. Chromatin archi-
tecture at these regions was identified because TSSs had
been accurately determined through other molecular
methods. In addition to TSSs, researchers have used
genomic datasets to identify shared chromatin architec-
tures at origins of replication [6], intron-exon junctures
[7-11], and enhancers [12]. All successful analyses have
started with an accurately mapped functional element,
which was used to align all regions containing that func-
tional element. The chromatin architecture was then
determined by averaging the chromatin data for aligned
regions. For poorly mapped functional elements or ele-
ments having an unknown directionality, the chromatin
structural profile loses definition and directionality is
obscured.

Insulator elements are an example of a genomic ele-
ment that has not been accurately mapped and has not
been extensively characterized. Insulators function to
restrict transcriptional enhancers from activating unin-
tended promoters, by acting as a barrier between chro-
matin contexts [13-15] or by mediating intra- and
interchromosomal contacts [16]. While insulators are cri-
tical for gene regulation, only a few have been identified
[15,17]. A key component of insulators in vertebrates is
the ubiquitously expressed CCCTC binding factor
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(CTCF). The genome-wide binding locations for CTCF
have been determined in multiple cell lines by both
ChIP-chip and ChIP-seq [18,19] and these locations have
been proposed to be insulator sites. Due to limitations in
the resolution for all ChIP experiments, the exact site of
CTCEF binding cannot be determined. In addition, CTCF
is part of a multimeric complex that in total defines the
location and directionality of insulator elements. There-
fore, CTCF binding can only identify insulators within
100 to 200 bp and any directionality within insulators is
unknown.

Identification of shared chromatin architecture at func-
tional sites has recently become an active area of research
[20-25], but most studies focus on well-defined transcrip-
tional promoters. While these approaches have provided
extensive insight into the chromatin architecture at well-
defined genomic features, there has been very limited
work to identify shared chromatin architectures for
unmapped, poorly mapped, or unknown genomic features.
Two groups have developed unsupervised approaches to
identify overrepresented chromatin states in a genome
[24,25]. Hon et al.[25] used a variant of a standard motif
finding approach with a probabilistic method and were
able to uncover 16 distinct signatures and the known pat-
terns at TSSs and enhancers. Ernst and Kellis [24] used a
multivariate hidden Markov model to identify how often
different chromatin mark combinations are found with
one another and used this to identify chromatin states.
These two approaches are limited in that while they can
identify overrepresented chromatin signatures, they cannot
identify less abundant signatures or be used to identify the
shared architecture at user-defined regions of interest. To
address this limitation, we developed ArchAlign, an algo-
rithm that identifies shared chromatin structural patterns
for user-specified regions of interest, from high-resolution
chromatin structural datasets derived from next-genera-
tion sequencing or tiled microarray approaches. ArchAlign
was designed and validated with data from mononucleo-
somes isolated by MNase digestion [26], and can be
used with any dataset that can be converted into high-
resolution log ratios. We used ArchAlign to align the
nucleosome positions at CTCF binding sites, and uncov-
ered a novel directional chromatin architecture containing
positioned H2A.Z nucleosomes with the histone tail modi-
fications H3K4me3, H3K4me2, H3K4mel, H3K9mel, and
H3K20mel. These results define a shared structure at
many CTCEF sites and provide a framework for further
exploration of the chromatin structure at insulator
elements.

Results

ArchAlign design and implementation

ArchAlign has two methods for aligning regions and
three similarity/distance metrics for scoring the
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similarity between two regions (Figure la). Depending
on the data type, the user can select between Pearson or
Spearman correlation, or Euclidean distance. For all the
analysis presented in this manuscript, the Pearson corre-
lation was used as the scoring function. The first align-
ment method, known as the single-best-pair approach,
uses the two regions with the highest similarity as the
template pattern to seed the alignment (see Materials
and methods). To identify the single-best-pair, every
region is compared against every other region at all pos-
sible displacements, upstream or downstream, for a pre-
determined frame size of alignment. For example, using
a 1-kb frame of alignment on 200 2-kb regions at 10-bp
resolution results in 1,990,000 possible best pairs with-
out reversals and 3,980,000 with reversals. The region
reversal option allows the identification of unidirectional
chromatin structures, as evident at TSSs, and is advanta-
geous when the actual orientation is unknown. This
option compares every possible reversed combination of
region frame against every other possible region frame,
in addition to its non-reversed comparisons. Once the
best pair is identified, an optimal pattern is derived as
its average within the alignment frame. The optimal
best-pair pattern is then systematically shifted and com-
pared against all remaining regions in the dataset (with
optional orientation reversal). The region with the high-
est similarity is then added to the profile by a weighted
average and the process is repeated until all regions
have been added to the alignment (Figure 1b).

The second approach, known as seed sampling, is a
more comprehensive search of the possible alignment
space. Every region in the alignment is used as one-half
of the optimal seed pattern for an independent align-
ment. Therefore, for a dataset with # regions, n inde-
pendent alignments are generated as described for the
single-best-pair approach (Figure 1b). To determine
which of the # alignments is the best alignment for the
dataset, a post-alignment quality assessment is per-
formed by calculating the average correlation or distance
of each aligned region to every other aligned region (see
Materials and methods). The alignment that maximizes
the similarity across all regions is then selected as the
optimal alignment.

ArchAlign validation

ArchAlign was validated by randomizing coordinates
for 200 TSSs from S. cerevisiae [27], taking the nucleo-
some occupancy data centered at the randomized TSSs
coordinates, and then aligning the randomized data
(Figure 2a). Data were randomized by shifting the cen-
ter upstream or downstream 50 to 250 bases from
the actual location. The coordinates of the aligned
TSSs were then compared against their original non-
randomized TSSs, and accuracy was determined as the
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Figure 1 Overview of the ArchAlign algorithm. (a) High-resolution chromatin structural data from regions of interest are converted into log,
ratios and aligned within a user defined alignment frame. (b) ArchAlign has two options for aligning chromatin structural patterns: 1, single-
best-pair uses the two regions with the highest similarity, by Pearson or Spearman correlation or by Euclidian distance, to seed a single
progressive alignment; 2, seed sampling is a more comprehensive search of the possible alignment space, which uses every region within the
alignment as a possible seed for an independent alignment. The best alignment is selected as the one that maximizes the correlation across all
regions in the alignment frame.




Lai and Buck Genome Biology 2010, 11:R126
http://genomebiology.com/2011/11/12/R126

Page 4 of 10

-750 0 750 -750 0 750 -750 0 750
Original transcription start sites Randomized transcription start sites Aligned transcription start sites
(b) ——Randomized data (c) ——Randomized data
100 - ——Single-best pair approach 18- ——38ingle-best pair approach
o ——Seed sampling approach » —Seed sampling approach
B 901 » 17.51
F 801 g
S 70+ 2
2 60- g 16.54
Q 50 = 167
£ 40+ = 15.51
F 15.
£ 301 3 5.
< 20 & ]
® 10+ > 14,51
0 14
50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250

Maximum randomized distance (bp) Maximum randomized distance (bp)

(d) 100 —Randomized data (e)
——Single-best pair approach
90 ——Seed sampling approach

——Randomized data
16 —Single-best pair approach
1 —Seed sampling approach

4/—/

100 125 150 175 200 225 250
Maximum randomized distance (bp)

% Within 40 bp of origins

1756 200 225 250 50 75

50 75 100 125 150
Maximum randomized distance (bp)

Figure 2 Validation of ArchAlign. (a) The location of the TSSs was randomized by 50 to 250 bp for 200 structurally similar TSSs from S.
cerevisiae, and the nucleosome occupancy data, centered at the randomized TSS coordinates, were aligned with ArchAlign. A total of 1.5 kb
surrounding the TSSs is shown with -750 referring to the distance upstream and 750 referring to the distance downstream. (b) The TSS data
were randomized by shifting the center upstream or downstream from the actual location by a maximum distance of 50 to 250 bp at 25-bp
intervals of increasing randomization. The randomized TSS coordinates were then used to generate 1.5-kb regions of nucleosome occupancy at
10-bp resolution surrounding the coordinates (blue line). (c,e) Variability for the alignment of TSSs or origins was calculated as the average root
of sum of squares for that region compared to the mean profile. Variability for the entire alignment was estimated as the average of all regions.
The graphs show the mean and standard error of each of the genomic features’ ten alignments’ overall variability at each randomization. (d) The
origins of replication were randomized as described above for TSSs and the randomized coordinates were then used to generate 2-kb regions of
nucleosome at 10-bp resolution surrounding the coordinates (blue line). Randomized nucleosome occupancy regions were then entered into
ArchAlign using both the single-best-pair (red line) and seed sampling (green line) approach. Each interval of randomization was repeated 10
times for a total of 90 randomized datasets for each genomic feature. ArchAlign’s output was then tested for similarity to the original data by

determining the percentage of aligned TSSs and origins that were within 40 bp upstream or downstream of their original positions.

percentage of aligned TSSs within 40 bp of their origi-
nal location (Figure 2b). The overall variability across
the alignment was determined as the average sum of
squares (Figure 2c). ArchAlign with the single-best pair
approach was able to accurately align approximately
80% of the randomized data, when the randomization
was less than 150 bp from the original TSSs’ coordi-
nates. However, as randomization increased, the overall
accuracy of the alignments decreased, with only 60% of
the randomized data within 40 bp of their original
coordinates, and the variability across the alignment
increased in a similar fashion. The decrease in accuracy

and the increase in variability for the single-best-pair
approach is likely due to poor seed selection since the
most similar regions do not necessarily represent the
optimal chromatin signature for the entire alignment.
ArchAlign with seed sampling produced high-quality
alignments regardless of randomization, while main-
taining a consistent variability across the alignment.
The disadvantage of the seed sampling approach is the
computational time involved. Since seed sampling gen-
erates one alignment for every region, an alignment of
n regions requires # times as much computational time
as the single-best-pair approach.
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To ensure that ArchAlign can accurately align chroma-
tin signatures located at various genomic features, we
further validated ArchAlign with chromatin data for ori-
gins of replications from S. cerevisiae. Origins in S. cerevi-
siae have a well-characterized nucleosome-depleted
region surrounded on both sides by an array of nucleo-
somes [28]. We used all origins, 156 of 222, that con-
tained a complete nucleosome occupancy profile
identified in the recent study of Berbenetz et al.[28]. The
origins were then randomized in an identical method to
the TSSs and aligned using the same parameters as pre-
viously stated. As shown previously with TSSs, ArchAlign
using the seed sampling approach was able to produce
high quality alignments with low variability regardless of
the level of randomization (Figure 2d,e).

Alignment of nucleosome occupancy at CTCF binding in
CD4+ cells

To determine if ArchAlign can uncover novel chroma-
tin architecture, nucleosome occupancy near CTCF
binding sites in human CD4+ cells was examined. We
selected the top 1,000 CTCF binding sites, which are
located at least 2 kb away from a known TSS [29,30].
The nucleosome occupancy data surrounding (+1 kb)
each CTCF binding site were extracted and aligned with
ArchAlign (Figure 3a). Since directionality of the chro-
matin structure at CTCF binding sites is unknown,
ArchAlign was run allowing region reversal using the
seed sampling approach. After alignment, the apparently
well-positioned nucleosomes flanking both sides of
CTCF binding sites were lost, and a unidirectional
nucleosome pattern was observed, with an array of
well-positioned, highly occupied nucleosomes on the
left of a nucleosome-depleted region (Figure 3b). The
directionality discovered after alignment is not a func-
tion of asymmetric binding of CTCF [14], since orienta-
tion of the nucleosome data by the directionality of
the CTCF binding motif still generates a bimodal peak
(Figure S1 in Additional file 1). The directional inde-
pendence of CTCF binding with respect to the nucleo-
some patterning surrounding it suggests that the
primary binding motif of CTCEF itself is not responsible
for the asymmetrical chromatin signature at these sites.
Rather, proteins that interact with CTCF or additional
CTCEF interactions beyond the consensus motif are driv-
ing the directionally observed in the chromatin struc-
ture (see Discussion).

Identification of epigenetic architecture using the
ArchAlign coordinates

To determine if alignment of the nucleosomes at CTCF
sites revealed unique chromatin architecture, we exam-
ined the available histone variant and histone modifica-
tion data for human CD4+ cells at these sites [12,30].
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The histone variant H2A.Z and the histone tail modifi-
cation H3K4me3 were specifically examined due to their
previously characterized correlation to CTCF binding
[13,14,30]. As previously shown for unaligned CTCF
sites, there was a bimodal peak surrounding the CTCF
binding site for both H2A.Z and H3K4me3 (Figure 4a,
¢). The coordinates derived from the alignment of
nucleosomes surrounding CTCF were used to generate
the aligned profiles of all histone modifications. When
we generated average profiles for H2A.Z and H3K4me3,
the bimodal distribution was lost, and there were three
ordered H2A.Z and H3K4me3 nucleosomes to the left
of the nucleosome-depleted region. These results sug-
gest that the bimodal peaks of H2A.Z and H3K4me3
seen in previous publications are likely an artifact due to
averaging of all CTCF binding sites without considering
the asymmetry/orientation of the chromatin structure
[14,30]. To confirm that the original data did in fact
contain two groups with reverse orientations and only a
single peak of H2A.Z at individual CTCF sites, we clus-
tered the examined regions by H2A.Z sequence tag
counts into two groups (Figure 4b,d). Two distinct and
opposite peaks were identified in both cases, which pro-
vides further evidence that the directionality proposed
by ArchAlign is valid. We further explored the chroma-
tin architecture at CTCF sites by mapping all available
histone modification datasets from CD4+ cells [12,30].
In addition to H2A.Z and H3K4me3, H3K4me2,
H3K4mel, H3K9mel, and H4K20mel displayed a simi-
lar directional pattern (Figure S2 in Additional file 1),
while other methylation and acetylation marks were not
associated with CTCF sites (Figures S3 and S4 in Addi-
tional file 1). To confirm that the discovered structure
at CTCEF sites is specific for CTCF, we randomly
selected 1,000 2-kb regions from the genome and
aligned the nucleosome occupancy data using the same
ArchAlign parameters as before (Figure S5 in Additional
file 1). For all randomizations, there was an absence of a
chromatin architecture after alignment, confirming that
the discovered architecture at CTCEF sites is specific to
these regions.

ArchAlign was able to uncover the unique chromatin
architecture located at CTCF sites using only nucleosome
occupancy data. The identified architecture contains a
nucleosome-depleted region located near CTCF binding
sites with adjacent positioned nucleosomes. Overlaying
the histone modification and variant data using the
aligned coordinates on top of the nucleosome occupancy
showed a strong preference for the presence of the H2A.
Z nucleosome variant on the strongly positioned nucleo-
somes as well as the concurrent presence of the histone
tail modifications H3K4me3, H3K4me2, H3K4mel,
H3K9mel, and H4K20mel. These results suggest that
CTCEF is a component of direction-dependent chromatin
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Figure 3 ArchAlign uncovers an asymmetric nucleosome pattern at CTCF sites. (a) Nucleosome occupancy profiles were examined at a
resolution of 10 bp centered on 1,000 CTCF binding sites in CD4+ cells, and were aligned with ArchAlign with a 1.5-kb alignment frame with
reversal of regions enabled [30,37]. (b) Comparison of the nucleosome profiles before (blue) and after alignment with ArchAlign (red).

architecture at the majority of its binding sites, which
may be functionally important for its role as an insulator.

Discussion
Insulator elements have been characterized by their abil-
ity to act as a barrier between differing chromatin con-
texts [13,16]. We found a directional chromatin
signature at CTCF sites that appears similar to a barrier
between chromatin contexts. On one side there are
H2A.Z nucleosomes with H3K4, H3K9, and H3K20
methylation and on the other side there is a reduced
nucleosome occupancy. The discovered asymmetric
architecture at CTCF appears similar to the recent asso-
ciation of CTCF at borders between repressive chroma-
tin marks [13,30], or heterochromatic lamina associated
domains [31]. The functional importance of the chroma-
tin architecture and polarity for insulators has yet to be
determined, but our alignment will act as a guide for
future functional dissections.

CTCF binding location alone is not capable of provid-
ing an accurate alignment because the chromatin

architecture at CTCF insulators is likely caused by other
associated proteins, the underlying DNA sequence at the
region, or a combination of both. At the well-studied
H19 imprinting control region nucleosome positioning
has been shown to be regulated by the underlying DNA
sequence, not CTCF binding [32]. In addition, CTCF is
known to interact with multiple DNA binding transcrip-
tion factors, chromatin modifying proteins, and nuclear
architectural proteins [33]. Therefore, it is likely that
CTCEF is only a single component of a multimeric com-
plex located at insulators and that this insulator complex
with the underlying DNA sequence defines the chroma-
tin architecture at insulators. Identifying the shared chro-
matin architecture at insulators using CTCF binding
location is analogous to identifying the shared architec-
ture at TSSs using only the binding location of a tran-
scription factor. To illustrate this concept, we examined
the shared chromatin architecture around the binding
sites for three abundant yeast transcription factors
(Figure S6 in Additional file 1). The average nucleosome
occupancy profile of the transcription factor binding site
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Figure 4 Effect of nucleosome alignment on CTCF correlated histone modifications. (a,c) Plots of the average tag counts at the unaligned
and aligned CTCF sites for (a) H2A.Z and (c) H3K4me3. (b,d) Sequence tag data for H2A.Z at CTCF sites was clustered into two groups by k-
means clustering after centering each region by average tag count [39]. The average profiles for the two groups for (b) H2A.Z and (d) H3K4me3
were plotted.

was compared before and after alignment with ArchAlign
to the average nucleosome profile of the TSSs adjacent to
the binding site. Since most transcription factors can
bind in either orientation in relationship to TSSs and at
various distances, the profile derived by only the binding
site appears symmetrical and not well resolved. After
alignment with ArchAlign the aligned profile has a simi-
larity to the TSSs’ derived profile and the true asym-
metric nature is uncovered.

Similar to DNA and protein sequence alignment algo-
rithms, ArchAlign does not identify the base pair loca-
tion for a feature of interest. To identify the location of
a genomic feature with ArchAlign, example regions con-
taining an experimentally mapped feature need to be
included in the alignment. The location of the unknown
features can then be inferred from the alignment. The
accuracy of the alignment is dependent on both the
accuracy of the example regions and the extent to
which the chromatin is organized around that feature.
As evident from TSSs and CTCF binding sites, histone
variants and histone tail modifications help define
distinct chromatin architecture for certain genomic

features. Future versions of ArchAlign will incorporate
these datasets in order to produce an even more biologi-
cally relevant alignment.

ArchAlign is the first tool developed to align chromatin
structural data and will prove highly valuable for analyz-
ing chromatin datasets from genomes lacking substantial
genomic feature annotation. Currently, there are many
genomic features that cannot be accurately mapped by
available techniques. For example, TSSs in Caenorhabdi-
tis elegans are difficult to map due to trans-splicing of
the majority of mRNAs, which causes the 5" ends of dif-
ferent messages to have the same leader sequence [34],
and origins of replication in Schizosaccharomyces pombe
are difficult to map accurately, because S. pombe’s origin
recognition complex does not bind to specific DNA
sequences but to AT-rich regions [35]. ArchAlign
requires only the general coordinates of a feature in
order to determine the likely structural pattern present
around it. In addition, as demonstrated for CTCEF sites,
even accurately mapped features may have a previously
unrecognized directionality obscuring results that could
be revealed by alignment with ArchAlign.
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Materials and methods

S. cerevisiae nucleosome occupancy

S. cerevisiae genome-wide nucleosome occupancy
maps were downloaded from the Segal Lab and trans-
formed into a log, ratio for each base pair [26].
Mapped sequence tags from a MNase digestion were
extended to the average sequence length for that
experiment (150 to 200 bp) and normalized nucleo-
some occupancy at every base pair was determined as
the log-ratio between the number of reads that cover
that base pair and the average number of reads per
base pair across the genome [26]. The 200 TSSs used
in validation were randomly selected from the pre-
viously defined cluster 3 of similar TSSs exhibiting
high expression levels and a similar nucleosome occu-
pancy pattern [27]. The 156 origins of replication used
for validation were selected from the original list of
222 characterized origins because they contained no
gaps in the nucleosome occupancy dataset [28]. The
70 MBP1, 76 GCN4, and 63 SWI4 binding sites identi-
fied by ChIP-chip experiments were selected from the
original list of 127 MBP1, 107 GCN4, and 145 SWI4
sites because they contained no gaps in nucleosome
occupancy [36].

Human CD4+ resting cells

Nucleosome occupancy

Genome-wide nucleosome occupancy maps for CD4+
cells were downloaded from NCBI [37] and transformed
into a log, ratio, as described above, using a tag exten-
sion of 120 bp.

CTCF binding sites

CTCF binding data were downloaded from NCBI [30].
The top 1,000 CTCEF sites were selected by running a
MACS analysis [29] and identifying the highest peaks
determined by fold enrichment of CTCF binding in the
genome. The coordinates for the top 10,000 peaks were
then used to generate the nucleosome occupancy pro-
files in the log, occupancy dataset previously generated.
All CTCEF sites for which complete data were not avail-
able or were within 2 kb of TSSs of a known gene were
removed from the original set of sites. The remaining
top 1,000 sites by fold enrichment were then selected as
CTCF binding sites.

CD4+ histone modification maps

CD4+ histone modification data were downloaded
from NCBI [12,30]. Genome-wide maps of sequence
tag count were then generated for all datasets assum-
ing an extension length of 120 bp as previously
described.

Random regions

A random number generator was used to generate the
genomic coordinates for 10,000 random non-overlap-
ping regions. The data were then extracted as previously
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described. The first 1,000 remaining regions after filter-
ing were then selected as the random regions.

ArchAlign
Scheme 1: overview of chosen seed alignment
Usage: Chosen Seed Alignment (X, Y), where X = Seed
Region 1, Y = Seed Region 2, Z = List of Regions, n =
Number of Regions, w = Optimal Window of Region,
and P = Average Profile.

Identify windows of X and Y that maximize the similarity

P=(X,+Y,)/2
Repeat fori = 3 to n

Repeat for j = 0 to Length of Remaining Regions
Identify window of Z; that maximizes similarity
to P

Identify Region j that contained the window that

produced the highest similarity to P

P=(Px(i-1)+Zjy )/i
Remove Z; from Z

Output Optimal Windows of All Regions
Scheme 2: Overview of single best-pair alignment
Usage: Single Best-Pair Alignment(Z)

Repeat fori = 0 to n

Repeat for j =0 to n
Identify windows of Z; and Z; that maximize
similarity out of all possible regions given i = j

Identify which two Regions contained the windows
that produced the highest similarity to each other for Z;
and Z;

Chosen Seed Alignment(Z;, Z;)
Scheme 3: Overview of seed selection alignment
Usage: Seed Selection Alignment(Z), where A; = Align-
ment with a forced seed from Region i.

Repeat fori = 0 to n

Repeat for j = 0 to n
Identify windows of Z; and Z; that maximize
similarity out of all possible regions given i = j
Identify which two Regions contained the windows
that produced the highest similarity to each other
for Z; and Z;
A; = Chosen Seed Alignment(Z;, Z))
Post-Alignment Quality Assessment(A;)

Identify and output alignment that produced the high-
est Post-Alignment Quality Assessment
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Equation for post-alignment quality assessment
Usage: Post-Alignment Quality Assessment(A), where
A = Alignment.

ZSI(:OZ ?zOSlmllarlty Metric (AX ) Ay) I(X#Y)I((X—Y)Zl)
KA X
X=1

Compiled

ArchAlign was designed and written in C++ then com-
piled and run on a 64-bit Linux machine with 8 x 2.76
GHz Xeon X5550 cores, 48 GB RAM, and 80 TB
attached disk storage array. The current version of Arch-
Align is designed to use only a single CPU core per run.
Validation

The original (+750 bp) nucleosome profiles of the 200
TSSs were extracted at a resolution of 10 bp. ArchAlign
was performed with a sliding window of 1 kb with
region reversal disabled. The original (+1 kb) nucleo-
some of 156 origins of replication were extracted at a
resolution of 10 bp. ArchAlign was then performed with
a sliding window of 1.5 kb with region reversal disabled.
CTCF

The (+1 kb) nucleosome profiles of the top 1,000 were
extracted at a resolution of 10 bp and ArchAlign was run
with a sliding window of 1.5 kb with region reversal enabled.
Random region

The (+1 kb) nucleosome profiles of 1,000 random
regions were extracted at a resolution of 10 bp and
ArchAlign was run with a sliding window of 1.5 kb with
region reversal enabled.

Run times

Alignment using seed sampling without reversals of 200
2-kb regions at 10-bp resolution with a sliding window
of 1.5 kb requires less than 5 minutes of CPU time.
Alignment using seed sampling with reversals of 1,000
2-kb regions at 10-bp resolution with a sliding window
of 1.5 kb requires approximately 20 hours of CPU time.
Increases in number of regions, region size, data resolu-
tion, and decreases in window size will result in
increases of CPU run time. Alignment using the single-
best-pair approach is significantly faster; for a 1,000
2-kb region with reversals at 10-bp resolution with a
1.5-kb window requires less than 10 minutes CPU time.
Availability

ArchAlign is available at [38].

Additional material

[ Additional file 1: Supplementary figures S1, S2, S3, S4, S5, and S6. J
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