
Hepatitis C virus and microRNAs
MicroRNAs (miRNAs) are gaining an increasingly 
promi nent role as regulators of numerous cellular pro-
cesses, including virus-host interactions. Th ey are short 
(21-23 nucleotide) non-coding regulatory RNAs that 
infl uence gene expression at a post-transcriptional level 
[1]. miRNAs are encoded as part of long nuclear trans-
cripts, which are processed in the nucleus by Drosha, 
then exported to the cytoplasm and further processed by 
Dicer. Th e resulting mature miRNA strand is loaded into 
the RNA-induced silencing complex (RISC), which acts 
as the eff ector of miRNA activity [1]. In animals, target 
specifi city is usually determined by a 6-8mer ‘seed’ at the 
5’ end of the miRNA. Typically, miRNAs bind sites in the 
3’ untranslated regions (UTRs) of mRNAs that have 
perfect complementarity to the seed but imperfect 
complementarity to the remainder of the miRNA. Th e 
precise mechanism of miRNA-mediated repression is not 
fully defi ned; both translational repression and degrada-
tion of miRNA-RISC-bound mRNAs have been observed 
in diff erent studies [1].

Several viruses interact with the miRNA pathway. Certain 
viruses produce their own miRNAs, which regulate viral 
or cellular targets, whereas some viruses are regulated 
directly or indirectly by cellular miRNAs [2]. One impor-
tant virus that has a requirement for a specifi c miRNA is 
hepatitis C virus (HCV). HCV infects the liver and is a 
major global health concern, with an estimated 170 
million people infected worldwide [3]. In the majority of 
cases acute infection with HCV progresses to chronic 
infection, although infection can be cleared spontaneously 

in a minority of cases. Chronically infected individuals 
may then develop cirrhosis of the liver and may ultimately 
progress to hepatocellular carcinoma. HCV is predomi-
nantly spread through direct blood contact, although 
there is some evidence to suggest a possible (minor) 
route of sexual transmission [3]. A report recently pub-
lished in Science [4] shows that inhibiting a specifi c 
miRNA in chimpanzees chronically infected with HCV 
reduces viral load.

HCV has a single-stranded positive-sense RNA genome 
that encodes a single polyprotein that is processed to ten 
viral proteins (Figure 1). Th e single open reading frame is 
fl anked by two structured UTRs that are required for 
replication [5]. Th e 5’ UTR of HCV contains an internal 
ribosome entry site (IRES) that drives translation of the 
open reading frame [5]. Within the fi rst 45 nucleotides of 
the 5’ UTR are two seed matches for miR-122 (Figure 1), 
a highly expressed liver-specifi c miRNA accounting for 
about 70% of the total liver miRNA population (about 
66,000 copies per cell) [6]. Th ese sites bind to miR-122 
and are conserved across all six HCV genotypes. Th is 
interaction is required for viral replication in cultured 
cells [7-9]. Th e mechanism by which miR-122 regulates 
HCV remains uncertain, with reports of enhancement at 
the level of either translation or replication [7,10]. It is 
possible that there is a complex regulatory mechanism 
that aff ects both processes.

It is possible to perturb miRNA activity by using 
complementary oligonucleotides directed against specifi c 
miRNAs. Following introduction into cells, the oligo-
nucleo tide is bound by the appropriate miRNA in complex 
with RISC. Th is prevents the miRNA from interacting 
with its targets. Various chemical modifi cations improve 
binding affi  nity and stability of these inhibitors. miR-122 
has been targeted eff ectively in mice using 2’-O-methy-
lated or 2’-O-methoxyethylated antisense oligo nucleo-
tides [11,12]. Researchers at Santaris Pharma took a 
similar approach to silence miR-122 in mice, using anti-
sense oligomers containing locked nucleic acid (LNA), a 
bicyclic nucleic acid analog that provides superior target 
specifi city and stability and low toxicity [13]. Th is strategy 
was extended to target miR-122 in primates using a 
molecule with an optimized combination of LNA and 
DNA bases and a phosphorothioate backbone (SPC3649; 
Figure  1) [14]. Eff ective, long-lasting knockdown of 
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miR-122 levels was observed, coupled with derepression 
of endogenous targets and absence of signifi cant asso-
ciated toxicity [14].

miR-122 knockdown reduces HCV load in infected 
chimpanzees
Th e conserved and essential nature of the miR-122-HCV 
interaction, and the eff ective non-toxic in vivo suppres-
sion of miR-122 in primates by SPC3649, off ers an 
exciting strategy to target HCV. In a new study [4], 
Lanford et al. have begun to assess the therapeutic 
potential of SPC3649 in chimpanzees chronically infected 
with HCV.

Four chimpanzees chronically infected with genotype 1 
HCV isolates were used in this study. Two were treated 
with a high-dose regime (5 mg/kg SPC3649) and the 
remaining two were given a low-dose regime (1  mg/kg 
SPC3649). Baseline samples were taken for 4  weeks 
before treatment with SPC3649, and the two samples 
taken immediately before treatment were accompanied 
by administration of an intravenous saline placebo. 
SPC3649 was administered by weekly intravenous injec-
tion for 12  weeks followed by a 17-week treatment-free 
follow-up period [4].

Th is study [4] demonstrates that SPC3649 has a strong 
potential as a therapeutic agent. Treatment with the drug 
led to the de-repression of endogenous target mRNAs, in 
keeping with previous studies. Furthermore, SPC3649 
therapy resulted in a reduction of viral load by up to 2.6 
orders of magnitude for HCV genome equivalents in 
serum and up to 2.3 orders of magnitude in tissue in 
high-dose animals. One of the low-dose animals showed 
a similar but reduced response, whereas the other did not 
respond. HCV RNA fl uctuated in the non-responding 
animal, and endogenous miR-122 targets were also 
unaff ected, suggesting that miR-122 was not eff ectively 
inhibited [4].

Importantly, no escape mutants were detected by deep 
sequencing of HCV genome samples, implying that the 
interaction of miR-122 with HCV genomes is critical in 
vivo and suggesting that resistance to SPC3649 therapy 
might not be generated by mutation in miR-122 binding 
sites. Rebound of viral load did not occur during therapy, 
and took at least 15 weeks to return to pretreatment 
levels after withdrawal of the drug. Encouragingly, the 
half life in vivo of SPC3649 is in the order of 20 days, 
presenting the possibility of longer periods between 
administrations without sacrifi cing eff ectiveness once 

Figure 1. miR-122 targeting HCV. The HCV RNA genome is shown with coding regions as rectangles and the 5’ and 3’ UTRs as lines. Structural 
genes are in blue and non-structural genes in purple. The two seed matches bound by miR-122 are highlighted in red in an expanded view of the 
5’ UTR. The sequence of miR-122 is shown in black, with the seed (nucleotides 2-8) in red. The SPC3649 molecule that targets it is shown with LNA 
indicated in orange (C in orange indicates LNA methylcytosine) and DNA in green. The backbone is phosphorothioate.
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miRNA suppression is achieved. An improvement in liver 
histology also occurred in response to SPC3649 therapy, 
suggesting that damage induced by HCV infection might 
be reparable [4].

Implications for human HCV therapies
Th e results of this study are very exciting. Previous work 
demonstrating a role for miR-122 in the HCV life cycle 
was carried out in cell culture, so the discovery that this 
miRNA has similar eff ects in infected animals is highly 
signifi cant. Th e good safety profi le and stability of 
SPC3649 give it considerable promise for human therapy.

Clinical trials of SPC3649 in human patients will be 
very important, as results obtained in chimpanzees will 
not necessarily extrapolate to humans, and trials across 
larger populations may reveal diff erent responses. Th e 
chimpanzee is a very useful model for HCV infection, but 
there are signifi cant diff erences between the pathogenesis 
of viral infection in chimpanzees and humans [15]. 
Chimpanzees experience milder symptoms than humans, 
and cirrhosis has not been detected in infected animals. 
Chronically infected chimpanzees show no reduction in 
viral load in response to interferon therapy, and may 
therefore be more valid as a model for human non-
responders [15]. Th e reduction in viral load following 
treat ment with SPC3649 was accompanied by normali-
zation of the endogenous interferon pathway, which is 
maximally induced in chronically infected chimpanzees 
[4]. SPC3649 might thus be able to convert human non-
responders to responders and to allow eff ective interferon 
therapy.

Analysis of liver biopsies from HCV-infected humans 
showed no positive correlation between hepatic miR-122 
expression and viral load [16]. Patients who were 
unresponsive to interferon therapy had signifi cantly 
lower miR-122 levels prior to treatment than responders 
[16]. However, miR-122 expression is very high in the 
liver, so even reduced levels could be suffi  cient to support 
HCV replication. Interestingly, chimpanzees receiving a 
low dose of the drug in the Lanford et al. study [4] did 
not respond as well as high-dose animals, despite 
miR-122 being undetectable by Northern blot, lending 
support to the hypothesis that low levels of miR-122 can 
support viral replication [4]. It is also possible that the 
subpopulation of hepatocytes infected with HCV may 
show a diff erent correlation between miR-122 and HCV 
levels to that observed in the liver as a whole.

Th e most encouraging aspects of this study [4] are the 
lack of liver toxicity in treated animals and the obser-
vation that escape mutations in the miR-122 binding sites 
did not emerge over the course of therapy. Th is is in 
contrast to the rapid acquisition of adaptive mutations in 
response to drugs that target viral proteins, and 
emphasizes the benefi ts of targeting a host factor. Th ere 

are potential problems in targeting an endogenous 
miRNA as expression of endogenous targets will change; 
however, the overall eff ect of de-repression of miR-122 
targets was a benefi cial change in cholesterol levels. Many 
diff erent measures of liver toxicity were examined over the 
course of the study without any apparent therapy-induced 
toxicity [4]. However, problems might arise over longer 
treatment courses, or some time after treatment. Follow-
up of the treated chimpanzees will be important.

Th e current therapy for HCV uses interferon-α, 
covalently attached to a polyethylene glycol molecule to 
improve pharmacokinetics and stability, in combination 
with ribavirin, a guanosine analog. Th e mechanisms by 
which these drugs act are not well understood, and direct 
inhibition of HCV replication and modulation of the 
immune response may both be involved. Although this 
treatment is a great improvement on interferon mono-
therapy, it is ineff ective in many cases, highly toxic, and 
poorly tolerated [17]. An eff ective alternative with few 
side eff ects is therefore highly desirable. Several clinical 
trials are underway to test compounds directed against 
viral or cellular targets. Th e results obtained with two 
HCV protease inhibitors in combination with existing 
therapy are especially promising and are now in phase III 
trials [18]. However, resistance to these new drugs has 
been detected, and the inclusion of interferon means that 
poor tolerance remains a problem [18]. An interferon-
free treatment regime may require a combined small-
molecule approach similar to that used in HIV treatment, 
combining protease inhibitors with other emerging anti-
HCV drugs, such as polymerase inhibitors. If the anti-
miR-122 drug proves to be eff ective and safe in humans, 
it could form part of such a therapy. An enhanced reduc-
tion in HCV replication in cell culture when miR-122 
sequestration was accompanied by treatment with lova-
statin, an inhibitor of isoprenoid biosynthesis, supports 
the possibility that SPC3649 could be eff ective in a 
combined therapy [19].

Th is research is likely to pave the way for future 
miRNA-based therapeutics. Altered expression of specifi c 
miRNAs is associated with many human diseases, 
particularly cancers. miR-122 is relatively easy to target 
because antisense oligonucleotides can be delivered to the 
liver by intravenous injection. miRNAs in other organs 
may be more diffi  cult to target and thus require specialized 
delivery methods. For some miRNAs it may be necessary 
to improve delivery of antisense oligo nucleotides by 
methods such as conjugation to cell penetrating peptides 
[20]. Th ere is also potential for plasmid or viral-based 
delivery of inhibitors using miRNA ‘sponges’, in which 
multiple targets for the miRNA of interest compete with 
the endogenous target [21]. Overexpression of miRNAs in 
whole animals could also be achievable using techniques 
under development for RNA interference.

Roberts and Jopling Genome Biology 2010, 11:201 
http://genomebiology.com/2010/11/1/201

Page 3 of 4



In conclusion, the results of this study show con-
siderable promise for the development of an eff ective, 
well-tolerated therapy against HCV.
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