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Connectivity in transcriptional networks<p>An Arabidopsis thaliana transcriptional network reveals regulatory mechanisms for the control of genes related to stress adaptation.</p>

Abstract

Background: Understanding the molecular mechanisms plants have evolved to adapt their
biological activities to a constantly changing environment is an intriguing question and one that
requires a systems biology approach. Here we present a network analysis of genome-wide
expression data combined with reverse-engineering network modeling to dissect the
transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an
assembly of microarray data containing steady-state RNA expression levels from several growth
conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes.

Results: We show that the A. thaliana regulatory network has the characteristic properties of
hierarchical networks. We successfully applied our quantitative network model to predict the full
transcriptome of the plant for a set of microarray experiments not included in the training dataset.
We also used our model to analyze the robustness in expression levels conferred by network
motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has
allowed us to identify regulatory and robust genetic structures.

Conclusions: These data suggest that A. thaliana has evolved high connectivity in terms of
transcriptional regulation among cellular functions involved in response and adaptation to changing
environments, while gene networks constitutively expressed or less related to stress response are
characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory
strategies that have been selected during the evolutionary history of this eukaryote.
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Background
Living organisms have evolved molecular circuitries with the
aim of promoting their own development under dynamically
changing environments. In particular, plants are not able to
evade those changes and have had to evolve robust methods
to cope with environmental stress and recovery mechanisms.
Genomic sequences specify the context-dependent gene
expression programs to render cells, tissues, organs and,
finally, organisms. Then, at any moment during the cell cycle
and at each stage of an organism's development, and in
response to environmental conditions, each cell is the prod-
uct of specific and well defined programs involving the coor-
dinated transcription of thousands of genes. Thus, the
elucidation of such programs in terms of the regulatory inter-
actions involved is pivotal for the understanding of how
organisms have evolved and what environments may have
conditioned evolutionary trajectories the most. However, we
still have little understanding of how this highly tuned proc-
ess is achieved for most organisms, and the surface of the
problem is only just being scratched for a handful of model
organisms, such as the bacterium Escherichia coli [1], the
yeast Saccharomyces cerevisiae [2], the nematode
Caenorhabditis elegans [3], the plant Arabidopsis thaliana
[4,5], and, to a lesser extent, humans [6].

Meta-analyses of microarray data collections may now be
used to construct biological networks that systematically cat-
egorize all molecules and describe their functions and inter-
actions. Networks can integrate biological functions of cells,
organs, and organisms. During recent years, there has been a
tremendous effort in the development and improvement of
techniques to infer gene connectivity. Clustering approaches
[7-11] and information theory methods [12-16] have been
used to infer regulatory networks. Bayesian methods [17-20]
can give accurate networks with low coverage but at a high
computational cost.

The analysis of the expression of the A. thaliana transcrip-
tome offers the potential to identify prevailing cellular proc-
esses, to associate genes with particular biological functions,
and to assign otherwise unknown genes to biological
responses. Previous attempts to model the A. thaliana gene
network used methods such as fuzzy k-means clustering [21],
graphical Gaussian models [4], and Markov chain graph clus-
tering [5,15]. The inconvenience of the first approach is that
clustering describes genes based on a characteristic property
common to all genes, but it is difficult to deduce a pathway
structure from this property alone because pathways would
have to be concerned with co-expression features that tran-
scend such cluster structure. The second approach assumes
that the number of microarray slides should be much larger
than the number of genes analyzed or approximations must
be taken (for example, empirical Bayes with bootstrap re-
sampling or shrinkage approaches). The last approach is
based on Person's correlations and, therefore, strongly sensi-
tive to outliers and to violations of the implicit assumption of

linear relationships among genes. In this article, we present a
predictable genome model from a regulatory scaffold inferred
by using probabilistic methods [15] and estimate the corre-
sponding kinetic parameters using linear regression [22-25].
We analyze the topological properties and predictive power of
the inferred regulatory model. We evaluate the performance
of the network by predicting already known transcriptional
regulations and assess the functional relevance and reproduc-
ibility of the co-expression patterns detected. Finally, we dis-
cuss the evolutionary implications of transcriptional control
in plants.

Results
High-throughput technologies combined with rigorous and
biologically rooted modeling will allow understanding of how
simple genetic or environmental perturbations influence the
dynamic behavior of cellular genetic and metabolic networks
[26]. However, transcriptomic data need to be properly inte-
grated to formulate a model that can be used for making
quantitative predictions on how the environment interacts
with cellular networks to affect phenotypic responses. At the
end, the accurate prediction of this quantitative behavior will
open the possibility of re-engineering cellular circuits. To
reach this end, we have attempted the integration of experi-
mental and computational approaches to construct a predic-
tive gene regulatory network model covering the full
transcriptome of the model plant A. thaliana.

Genome-wide transcriptional control in A. thaliana
In the present work, we have applied a recently developed
inference methodology, InferGene [25], to obtain a gene reg-
ulatory model suitable for analyzing optimality and allowing
study of the transcriptional control response under changing
environments in A. thaliana. For this, we have considered the
Affymetrix chip for the A. thaliana genome, from which we
selected 22,094 non-redundant genes, of which about 1,187
are putative transcription factors (TFs; see Materials and
methods). The data used for the inference procedure were a
compendium of 1,436 Affymetrix microarray hybridization
experiments publicly available at The Arabidopsis Informa-
tion Resource (TAIR) website; these were normalized using
the robust multi-array average method [27]. Here we used the
whole expression set (1,436 experiments) to construct the
model. In Figure 1 we show the inferred transcriptional regu-
latory network of A. thaliana drawn using the Cytoscape
viewer [28]; Table 1 collates some parameters describing the
topology of the network.

Three types of efficiencies, precision (P), sensitivity (S) and
absolute efficiency (F), have been computed to assess the abil-
ity of the above inferred network to predict the 448 experi-
mentally validated transcriptional regulations collected in the
AtRegNet database. P is the fraction of predicted interactions
that are correct:
Genome Biology 2009, 10:R96
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and S the fraction of all known interactions that are discov-
ered by the model:

where TP is the number of true positives, FN the number of
false negatives and FP the number of false positives. F thus
represents the absolute efficiency and it is computed as:

which is the harmonic mean of precision and sensitivity.
Indeed, precision and sensitivity are necessarily negatively
correlated performance statistics, and these two values were
set up so they maximize global performance (F) by selecting
values > 5 (Figures S1 and S2 in Additional data file 1) for the

z-score used as threshold to predict the transcriptional regu-
lations. Figure S3 in Additional data file 1 shows P, S and F as
a function of the z-score threshold. Sensitivity is maximized
(S = 100%) for z = 0 (that is, a high number of regulations but
very low confidence) while precision is maximized (P = 100%)
for z = 11 (that is, high confidence but a very low number of
regulations). The optimum value is reached for z = 5, a value
for which F = 26% (P = 40% and S = 20%). In a recent study,
a smaller network topology has been proposed for A. thaliana
[4]. This network contains 18,625 regulations and an F = 3.7%
(P = 88% but S = 1.8%), relative to the AtRegNet reference
dataset.

InferGene predicts that more than half of the genes are con-
trolled by constitutive promoters (17.89%) or by promoters
regulated by less than three TFs (Table 1). Also, from a purely
topological perspective, the inferred transcriptional network
of A. thaliana is weakly connected directed, containing 18,169
connected genes (Table 1), while the size of the largest

P TP TP FP= +( )/

S TP TP FN= +( )/

F PS P S= +( )2 /

Plot of the inferred regulatory network of A. thaliana visualized using CytoscapeFigure 1
Plot of the inferred regulatory network of A. thaliana visualized using Cytoscape. Nodes only represent TFs.
Genome Biology 2009, 10:R96
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strongly connected component contains only 730 nodes, all of
which are TFs. In addition, it has a high density (0.078%;
Table 1); this parameter is the normalized average connectiv-
ity of a gene in the network in comparison to values reported
in similar studies on other organisms. For example, Lee et al.
[2] suggested a network density of 0.0027% for S. cerevisiae,
while we previously reported a value of 0.036% for the
inferred network for E. coli [25]. The characteristic path
length [29] of the network follows a Gaussian distribution,
with an average value of 5.065 edges (Table 1; Figure S4 in
Additional data file 1) and, specifically, the distance between
two genes for which a path exists ranges from 1 to 13 edges. In
a previous study, we estimated that the characteristic path
length for the E. coli network was 1 [25], much smaller than
that for A. thaliana. Furthermore, the E. coli inferred network
did not contain any strongly connected components and its
largest weakly directed subnetwork contained only four TFs.

Other relevant statistical properties of networks are the stress
distribution (Figure S5 in Additional data file 1) - that is, the
number of paths in which a gene is involved - and the
betweenness centrality distribution (Figure 2d) - that is, the
number of shortest pathways in which a particular gene is
involved. Both distributions are highly asymmetrical, with
many nodes having low betweenness centrality and only a few
cases with high betweenness centrality (Figure 2d), and with
the number of shortest paths per gene smoothly increasing
until reaching a maximum of approximately 105 short paths
per gene followed by a drastic drop, with very few genes
(around 5) having 107 short paths (Figure S5 in Additional
data file 1). Ten genes (At1g32330, At4g26930, At1g24110,
At4g24490, At2g36590, At1g01030, At1g76900, At2g19050,
At2g03840, and At3g19870) are connected among them-
selves but remain isolated from the rest of the main network
(Figure 1); the number of shortest paths for these genes

ranges from 1 to 3 (Figure S5 in Additional data file 1). All
these genes but the last are involved in several and apparently
loosely related Gene Ontology (GO) functional categories that
include regulation of transcription, transportation and signal
transduction, and development and senescence.

Next, we sought to explore whether the inferred regulatory
network has scale-free properties. It has been suggested that
the distribution of outgoing connections should belong to the
class of scale-free small-world networks, representing the
potential of TFs to regulate multiple target genes, whereas the
distribution of incoming connectivities would be more expo-
nential-like because regulation by multiple TFs should be less
common than regulation of several targets by a given TF [30].
Figure 2a shows the distribution of outgoing connectivities
per TF, whereas Figure 2b shows the same distribution but
only for incoming connectivities per gene. As expected, the
outgoing connectivity is best fitted by a truncated power-law
(that is, the Weibull distribution) with exponent γ = 0.902
and cutoff kc = 99.093 (Table S1 in Additional data file 2; R2 =
0.949; Akaike's weight over a set of 10 competing models >
99.99%). This distribution indicates that outgoing connectiv-
ity has a scale-free behavior in the range 1 ≤ k <kc but deviates
from this for connectivities over the cutoff. According to Bara-
bási and Oltvai [31], scale-free properties arise when hub
genes are related in a hierarchical way, with the hub receiving
most links being connected to a small fraction of all nodes. In
the case of incoming connectivity, the model that better
describes the data is a restricted exponential, the half-normal
distribution (Table S1 in Additional data file 2; R2 = 0.983;
Akaike's weight > 99.99%). Taken together, these two obser-
vations suggest that the A. thaliana transcriptional network
contains a few highly connected regulators (Table 2) that play
a central role in mediating interactions among a large number
of less connected genes. Notice that 88.4% of the TFs regulate
more than 10 genes, 36.3% regulate more than 100 genes and
just 2.6% control over 500 genes. For the sake of comparison,
it is worth mentioning that, in the case of S. cerevisiae, the
critical exponents estimated for the outgoing connectivity
distribution (γ = 0.96 [2,32]) are quite similar to that reported
here. However, the estimate obtained for E. coli was smaller
(γ = 0.87), a result that suggests that hubs are more important
in bacteria than in the two eukaryotes [31].

We have validated the set of predicted targets for the 25%
most highly connected TFs using AtRegNet, recovering 80%
of known interactions for the regulatory model and up to 85%
for the effective model (that is, the one containing both gene-
gene and gene-TF interactions). Figure 2c shows that the scal-
ing of the average clustering coefficient with the number of
genes with k-connections is approximately linear in a log-log
scale in the range 1 to 10,000 for neighbors with slope -1.05
(R2 = 0.850). Barabási and Oltvai [31] and Ravasz and Bara-
bási [33] have suggested that whenever clustering scales with
the number of nodes with slope -1, as in our case, it has to be
taken as a strong indication of hierarchical modularity - that

Table 1

Topological parameters of the inferred transcription network of 
A. thaliana

Parameter Value

Clustering coefficient 0.319

Network diameter 13

Characteristic path length 5.065

Number of connected genes 18,169

Number of regulations inferred 128,422

Network density 7.78 × 10-4

Constitutive genes 3,952 (17.89%)

Genes regulated by one TF 3,111 (14.08%)

Genes regulated by two TFs 2,352 (10.64%)

Genes regulated by three TFs 1,966 (8.90%)

Genes regulated by four TFs 1,606 (7.27%)

Genes regulated by five TFs 1,393 (6.30%)

Genes regulated by more than five TFs 7,714 (34.91%)
Genome Biology 2009, 10:R96
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is, genes cluster in higher-order units of different modularity
- a finding that has been suggested as general for system-level
cellular organization in plants [34]. Similarly, when the effec-
tive model is analyzed, it shows similar results to those for the
regulatory model. The outgoing connectivity per gene follows
a truncated power law with scale-free behavior up to kc =

21.341 connections per gene and with an exponent γ = 0.765
(Table S1 in Additional data file 2; R2 = 0.998, Akaike's weight
> 99.99%; Figure 2e). Figure 2f shows that the incoming con-
nectivity per gene does not present scale-free properties as it
fits to a normal distribution (Table S1 in Additional data file
2; R2 = 0.998, Akaike's weight > 99.99%).

Analyses of the regulatory network of A. thalianaFigure 2
Analyses of the regulatory network of A. thaliana. Distributions for the transcriptional network of: (a) outgoing connectivity showing the master regulators 
from Table 2 in gray; (b) incoming connectivity; (c) clustering coefficient; and (d) betweenness centrality. Distributions for the non-transcriptional 
network of: (e) outgoing connectivity; and (f) incoming connectivity.
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The environment significantly influences the dynamic
expression and assembly of all components encoded in the A.
thaliana genome into functional biological subnetworks. We
have computed the clustering coefficient for all subnetworks
with the largest normalized index of connectivity between
genes involved in the subnetwork. The subnetworks were
then ranked according to these numbers and the top 12 net-
works are shown in Table 3. Interestingly, four of these highly
connected subnetworks are involved in responses to external
influences - for example, responses to pathogens and other
processes related to abiotic stresses (heat, salinity, light,
reduction/oxidation). For the sake of illustration, Figure 3
shows the inferred subnetworks for three abiotic and three
biotic responses. In particular, we have made a comprehen-
sive analysis for the subnetwork of systemic acquired resist-
ance (Figure 3d) and found that the fraction of predicted
interactions is P = 33%. Not surprisingly, all genes involved in
this subnetwork are associated with GO categories related to
responses to stress, such as defense against pathogens,
responses to other organisms such as fungi, bacteria and
insects, and responses to cold.

Transcriptomic profile prediction
The basic premise of our approach is to use transcriptomic
data from multiple perturbation experiments (either genetic
or environmental) and quantitatively measure steady-state
RNA concentrations to assimilate these expression profiles

into a network model that can recapitulate all observations.
We also developed a test model that excludes 10% of experi-
ments to quantify prediction power. This dataset was ran-
domly split into two subsets. The first, larger subset contained
1,292 experiments and was used as a training set for inferring
a transcription network containing 128,422 regulatory inter-
actions. The second, smaller subset contained 144 array
experiments and was used for validation purposes.

As a first measure of the performance of our test model net-

work in predicting responses to stresses, we used it along with

the expression levels of all the TFs for each experimental con-

dition, c, to predict global expression profiles. Then, the pre-

dicted expression values for each of the 22,094 individual

genes included in the Affymetrix array, , were compared

with the corresponding empirical measurements, ygc, using

the deviation statistic:

where Nc = 144 is the number of microarray experiments
included in the random tester dataset. Figure 4a shows the
distribution of Δg for all genes included in the predicted A.
thaliana transcriptional network. The distribution of errors
has a median value of 3.66% and is significantly asymmetrical

y̆gc

Δ Σg cN c

ygc ygc
ygc

=
−1 ˘

Table 2

The ten transcription factors with the most regulatory effects (highest outgoing connectivity)

Transcription factor Outgoing connectivity Gene annotation GO pathways (level 5)

At4g17695 1254 KAN3 (KANDI 3) Transcription; regulation of cellular metabolic 
process

At1g77200 1103 AP2 Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At2g17040 1100 ANAC036 (Arabidopsis NAC domain 
containing protein 36)

Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At5g16560 1100 KAN Reproductive structure development; 
regionalization; organ development; cell fate 
commitment

At2g47900 971 AtTLP3 (tubby like protein 3) Transcription; regulation of cellular metabolic 
process

At2g28700 921 AGL46 Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At5g07690 850 MYB29 (myb domain protein 29) Transcription; response to gibberellin stimulus; 
regulation of cellular metabolic process; RNA 
metabolic process

At4g14920 846 PHD finger Transcription; regulation of cellular metabolic 
process; RNA metabolic process

At3g23240 816 ATERF1/ERF1 
(ethylene response factor 1)

Response to ethylene stimulus; transcription; 
regulation of cellular metabolic process; intracellular 
signaling cascade; two-component signal 
transduction system; RNA metabolic process

At3g30210 721 MYB121 (myb domain protein 121) Response to abscisic acid stimulus; transcription; 
regulation of cellular metabolic process; RNA 
metabolic process
Genome Biology 2009, 10:R96
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Transcriptional subnetworks with high clustering coefficients corresponding to the following GO pathwaysFigure 3
Transcriptional subnetworks with high clustering coefficients corresponding to the following GO pathways: (a) auxin metabolic process; (b) response to 
other organism; (c) response to heat; (d) systemic acquired resistance (experimentally verified regulations are represented with thick edges); (e) 
response to salt stress; and (f) immune response.
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(skewness 1.709 ± 0.017, P < 0.0001), with most genes having
a relatively low error but with some genes whose expression
is estimated having errors > 10% and in a few instances even
> 16%. How does this predictive performance compare to that

obtained for other organisms, for example, E. coli? In a previ-
ous study, we constructed a transcriptional network contain-
ing 4,345 genes and 328 TFs from E. coli [25] using a dataset
containing 189 experimental conditions. For this network,
the average error over the training set was similar (3.68%) to
the values reported above but with the error distribution
being even more asymmetrical (skewness 2.314 ± 0.017, P <
0.0001). The average error over the E. coli test set (4.80%)
was larger. Figure 4b shows the distribution of Δg for gene-
gene and gene-TF interactions, which is also significantly
asymmetrical (skewness 1.455 ± 0.017, P < 0.001), although
in this case the median error is reduced to 2.71% and, in all
cases, the error was < 9%. Both distributions significantly dif-
fer in shape (Kolmogorov-Smirnov test P < 0.001) and loca-
tion (Mann-Whitney test P < 0.001), with the latter being
narrower and centered around a lower expression error.

One may ask whether the predictability of our model was
driven by TFs and not by non-TF genes. To test this possibil-
ity, we proceeded as follows. First, we selected a random set
of 1,187 non-TF genes and used them to construct the corre-
sponding pseudo-transcriptional network. Then we evaluated
its performance as described above. The level of precision
reached was undistinguishable from that of the previous
model, with the distribution of relative expression error
obtained fully overlapping with thar shown in Figure 4b (data
not shown). We conclude from this analysis that TFs do not
have stronger predictive power than other genes. This could
be rationalized because, in terms of mathematical equations,
genes that are coexpressed with the TFs have a priori equal
chances to work as regulatory elements. On the other hand,
we have also constructed an effective model excluding the TFs
from the set of predictors and observed that the relative
expression error decreased proportionally to the number of
excluded TFs.

Table 3

Clustering coefficient of different Gene Ontology pathways in A. thaliana

GO pathways Clustering coefficient* Number of connected genes Number of genes

Auxin metabolic process 0.643 7 31

Response to heat 0.455 44 93

Hydrogen transport 0.335 20 54

Gravitropism 0.250 8 24

Alcohol biosynthetic process 0.233 5 18

Response to salt stress 0.204 87 148

Systemic acquired resistance 0.201 12 21

Immune response 0.190 55 112

Cell morphogenesis 0.153 72 156

Response to other organism 0.105 92 147

Response to bacterium 0.099 34 87

Response to light stimulus 0.088 138 246

*The clustering coefficient for the random subnetworks is 0.005, as computed from 10 subsets of 100 genes each.

Histogram of the relative gene expression error in (a) the transcriptional test model (with an average error of 0.0402) and (b) the effective model (with an average error of 0.0280)Figure 4
Histogram of the relative gene expression error in (a) the transcriptional 
test model (with an average error of 0.0402) and (b) the effective model 
(with an average error of 0.0280). Errors were obtained from the 
comparison of the predicted model obtained from the training dataset and 
the experimental determinations contained in the random test dataset.
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As a second step for the predictability of our test model, we
computed Pearson correlation coefficients (r) between the
experimental and predicted gene expression levels for all
microarray experiments and observed that, as expected,
genes having high r also have low Δg (Figure S6 in Additional
data file 1). In addition, we noticed that the predictability of
the expression of those genes with high r depends on a
reduced set of TFs (Figure S7a in Additional data file 1 shows
that the critical mass of points concentrates in a region with
high r and a low number of predictors), suggesting that a
selective pressure exists to introduce indirect regulations as a
way to increase robustness of genetic systems to dynamic
environments. Figure S7a in Additional data file 1 also shows
that the model does not tend to add large numbers of regula-
tions as a way to minimize expression error and, by contrast,
the highest density of values corresponds to a rather low
number of regulations (between 0 and 30). The average
incoming connectivity values estimated for E. coli [25] and S.
cerevisiae [2] were 1.56 and 2.26 regulators, respectively. The
comparison of these figures with the data reported here sug-
gests that r does not significantly increase beyond a given
number of regulations.

Nonetheless, a few genes were predicted to have more than
60 regulations. Looking at just the 20 most extremely regu-
lated genes in Figure S7a in Additional data file 1, the results
are interesting: the two most extreme cases correspond,
respectively, with gypsy- and copia-like retrotransposons (89
and 83 connections to TFs, respectively), nine genes are
annotated as unknown proteins, two are annotated as belong-
ing to the F-box family but without any assigned biological
process, one has been assigned as a putative protein kinase,
five have been loosely assigned to transcription, translation,
transport and secondary metabolism, and the only one with a
well defined function is the At2g26330 locus, which encodes
the ERECTA receptor of protein kinases involved in several
developmental roles as well as in response to bacterial infec-
tions. Moreover, Figure S7b, c in Additional data file 1 shows
a histogram of r per gene over 1,292 experiments in the train-
ing set and 144 conditions in the test set, respectively. The
average r for the training set was 0.767 and was very similar
for the test set (0.759). These values are in the same range as
those reported in a study inferring the regulatory network
(1,934 genes; including 81 regulators) for Halobacterium sal-
inarum NRC-1 [26] using 266 experimental conditions for
the training model and 131 extra experiments as the test set.
In this case r = 0.788 for the training set and r = 0.807 for the
test set.

For illustrative purposes, Figure 5 shows the expression pre-
dicted for the five best cases for the transcriptional network;
each dot in the scatter plots represents a value obtained from
a different hybridization experiment. The left column shows
the prediction obtained using the whole dataset (1,436 exper-
iments) as both training and tester sets, whereas the right col-
umn shows, for the same five genes, the correlation between

Predictive power for gene expression of the transcriptional model of A. thaliana inferred from the whole dataset (1,436 conditions) and the test model from 1,292 microarray experiments used as a training setFigure 5
Predictive power for gene expression of the transcriptional model of A. 
thaliana inferred from the whole dataset (1,436 conditions) and the test 
model from 1,292 microarray experiments used as a training set. The left 
column shows the regression coefficient (R2) between the model and 
experimental profiles across the whole dataset for the five best predicted 
genes. The right column shows R2 between the test model and the 144 
experimental profiles used as the test set for the same five genes. In either 
case, correlation coefficients were highly significant.
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the prediction obtained using the test model (inferred from
the reduced training set of 1,292 experiments) and that
obtained using the tester set (144 experiments). It is remark-
able that the quality of the prediction does not change by
using a reduced training set, in good agreement with the
results reported for E. coli [25]. Similarly, Figure S8 in Addi-
tional data file 1 shows the three best and worst predicted
cases for the effective gene-gene interaction model inferred
from the whole dataset. In this case, the R2 for the poorly pre-
dicted genes ranged widely, with gene At2g02120 (encoding

a pathogenesis-related protein belonging to the defensin fam-
ily) having the lowest determination coefficient observed.

Selection of optimality in changing environments
Organisms have a high capacity for adjusting their metabo-
lism in response to environmental changes, food availability,
and developmental state [35]. On the one hand, we have
detected that GO pathways (Table 4) related to response to
diverse environmental (for example, defense against diverse
pathogens, response to radiation, temperature, light inten-
sity, or osmotic stress) and internal (development, secondary

Table 4

Average incoming connectivity for the Gene Ontology pathways from all levels in A. thaliana

GO pathways* Number of genes Number of TFs† Number of TF/Number of genes‡ Number of FFLs§

Top five with the highest total 
number of TFs

Response to other organisms 296 2,249 7.6 9,865

Secondary metabolic process 284 1,964 6.9 3,321

Response to temperature stimulus 238 1,650 6.9 10,151

Anatomical structure morphogenesis 291 1,537 5.3 13,275

Response to radiation 250 1,524 6.1 6,233

Top five with the lowest total 
number of TFs

Glycerophospholipid metabolic 
process

21 38 1.8 69

Sulfur amino acid biosynthetic 
process

24 60 2.5 13

Gametophyte development 24 62 2.6 1

Cellular morphogenesis in 
differentiation

25 68 2.7 78

Indole and derivative metabolic 
process

22 71 3.2 46

Top five with the highest relative 
number of TFs

Defense response to fungus 26 355 13.7 4,353

Photosynthesis 80 1,064 13.3 2,459

Response to light intensity 26 334 12.8 2,652

Chlorophyll biosynthetic process 22 243 11.0 443

Porphyrin biosynthetic process 39 421 10.8 754

Top five with the lowest relative 
number of TFs

Glycerophospolipic metabolic 
process

21 38 1.8 0

Membrane lipid biosynthetic process 48 111 2.3 121

Sulfur compound biosynthetic 
process

32 75 2.3 98

Golgi vesicle transport 44 104 2.4 47

Biogenic amine metabolic process 32 76 2.4 53

*Only GO pathways involving more than 20 genes and less than 300 from all levels were selected. †Total number of TFs that regulate the genes of 
the GO pathway. ‡Relative number of TFs. §Total number of FFLs involved in the GO pathway.
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metabolism, porphyrin biosynthesis, and so on) stimuli con-
sist of sets of genes with high incoming connectivity, that is,
genes regulated by many different TFs. Therefore, this high
degree of interconnection among different stimulus-related
pathways allows the cell to rapidly adjust its homeostasis in
response to changing environments. On the other hand, func-
tional GO pathways associated with biological functions that
are unaffected by external stresses (for example, glycerophos-
pholipid and glycerophospholipid metabolic process, sulfur
amino acid biosynthetic process, indole and derivative meta-
bolic process, membrane lipid biosynthetic process, sulfured
compounds biosynthetic, and Golgi vesicle transport (Table
4)), have low incoming connectivity. Notice that some GO
pathways indirectly related to external stresses, such as
indole derivatives (for example, camalexin, which is involved
in response to the bacterium Pseudomonas syringae) or lipid
biosynthesis pathways (playing a role in defense) do not have
high connectivity scores and do not have a high number of
feed-forward loops (FFLs). Furthermore, the predicted mas-
ter regulators of A. thaliana listed in Table 2 are associated
with biological functions related to transcription and regula-
tion of cellular metabolic processes (containing 812 TFs each)
or RNA metabolic processes (536 TFs) that are stimulated by
environmental and developmental stresses. After all, the reg-
ulatory network of A. thaliana governs intracellular processes

and modulates and determines the expression of the different
programs encoded in the genome.

Networks can be decomposed into subnetworks, which can be
seen as building blocks of the former. These building blocks,
generally known as motifs, are defined in terms of their fre-
quency and are typically composed of several promoter
regions of genes expressing TFs that regulate each other in a
number of well known patterns (for example, bifans, forward,
feed-forward, or negative feedback loops) [36]. Certain regu-
latory network motifs have been described as conferring
robustness to perturbations in individual edges, the coherent
FFL being the prototypical example of such a robustness-con-
ferring motif [37-40]. Therefore, we sought to characterize
our inferred complex network in terms of the presence and
abundance of regulatory network motifs. An exhaustive list of
detected three- and four-element motifs for both transcrip-
tional regulations as well as gene-gene interactions, together
with their observed frequency and whether this frequency sig-
nificantly deviates from the expected value from a random
network, is given in Tables S2 to S5 in Additional data file 2.
Some of the overrepresented motifs are shown in Figure 6.
The third most abundant motif found is the FFL (third row in
Figure 6a). Indeed, the FFL motif is overrepresented among
GO categories involved in stress response compared to non-

Network motifs of three (a) and four (b) genes found in the transcriptional network of A. thalianaFigure 6
Network motifs of three (a) and four (b) genes found in the transcriptional network of A. thaliana. Here we plot the most statistically significant motifs 
(see Additional data file 2 for a complete list of motifs). (c) The FFL, a motif significantly overrepresented, where an external factor inhibits gene A thereby 
limiting expression of gene B, but this is compensated for by indirect regulation through gene C. (d) The evolution of the qualitative development of a plant 
with motifs (dashed line) and without motifs (solid line) under changing environments. We note that there is an evolutionary optimization, including 
topological units such as FFLs, that provides robustness under external factors despite decreasing system fitness (areas I and II) due to excess expression 
of those genes providing indirect interactions. (e) Distribution of normalized robustness coefficients (ρ*) computed for all interactions between TFs and 
genes.
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stress response categories (Table 4; Fisher's exact test, P <
0.001).

Next, we sought to test whether the presence of FFLs indeed
contributes to increase the robustness of the gene expression
of the involved genes. To do so, we have computed a score, ρ*,
quantifying the robustness of gene expression for all pre-
dicted TF-gene interactions involving three nodes (Figure
6c). Figure 6e shows the distribution of the robustness score
computed from the inferred regulatory network. Although it
may not be apparent after visual inspection of Figure 6e, the
distribution is asymmetrical (skewness 1.881 ± 0.007, P <
0.001) and strongly leptokurtic (1,294.051 ± 0.014, P <
0.001), suggesting that there are more data points in the tails
than close to the mean. The data points in the upper tail cor-
respond to the more robust interactions and, if coherent FFLs
are involved in such types of interactions, they may be over-
represented in this tail. This is, indeed, the case. If we look at
the top 1% of values, 90.7% of them correspond to a coherent
FFL. By contrast, if we look at the 1% of interactions around
the mean value, only 5.7% correspond to FFLs. Interestingly,
90.2% of motifs within the bottom 1% of the distribution cor-
respond to incoherent FFLs.

Discussion
We have discussed a reverse-engineered model of the A. thal-
iana gene regulatory network that will aid future research
focused on distinguishing, for example, the molecular targets
of a plant virus from the hundreds to thousands of additional
gene products that may have modified levels of gene expres-
sion as a side-effect. We have used a recent methodology to
infer the global topology of transcription regulation from
gene expression data to produce a kinetic model able to pre-
dict the alterations in gene expression in plants subjected to
different external stimuli. Moreover, we have concluded that
the A. thaliana inferred transcriptional network presents a
hierarchical scale-free architecture where biological func-
tions cluster in modules. We have identified biological func-
tions that are highly controlled by predicted master
regulators that could change their operating points in
response to dynamic external factors to produce a consistent
and robust response upon different stresses at the expense of
decreasing the cellular replication rate. We have successfully
applied the inferred model to predict the transcriptomic
response of A. thaliana under all experimental conditions
included in the whole dataset, and also applied the test model
to predict the response in a reduced test set, producing errors
of 2 to 10% relative to the experimental value (averaging
across all test experiments). Thus, we believe this modeling-
validation approach constitutes an important step towards
understanding an organism's large-scale mode of action to
cope with a generally changing environment. The network
model suggests that A. thaliana promoters are regulated by
multiple TFs (Table 1), a feature that has been shown to be
characteristic of eukaryotic gene regulation [2].

We have discussed a first gene regulatory model based on a
transcriptional layer and a second model that enhances this
by including gene-gene interactions that provide an even
more accurate prediction of gene expression. Future work will
consider just the interactions between tissue-specific genes.
We have also quantified the presence of network motifs and
found that FFLs are overwhelmingly common, thus support-
ing the above notion that robustness against perturbation has
been a major driving force during the evolution of plant line-
ages. Furthermore, we have confirmed that coherent FFLs are
overwhelmingly over-represented among interactions that
are robust against the knockout of regulatory TFs (Figure 6e),
while incoherent FFLs are among the most sensitive interac-
tions. Figure 6c illustrates a possible mechanism by which
FFLs would confer robustness. Imagine that the B product is
relevant for cell survival. On one hand, regulatory flow
through C is costly because it implies producing a redundant
element; on the other hand, if perturbations disrupt the direct
edge between A and B, the existence of C still allows the cell to
obtain the precious B without incurring a major penalty (Fig-
ure 6d). Whether a given regulatory network may be selected
to contain this sort of regulatory element depends on the bal-
ance between the fitness costs and benefits associated with
redundancy [41,42]. The fact that A. thaliana network topol-
ogy seems to be rich in these transcriptional regulatory ele-
ments suggests that it has been evolutionary optimized to
allow rapid responses to changes in external conditions while
maintaining cellular homeostasis, and hence maximizing fit-
ness.

The reconstruction of genome-scale regulatory models con-
stitutes a major step towards understanding cellular behav-
ior, but it is also useful in Synthetic Biology, where predictive
models can be applied to engineer synthetic systems for bio-
technological applications. InferGene [25] provides a means
to predict changes in biological processes when perturbing a
cell in order to identify the effects of drugs, viral infection and
herbicides on plant interactomes. It may also facilitate opti-
mization of cellular processes for biotechnology applications
that utilize the complex regulatory properties of genetic net-
works.

Conclusions
In this study, we have shown that the A. thaliana regulatory
network is scale-free and clustered, both characteristic prop-
erties of hierarchical networks. We also used our model to
analyze the robustness of expression levels conferred by net-
work motifs such as the coherent FFL. Hence, the meta-anal-
ysis presented here has allowed us to identify regulatory and
robust genetic structures. These results suggest that A. thal-
iana has evolved a high connectivity in terms of transcrip-
tional regulations among cellular functions involved in
responses and adaptation to changing environments, while
gene networks constitutively expressed or less related to
stress responses are characterized by a lower connectivity. We
Genome Biology 2009, 10:R96
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successfully applied our quantitative network model to pre-
dict the full transcriptome of the plant for a set of microarray
experiments, and the quality of the predictions was evaluated
by several methods.

Materials and methods
Mathematical model
Gene regulations were described by a linear model based on
differential equations for the dynamics of each mRNA. Data
were normalized and are represented in log2 scale. Thus, the
mRNA dynamics from the ith gene, yi, is given by:

where α i is its constitutive transcription rate, β ij the regula-
tory effect that gene j has on gene i and δ i the degradation
coefficient. If j has no effect on the expression of i, then β ij =
0. No cooperation between genes for regulation has been
assumed. Time was conveniently scaled such that δ i = 1 and
the model is assumed in steady-state (yi = α i + Σj βij yj), since
fitting the appropriate mRNA degradation constant would
require time series data [43].

Microarray data
Steady-state mRNA expression profiles derived from tran-
scriptional perturbations collected from the TAIR website
[44] were used in this study. We found 1,187 TFs by looking
for the motif 'transcription factor' in the functionally anno-
tated A. thaliana genome from TAIR (version 7). The dataset
contains pre-processed expression data from 1,436 hybridiza-
tion experiments using the 22,810 probe sets spotted on
Affymetrix's GeneChip Arabidopsis ATH1 Genome Array
[45]. For this study, we consider 22,094 genes. The arrays
were obtained from NASCArrays [46] and AtGenExpress
[47]. Data were normalized using the robust multi-array aver-
age method [27].

Inference procedure
The inference procedure consisted of two nested steps. In the
first step, the global network connectivity was inferred using
the InferGene algorithm [25]. This method uses mutual infor-
mation with a local significance (z-score computation) to
obtain the genome regulations [15]. Hence, the potential
interaction between a regulator and a gene is z-scored, consti-
tuting an estimator of the likelihood of mutual information.
This approach allows some false correlations and indirect
influences to be eliminated [15]. Subsequently, we selected a
z-score threshold for a cutoff. In a second step, multiple
regressions were obtained to estimate the kinetic parameters
of a regulatory model based on ordinary differential equa-
tions. Multilayer models were constructed to account for dif-
ferent types of regulations between genes and TFs. We have
constructed two different models, one for transcription regu-
lations and another to account for effective (transcription and
non-transcription) regulations. In the case of non-transcrip-

tional interactions, Lasso's method was used to avoid over-fit-
ting [48] and the effective interactions between genes giving
the non-transcriptional layer were unveiled. To this end, we
applied a simple and efficient algorithm based on the Gauss-
Seidel method [49] that reduces the number of regulators
that exceeded the z-score threshold for a given gene. Note that
the Lasso method enriches in TFs among the predictors of the
target for 33.21% of the non-constitutive genes of A. thaliana
(that is, the ratio between the number of TFs selected and the
total number of predictors of a given gene above a threshold
defined as 1,187/22,094 = 0.0537). Finally, one systems biol-
ogy markup language (SBML) [50] file containing the tran-
scriptional model and a plain text file containing the effective
model were constructed and are available as supplementary
files in Additional data file 3. These files can be viewed using
the Cytoscape viewer for further analysis. Notice that the
transcriptional model was embedded within the effective one.
Networks are constructed by placing genes as nodes and reg-
ulations as edges. For the transcriptional model, edges only
go from TFs to genes (including those encoding other TFs).
For the non-transcriptional model, edges connect two genes,
the regulator and the target and, thus, the resulting network
is directional.

Model validation
The performance of the inferred model topology was evalu-
ated using a reference network including genes with known
transcriptional regulation. For this, the AtRegNet platform
[51] linking cis-regulatory elements and TFs into regulatory
networks was used. Only those interactions among genes
included in that reference set were evaluated. The fraction of
interactions that were correctly predicted by the model (pre-
cision, P) and the fraction of all known interactions that were
discovered by the model (sensitivity, S) were used to compute
a performance statistic defined as F = 2PS/(P + S) [16]. We
have to note that the number of transcriptional regulations
experimentally confirmed and compiled in AtRegNet is quite
limited, containing only 448 reported interactions between
TFs and genes. Therefore, it is difficult to obtain an accurate
value for the performance of the model.

To validate the predictive power of the methodology, we con-
structed two transcription models. The first was obtained by
using the 1,436 microarrays for training. For the second
model (the test model), 1,292 of these 1,436 microarrays were
used as a training set (90%) and 144 randomly chosen ones
(10%) were retained for validation studies.

Motif detection and analysis
The FANDOM program [52] was used to detect motifs of
three and four genes in the predicted A. thaliana regulatory
model. Statistically significant motifs have z-scores > 2.

The robustness of gene expression to perturbations in the
underlying motifs was evaluated for each interaction as fol-
lows. In the scheme illustrated in Figure 6c, TF A operates on

dy dt y yi i j ij j i i/ = + −α β δΣ
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gene B but also may act upon a second TF C that, itself, may
also interact with the promoter region of B, activating its
expression. For such a system, we define the robustness score
to quantify the impact that removing TF A has on the expres-
sion of gene B:

where  represents the measured expression of gene B

when gene A is present and  after it has been removed.

The difference in gene expression is normalized by the

expression level of the TF A, yA, and the strength of its regu-

lation, βAB, on the expression of B. If A is removed (yA → 0)

and no alternative pathway exists, then ρAB → 1. However, if

C exists, as is the case for FFLs, then ρAB ≠ 1, with its sign being

determined by  and the sign of βAB. This score is

unbounded; thus, for convenience we further normalize it as:

which is now contained in the interval [-1, 1]. Values of 

close to 1 would correspond to maximally robust motifs,

whereas values close to zero correspond to motifs not contrib-

uting to the robustness of the network. Values close to -1 cor-

respond to incoherent motifs, that is, gene circuits

implementing antagonistic regulations [34].
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