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Detecting differential splicing<p>A novel statistical procedure is presented that uses probe-level information on Affymetrix exon arrays to detect differential splicing.</p>

Abstract

The recent advent of exon microarrays has made it possible to reveal differences in alternative
splicing events on a global scale. We introduce a novel statistical procedure that takes full advantage
of the probe-level information on Affymetrix exon arrays when detecting differential splicing
between sample groups. In comparison to existing ranking methods, the procedure shows superior
reproducibility and accuracy in distinguishing true biological findings from background noise in high
agreement with experimental validations.

Background
Alternative splicing is the process in which multiple mRNA
isoforms are generated from a single gene by selectively join-
ing together exons of a primary transcript in different pat-
terns (see, for example, [1] for a review). Thus, instead of
coding a single protein, the same genetic locus may produce a
variety of different proteins with different properties and dis-
tinct functions in the system. Alternative splicing is emerging
as a key mechanism for enabling the vast proteomic diversity
of higher organisms from a relatively low number of genes.
While genome sequencing projects have revealed that the
number of protein-coding genes in an organism does not cor-
relate with its overall cellular complexity (for example, mam-
malian species have similar numbers of genes to Arabidopsis
thaliana), alternative splicing has turned out to be more the
rule than the exception [2,3]. For instance, genome-wide
studies have suggested that up to 92 to 94% of human genes
undergo alternative splicing [4]. Tissue-specific gene iso-
forms are known to play a critical role in the development and
proper function of diverse cell types, and disruptions of nor-
mal splicing patterns changing the isoform structure have
been implicated in various cancer types and other human dis-

eases [5,6]. In particular, a number of genetic point muta-
tions associated with human hereditary diseases have been
linked to disrupted splicing [6]. Hence, a comprehensive
understanding of disease development requires detailed
knowledge of the roles of alternatively spliced genes and their
products.

The early genome-wide attempts to detect alternative splicing
were mainly based on sequence databases of expressed
sequence tags and cDNA [3]. A major drawback of these
approaches is that they are highly constrained by the availa-
ble expressed sequence tag/cDNA sequences, with typically
inadequate transcript coverage and only a limited number of
cell or tissue sources [3]. Towards the genome-wide identifi-
cation of functionally relevant alternative splicing events in
different cell and tissue types under various conditions, exon
microarrays have been introduced [7]. With advanced micro-
array technology it is now possible to measure all the known
and predicted human exons on a single array. For instance,
the Affymetrix Human Exon 1.0 ST array contains over 5.4
million probes representing over a million exonic regions (an
average of four probes per exon) [8]. In comparison to the
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conventional gene expression microarrays, which measure
transcription at the level of individual genes, the great poten-
tial of the exon arrays lies in their ability to provide a finer res-
olution view of transcription also at the level of individual
exons. Hence, the exon arrays enable, for instance, the detec-
tion of disease-relevant splicing differences that may be
entirely missed in gene-level expression profiling studies [2].

While the detection of differential gene expression between
sample groups has been the focus of intensive method devel-
opment, the detection of differentially spliced transcripts
from exon array experiments is still a relatively new area of
research. Consequently, the tools for detecting differential
splicing are currently much less standardized, including sev-
eral ad hoc methods and algorithms designed for specific
analysis tasks or custom platforms only. For example, PAC
(pattern-based correlation) identifies splice variants by
assuming that, in the absence of splicing, exon expression fol-
lows gene expression across the samples [9]. Therefore, it is
better suited to studies with multiple different sample types
and will generally fail in two-sample cases [9]. Several meth-
ods have also been developed for custom microarrays con-
taining splice junction probes. For example, GeneASAP
(Generative model for Alternative Splicing Array Platform)
attempts to estimate relative expression levels of two iso-
forms in the same sample with Bayesian learning [10]. For the
detection of consistent splicing differences between sample
groups, perhaps the most widely used approach currently is
the so-called splicing index (SI). The SI approach first nor-
malizes the exon-level expression intensities by the corre-
sponding gene-level summary values and then compares
these normalized intensities between the sample groups [11].
The MIDAS (Microarray Detection of Alternative Splicing)
algorithm proposed by Affymetrix is based on an analysis of
variance (ANOVA) test for differences in the group means of
the normalized intensities, being conceptually similar to the
SI [9]. Another ANOVA-based method, named ANOSVA
(analysis of splice variation), fits a linear model (LM) to the
observed data with the aim of identifying non-zero interac-
tion terms between sample groups and exons [12], but this
approach did not show favourable performance in the evalu-
ations carried out by Affymetrix [9]. Recently, a procedure
called PLATA (Probe-Level Alternative Transcript Analysis)
was introduced, which normalizes the expression intensities
first probe-wise using the gene-level summary values and
then compares the group means of these normalized intensi-
ties by considering all the measurements across the probes
and samples as independent [13]. Similar probe-wise normal-
ized intensities were recently applied also in [14]. A different
type of approach is to formulate the detection of differential
splicing as an outlier detection problem, as in REAP (Regres-
sion-based Exon Array Protocol) or FIRMA (Finding Iso-
forms using Robust Multichip Analysis) [15,16]. These
approaches aim at identifying exons whose expression devi-
ates significantly from the expected gene-level behaviour.
Recent efforts have also been devoted to develop suitable data

analysis environments for the exon array studies to handle
the massive datasets and their annotations as well as to study
the alternative transcripts and their corresponding protein
domain architectures [17-19].

In the present work, we introduce a probe-level SI estimation
procedure for detecting differential splicing events in Affyme-
trix exon array studies. With Affymetrix arrays, an important
step of the standard SI-based algorithms is the summariza-
tion of the probe-level measurements into exon- and gene-
level intensities prior to the actual comparisons. However, we
and others have shown that the detection of differential gene
expression can be markedly improved by considering directly
probe-level expression changes instead of such summary
intensities [20-24]. Therefore, we hypothesized that a similar
strategy would also lead to improvements when detecting dif-
ferential splicing. The proposed probe-level SI procedure,
named PECA-SI, uses a statistical model similar to our previ-
ously presented probe-level expression change averaging
(PECA) approach, which avoids the need of directly estimat-
ing the gene- or exon-level intensities and which does not
make any unrealistic assumptions about the independence of
the within-individual measurements [20,21]. The benefits of
the probe-level detection of differential splicing are demon-
strated on both synthetic and real datasets under various cir-
cumstances of practical interest with the focus on paired two-
group comparisons. In addition to the standard SI calculation
procedures using different pre-processing methods (robust
multiarray average (RMA), probe logarithmic intensity error
model (PLIER)) and statistical algorithms (MIDAS, ordinary
or modified t-test), the performance of the probe-level SI is
compared with two-way ANOVA approaches, closely resem-
bling the ANOSVA procedure, and with the state-of-the-art
FIRMA algorithm, which was recently suggested to outper-
form the SI approach in a simulation study [15].

Results
We first demonstrate the good performance of the probe-level
SI estimation procedure PECA-SI on synthetic data and com-
pare it to standard SI estimation procedures (referred to here
as RMA-SI, PLIER-SI, RMA-MIDAS and PLIER-MIDAS), to
two-way ANOVA procedures (referred to as RMA-LM and
PLIER-LM), as well as to the FIRMA algorithm (see the Mate-
rials and methods section for details of the procedures). The
benefits of the probe-level approach are then confirmed on
multiple publicly available real microarray datasets with dif-
ferent characteristics. The first type of data are from a set of
mixture experiments, in which brain and heart samples have
been mixed together in different proportions to artificially
complicate the detection of the differences between the com-
plex samples [25]. Another dataset contains human brain and
tissue pool reference samples that have been hybridized in
replicate in two independent laboratories [26]. Finally, we
consider measurements from human colon primary tumours
and their adjacent normal tissues, being a representative
Genome Biology 2009, 10:R77
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example of a biomedical microarray study with high variabil-
ity between individuals [27]. In these datasets, we assess the
ability of eight different methods, PECA-SI, RMA-SI, PLIER-
SI, RMA-MIDAS, PLIER-MIDAS, RMA-LM, PLIER-LM and
FIRMA, to reproduce the original detections across various
mixture differences, or to detect the same top-ranked candi-
dates between two laboratories or across independent sub-
samples. The reproducibility reflects the robustness of the
methods to identify the relevant splicing events in the pres-
ence of confounding factors, laboratory-specific effects or
inter-individual variability. The biological relevance of the
probe-level procedure is assured by showing its improved
ability to detect known brain-specific exons at extremely low
false discovery rates, and by demonstrating in the colon can-
cer data its enhanced ability to discriminate between exons
that have been experimentally confirmed with RT-PCR to
involve different splice variants and exons that gave negative
results in the validations.

Performance in synthetic data
The simulation study was performed to test the ability of the
standard and probe-level SI procedures, the two-way ANOVA
approaches, and the recently introduced FIRMA algorithm to
detect differential splicing events under controlled settings
with known true positives and true negatives. It also allowed
us to test the robustness of the methods to multiple exon
splicing events within a single gene, which may confound the
estimation of the gene-level parameters.

In the synthetic datasets, PECA-SI systematically outper-
formed the other procedures in detecting the synthetic differ-
ential splicing events, as assessed by the receiver operating
characteristic (ROC) curves (Table 1). The benefits were larg-
est with the largest numbers of differing exons, supporting
the robustness of the PECA procedure in the estimation proc-

ess. At a typical noise level of  = 0.7 observed in real micro-
array data [15], the area under the curve (AUC) for PECA-SI
remained at 0.92 or above in each case, whereas the AUC val-
ues with the other methods decreased from 0.94-0.99 to
0.79-0.88 when the number of differing exons was increased
from one to five. The RMA-based methods and FIRMA
behaved rather similarly, whereas the relative performance of
the PLIER-based methods tended to be poorest when only
few exons were differentially spliced or the noise level was
increased. As expected, increasing the noise level reduced the
performance of all the methods.

Reproducibility of detections in the mixture data
In the mixture data, the different methods were compared in
terms of their ability to reproduce the original detections
from the pure brain and heart samples using a range of vari-
ous hybridization mixtures (Figure 1). As expected, with each
method the reproducibility decreased when the mixture dif-
ference decreased. PECA-SI systematically outperformed all
the other methods, producing typically at least twice the
number of reproducible detections as the standard SI proce-
dures RMA-SI, PLIER-SI, RMA-MIDAS and PLIER-MIDAS.
In addition to FIRMA, the two-way ANOVA-based
approaches RMA-LM and PLIER-LM also showed better
reproducibility values than the standard SI-based methods,
which was somewhat surprising on the basis of the poor
ANOSVA result reported in [9]. PECA-SI detected an overlap
of approximately 30% between the top-ranked 500 detec-
tions already at a mixture difference of 0.2 and this increased
to approximately 60% at a mixture difference of 0.9; with
FIRMA, RMA-LM and PLIER-LM the percentage remained
below approximately 45% even at the largest differences, with
RMA-SI and PLIER-SI below 30%, and with the MIDAS
approaches below 10%. This suggests that the proposed
probe-level procedure can detect the relevant changes much

Table 1

Area under the ROC curve in synthetic data

Differentially spliced exons Noise level  PECA-SI RMA-LM PLIER-LM RMA-SI PLIER-SI RMA-MIDAS PLIER-MIDAS FIRMA

1 0.7 0.99 0.99 0.98 0.99 0.94 0.99 0.95 0.99

2 0.7 0.99 0.98 0.96 0.98 0.94 0.98 0.94 0.98

3 0.7 0.97 0.94 0.91 0.93 0.93 0.94 0.93 0.93

4 0.7 0.94 0.87 0.83 0.86 0.90 0.90 0.90 0.86

5 0.7 0.92 0.83 0.79 0.82 0.88 0.87 0.88 0.81

1 1.0 0.94 0.91 0.89 0.97 0.92 0.90 0.85 0.94

2 1.0 0.94 0.91 0.88 0.93 0.89 0.91 0.86 0.91

3 1.0 0.90 0.86 0.82 0.86 0.82 0.87 0.81 0.84

4 1.0 0.88 0.83 0.80 0.84 0.80 0.85 0.79 0.82

5 1.0 0.74 0.68 0.68 0.69 0.69 0.72 0.67 0.66

The synthetic data were generated according to Equation 8 at two different noise levels,  = 0.7 or  = 1. The first column indicates the number of 
synthetic differential splicing events generated within a gene. At each combination of the noise level and the number of differentially spliced exons, 
1,000 genes were investigated. In each case, the probe-level PECA-SI procedure (see Equation 6) was compared to the standard SI procedures RMA-
SI, PLIER-SI, RMA-MIDAS and PLIER-MIDAS, the two-way ANOVA-based approaches RMA-LM and PLIER-LM, and the FIRMA algorithm. The largest 
area under the curve (AUC) value across the methods is indicated in bold.
Genome Biology 2009, 10:R77
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more reproducibly than the conventional approaches even in
the presence of confounding factors. The relative perform-
ance of the methods remained the same with the top-ranked
1,000, 1,500 and 2,000 detections [see Additional data file 1].
When a lower number of top detections was investigated, the
reproducibility values were less stable, which could be attrib-
uted to a relatively large number of equally good top candi-
dates in this comparison.

Reproducibility of detections between laboratories
The hybridization of the same biological samples in two inde-
pendent laboratories allowed us to directly assess the repro-
ducibility of the methods across experiments. Since the same
biological samples were used in both datasets, the technical
laboratory effects could be isolated from the true biological
variability. At each sample size, ranging from two to four,
PECA-SI systematically showed more reproducible behaviour
in each dataset than the other methods (Figure 2). The
MIDAS-based approaches performed poorest, especially at
the smallest sample sizes, whereas the two-way ANOVA
approaches were again at least as good as FIRMA. Also, RMA-
SI showed reproducibility values similar to FIRMA and, in
this comparison, it outperformed PLIER-SI. In general, the

reproducibility of the top candidates increased with increas-
ing sample size. The benefits from larger sample sizes were
highest with RMA-MIDAS and PLIER-MIDAS, whereas
RMA-SI and PLIER-SI showed even a slight decrease. The
relative performance of the methods remained the same with
the top-ranked 100, 1,000, 1,500 and 2,000 detections [see
Additional data file 2].

Reproducibility of detections between independent 
subsamples
In the colon cancer data, the reproducibility of the methods
was investigated across independent subsamples of sizes two
to four. The aim was to assess the robustness of the methods
to detect biologically relevant findings, especially with small
sample sizes. Again, PECA-SI was significantly more repro-
ducible than the other methods at each sample size (paired
Wilcoxon test, P < 0.01), while the MIDAS-based approaches
showed the lowest reproducibility values (Figure 3). With
these data, FIRMA outperformed RMA-SI; PLIER-SI, RMA-
LM and PLIER-LM also showed higher reproducibility values
than RMA-SI when the sample size was increased. In general,
the reproducibility values were at a similar level to those in
the most difficult mixture comparison (mixture difference
0.05), which is in line with the fact that the colon cancer data

Reproducibility of detections in the mixture dataFigure 1
Reproducibility of detections in the mixture data. Reproducibility 
of the probe-level PECA-SI, the standard SI procedures RMA-SI, PLIER-SI, 
RMA-MIDAS and PLIER-MIDAS, the two-way ANOVA-based approaches 
RMA-LM and PLIER-LM, and the FIRMA algorithm in detecting differential 
splicing in the mixture data. The ability of the methods to reproduce the 
detections from the pure brain and heart samples was studied at various 
levels of the mixture differences (x-axis). The reproducibility was 
measured as the overlap of the top-ranked 500 detections between the 
mixture and pure datasets. At each mixture difference, the same data 
were analyzed with the different detection methods. Reproducibility in 
random data is shown as a reference (0.002). Similar results were 
produced with the top-ranked 100, 1,000, 1,500 and 2,000 detections [see 
Additional data file 1].
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Reproducibility of detections between laboratoriesFigure 2
Reproducibility of detections between laboratories. Reproducibility 
of PECA-SI, RMA-SI, PLIER-SI, RMA-MIDAS, PLIER-MIDAS, RM-LM, 
PLIER-LM and FIRMA in detecting differential splicing between 
laboratories. The ability of the methods to detect the same candidate 
splicing events in two independent hybridizations of the same biological 
samples was investigated at sample sizes of two to four (x-axis). The 
reproducibility was measured as the overlap of the top-ranked 500 
detections between the laboratories. At each sample size, the average 
reproducibility is shown together with the standard error of the mean 
(error bars). The same datasets were analyzed with the different detection 
methods. Reproducibility in random data is shown as a reference (0.002). 
Similar results were produced with the top-ranked 100, 1,000, 1,500 and 
2,000 detections [see Additional data file 2].
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are from a typical clinical study with large variability between
individuals. Increasing the sample size from two to four could
not markedly improve the overall level of reproducibility with
any of the methods; with the top-ranked 500 detections
reproducibility remained, at best, approximately 10% with
PECA-SI and was even below 5% with all the other methods.
This demonstrates the limitations of the small sample sizes in
these types of studies. The relative performance of the meth-
ods remained the same with the top-ranked 100, 1,000, 1,500
and 2,000 detections [see Additional data file 3].

Detection of confirmed splicing events
Beyond the reproducibility, we also evaluated the perform-
ance of the methods on the basis of RT-PCR-validated differ-
ential splicing events to highlight the practical potential of
PECA-SI in providing good candidates for further experimen-
tal studies. In the between-laboratory comparison data, the
different methods were evaluated in terms of a set of exons
that were previously confirmed to be differentially spliced
between brain and other tissues [11] using a ROC-type
approach suggested in [28] together with a randomization
procedure. This evaluation supported the biological relevance
of the probe-level procedure, as PECA-SI showed the best
performance in detecting the known brain-specific exons at a

very low false discovery rate (Figure 4a). In addition to RMA-
SI and FIRMA, RMA-MIDAS, RMA-LM and PLIER-LM also
performed better than PLIER-SI or PLIER-MIDAS in this
comparison.

In the colon cancer study, a relatively large set of genes was
confirmed with RT-PCR to involve different isoforms in can-
cer and normal samples. Additionally, several exons gave
negative results in the validations, providing a set of true neg-
atives for a ROC analysis. The ROC results further support the
benefits of PECA-SI compared to the other methods (Figure
4b). With each method, filtering out genes and exons with low
intensities improved discrimination between the confirmed
and non-confirmed exons (solid versus dotted lines),
although at the same time it reduced the number of validated
exon probesets to approximately 60% of the original set (10
confirmed and 8 non-confirmed exon probesets satisfied the
filtering criteria). Strikingly, PECA-SI could perfectly sepa-
rate the confirmed and non-confirmed exons in the filtered
data and even in the unfiltered data performed at least as well
as the other methods in the ROC analysis after filtering. Com-
parison of the methods with the original list of the top-ranked
200 detections reported in [27] suggested that the stringent
filtering criteria applied in the original study could not
improve the discrimination between the true positives and
true negatives. Instead, their approach gave the poorest ROC
results in this comparison.

The ranks of the confirmed probesets ranged widely in the
genome-wide comparison, as observed also in [15]. In gen-
eral, PECA-SI tended to give relatively high ranks. For
instance, in the cancer data after filtering, two validated
exons were already found among the top ten detections with
PECA-SI (ACTN1 probeset 3569830 rank 1, COL6A3
probeset 2605390 rank 7), whereas the best-ranking vali-
dated exon was ranked 28th with RMA-SI (ACTN1 probeset
3569830), 35th with PLIER-SI (CALD1 probeset 3025632),
50th with RMA-LM (MAST2 probeset 2334499), 82nd with
PLIER-LM (MAST2 probeset 2334499), and 26th with
FIRMA (ACTN1 probeset 3569830). With the MIDAS-based
approaches, which were also applied in the original study
[27], the best-ranking confirmed exon was ranked 5th with
RMA-MIDAS (ACTN1 probeset 3569830) and 4th with
PLIER-MIDAS (COL6A3 probeset 2605390).

Discussion
In the present work, we have demonstrated the clear benefits
of using directly all the available probe-level data when
detecting consistent differential splicing events between sam-
ple groups. The benefits of PECA-SI accumulate from two
sources: an improved estimate of the gene-level signal log-
ratio; and an improved estimate of the exon-level statistic
determined on the basis of its probe-level values [see Addi-
tional data file 4]. In contrast to the conventionally utilized
summary intensities, which yield a single gene/exon-level

Reproducibility of detections between independent subsamplesFigure 3
Reproducibility of detections between independent subsamples. 
Reproducibility of PECA-SI, RMA-SI, PLIER-SI, RMA-MIDAS, PLIER-
MIDAS, RM-LM, PLIER-LM and FIRMA in detecting differential splicing in 
the colon cancer data. The ability of the methods to detect the same 
candidate splicing events in independent subsamples was investigated at 
sample sizes of two to four (x-axis). The reproducibility was measured as 
the overlap of the top-ranked 500 detections between the subsamples. At 
each sample size, the average reproducibility over at least 15 randomly 
sampled pairs of datasets is shown together with the standard error of the 
mean (error bar). The same datasets were analyzed with the different 
detection methods. Reproducibility in random data is shown as a 
reference (0.002). Similar results were produced with the top-ranked 100, 
1,000, 1,500 and 2,000 detections [see Additional data file 3].
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Detection of confirmed splicing eventsFigure 4
Detection of confirmed splicing events. Performance of PECA-SI, RMA-SI, PLIER-SI, RMA-MIDAS, PLIER-MIDAS, RM-LM, PLIER-LM and FIRMA in 
terms of RT-PCR validations. (a) The average number of previously confirmed brain-specific splicing events (y-axis) is shown as a function of the false 
discovery rate (x-axis) across the two laboratories. (b) The ROC curve shows the true positive rate (true positives divided by all positive detections) as a 
function of the false positive rate (false positives divided by all negative detections) in the colon cancer data. The solid lines correspond to the filtered data 
(10 positives, 8 negatives), and the dotted lines to the unfiltered data (17 positives, 14 negatives). The results reported in [27] were included as a reference 
(10 positives, 5 negatives). For the clarity of illustration, the curves for the different analysis approaches are shown in separate graphs. When comparing 
the curves, the one closest to the upper left corner shows the best performance.
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value of a statistic, the probe-level approach takes advantage
of its probe-level distribution, improving thereby the reliabil-
ity of the estimation process. Moreover, the proposed PECA
procedure simplifies the estimation by avoiding the determi-
nation of the probe affinities (Equation 3 versus Equation 1
and Equation 5 versus Equation 4 in the Materials and meth-
ods section). The superior performance of the probe-level
PECA-SI over the variety of previously proposed methods is
shown here systematically on both synthetic and real datasets
in various practical comparisons. Importantly, PECA-SI was
able to detect confirmed differentially spliced exons in the
complex colon cancer study, demonstrating its high potential
also in real biomedical applications.

We focused here mainly on the rankings of the exons, since in
practice the ranking determines which genes/exons will be
considered for further experiments. While the statistical sig-
nificance of the detections can be calculated similarly as in the
case of detecting differential gene expression, reasonable
multiple testing correction is even more challenging due to a
huge number of exons tested in parallel on the arrays and the
fact that they are highly non-independent [19]. In particular,
nonparametric permutation approaches become computa-
tionally very intensive.

A critical final step in an exon array study is the evaluation of
the relevance of the detected exons. While PECA-SI can
improve the reliability of the detections, there remain cases in
which it is difficult to distinguish between true splicing events
and differences caused by poorly designed probesets. In par-
ticular, although essential for the discovery of novel splicing
events, the large number of speculative probesets on the array
necessitates careful attention [11]. For instance, many pre-
dicted probesets may interrogate regions that are not actually
transcribed at all and will, therefore, be falsely detected as dif-
ferentially spliced. Another type of false detection arises from
probesets showing increased expression due to cross-hybrid-
ization with another gene. To guard against such false detec-
tions, the exon lists can be filtered using various criteria, such
as low intensity or probe specificity, and, finally, by visually
inspecting the intensities of the best candidates within the
genomic context. Ultimately, the detections can be confirmed
using an independent experimental technology, such as RT-
PCR. As the experimental validations are laborious, the filter-
ing criteria should be a balance between the available
resources and the aim of the study to extend the limits of the
detections. Future improvements in the accuracy and cover-
age of annotations are likely to improve also the reliability of
the exon array results. The proposed probe-level procedure is
applicable to any existing or future annotation scheme.

In addition to the annotation accuracy, another challenging
issue in the detection of differential splicing is the complexity
of the splicing process. Several types of splicing events have
been observed, such as exon inclusion/exclusion, alteration
of exon length, intron retention or alternative promoter or

polyA sites [1]. The different transcript variants are produced
combinatorially through these events and multiple different
isoforms of the same gene may occur in a single sample. A
limitation of the SI approaches as well as the FIRMA model is
that they cannot truly capture complex transcript patterns
involving multiple isoforms. Instead, they may, in the worst
case, produce erroneous results if the multiple isoforms share
overlapping regions [29]. Hence, development of more com-
plex measures of differential splicing may be required as the
understanding of the splicing process evolves. As the aim of
the present study was to demonstrate the benefits of using
directly the probe-level data in detecting differential splicing,
SI was chosen as a widely used and straightforward approach.
In general, the proposed probe-level procedure is not limited
to SI calculations only but could be extended to other types of
probe-level statistics as well.

A comprehensive characterization of the transcriptome with
the different splice variants and the assessment of their func-
tional roles, using, for example, large-scale small interfering
RNA screens, can open up new perspectives on how different
cellular processes are regulated in normal and disease states
[2]. In particular, alternative splicing signatures hold a great
promise to provide novel diagnostic and prognostic tools for
many diseases [6]. This was supported, for instance, by the
recent study of prostate cancer, demonstrating that the detec-
tion of splice variants can indeed permit more reliable dis-
crimination between normal and tumour tissues than the
detection of gene-level differences in the same samples [30].
Moreover, the ability to measure individual exons and iso-
forms provides new possibilities for combining the transcrip-
tomic and proteomic measurements, which have typically
shown little correlation in the conventional gene-level analy-
ses [31]. Providing an additional layer to the gene regulation
network, exon-level analysis of expression is likely to be an
intensive focus of research in the near future. An important
future goal is the effective integration of the exon-level data
with all the available data from other levels of the systems,
such as protein abundance measurements or protein-protein,
domain-domain or protein-DNA interactions.

Conclusions
Alternative splicing has appeared as a key mechanism by
which higher organisms increase their proteomic and func-
tional diversity. Therefore, characterization of the full reper-
toire of relevant transcript variants and their specific roles in
the cells is essential for a detailed understanding of various
normal and disease states. With the massive datasets pro-
duced by exon microarrays consisting of millions of data
points per sample, effective methods are needed to dissect the
true biological findings from background noise. In the
present work, we introduced a novel probe-level procedure
for ranking exons on the basis of differential splicing in
Affymetrix exon array studies. In comparison to existing
ranking methods, the proposed PECA-SI procedure showed
Genome Biology 2009, 10:R77



http://genomebiology.com/2009/10/7/R77 Genome Biology 2009,     Volume 10, Issue 7, Article R77       Laajala et al. R77.8
superior performance systematically under various practical
comparisons on synthetic and real datasets. In particular, sig-
nificant improvements were achieved in the reproducibility of
the detections even in the presence of confounding factors.
The biological relevance of the procedure was finally con-
firmed by its enhanced ability to discriminate between true
positive and true negative detections as assessed experimen-
tally by RT-PCR.

Materials and methods
Detection of differential splicing
Intensity model
The widely used model for the normalized logarithmic inten-
sity of a probe k corresponding to a probeset g (convention-
ally a gene) in a sample u is defined as:

  (Equation 1)

where the parameter ug denotes the expression level of the
probeset g in the sample u, gk accounts for the fact that dif-
ferent probe sequences can have different binding properties,
and ugk is the measurement error [32]. Since microarray data
typically contain several outliers due to, for instance, bad-
quality probes, false annotations or alternative splicing,
robust estimation methods are often applied [32,33].

Splicing index
The standard SI procedure considers Equation 1 at two levels:

the genes and the exons [11]. The underlying assumption is

that the number of differentially spliced exons is much

smaller than the total number of exons in the gene. To calcu-

late the SI value for an exon e corresponding to a gene g in a

sample u, the probe-level expression intensities are first sum-

marized into an exon-level intensity  and the correspond-

ing gene-level intensity . The exon intensity is then

normalized by the gene intensity, producing the normalized

intensity (NI) log2 . Finally, the SI

between two samples u and v is defined as the log-ratio

between their NI values:

  (Equation 2)

In case of replicated samples in the two sample groups under
comparison, the ordinary or a modified t-test can be applied
to the NI or SI values to identify exons that show statistically
significant differences between these groups [11,27].

Probe-level expression change averaging
It can be observed that the probe effect gk in Equation 1 is
cancelled out if relative expression levels between two sam-
ples u and v are considered instead of their absolute signal
intensities. This simplifies the model to:

  (Equation 3)

which allows the probeset-level expression change (uv)g = ug

- vg to be estimated directly using, for instance, the median
over the probes. This type of probe-level expression change
averaging approach PECA has been shown to improve the
detection of differential expression in gene expression micro-
array studies [20]. Moreover, in case of replicated samples, it
has been shown that it is beneficial to also apply a similar
probe-level procedure to other measures of differential
expression, such as a t-type statistic between sample groups
[20,23].

PECA splicing index
To apply a PECA-type procedure to the SI calculations, a
probe-level SI needs to be defined. Therefore, we consider a
modified version of Equation 1 that takes into account the
potential differences in the exon inclusion rates:

  (Equation 4)

Here, uge denotes the effect of an exon e corresponding to a
gene g in a sample u. In light of this model, the logarithmic
NIuge value can be viewed as an estimate of the exon effect
uge. Comparing the expression levels between two samples u
and v gives:

  (Equation 5)

where (uv)g = ug - vg is the gene-level expression change,
while (uv)ge = uge - vge corresponds to the SI(uv)ge in Equa-
tion 2. Hence, a natural definition of the probe-level SI of a
probe k is:

  (Equation 6)

where the gene-level expression change  is estimated

from Equation 3. Since our ultimate goal is to detect system-

atic splicing differences across biological (paired) replicates,

the ordinary or modified t-statistic is calculated separately for

x ugugk gk ugk= + +μ θ ε (1)

μ̆ue

̆ug

log ˘ ˘2 NI uge = − ue ug

SI NI NIuv ge( ) log ( / )= 2 uge vge (2)

x xugk vgk uv g uv gk− = + ( ) ( ) (3)

x ugk ug gk ugek= + + +   uge (4)

x xugk vgk (uv)g (uv)gek− = + +μ α ε( )uv ge (5)

SI uv k( ) ) ˘= − −(x xugk vgk (uv)gμ (6)

μ̆(uv)g
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each probe. The exon-level statistic is finally determined as

the median over the probe-level values of the statistic.

FIRMA algorithm
The recently introduced FIRMA approach was considered in

the present work as a state-of-the-art reference method,

although it was originally designed for situations without rep-

lication [15]. In the FIRMA algorithm, the parameters ug and

gk are estimated from Equation 1 using iteratively weighted

least squares estimation [15]. The detection of alternative

splicing is then formulated as an outlier detection problem,

where the residual  is evaluated for

each probe k. The final FIRMA score of an exon is defined as

the median residual over the probes within the particular

exon probeset divided by their median absolute deviation.

For comparability, the FIRMA scores were also subjected to a

t-type statistic to identify consistent splicing differences

across replicates.

Two-way ANOVA approaches
A two-way ANOVA can be used to model the observed loga-
rithmic intensities of a given gene as a combination of two fac-
tors, exon and sample group:

  (Equation 7)

Here, xuec denotes the intensity of an exon e of a sample u in a
sample group c. The term  represents the baseline intensity
of the particular gene, the terms e and c represent the linear
contributions of the exon e and the sample group c, respec-
tively, and the term ec represents their interaction; uec is the
error term. Differential alternative splicing between sample
groups can be detected by assessing the significance of each
interaction term ec [12,26]. Here, the significance was
assessed similarly as in [12] using a t-test, where the numera-
tor and the denominator of the test statistic are the estimated
coefficient and its standard error, respectively, and there are
n -  - 1 degrees of freedom, where n is the sample size and 
is the number of terms in the statistical model.

Filtering
When detecting differential splicing events, special care
should be taken of genes and exons that are not expressed. To
avoid spurious detections, a gene is often required to be
expressed in both sample groups and an exon in at least one
of the sample groups [8]. If the gene is expressed in only one
group, then there is no true differential splicing between the
groups, although SI may detect alternative splicing events in
the expressed group. On the other hand, if the exon is not
expressed in either of the groups, then SI will detect the gene-
level differences between the groups instead of differential

splicing. To consider the effect of non-expressed genes and
exons, we also evaluated the methods after applying a filter-
ing procedure. Following the approaches of [15,27], we
defined a probe as present in a sample group if its expression
level in at least half of the samples in that group was larger
than a predefined threshold. The threshold was determined
as the overall probe median as in [34]. A gene was selected for
further analysis only if at least half of its probes were present
in both sample groups, resembling the procedure of [27].
Similarly, an exon was selected only if it contained at least
three present probes in either of the sample groups.

Implementation
The PECA-SI, RMA-SI and FIRMA calculations were per-
formed in R using the package aroma.affymetrix, which is
specifically designed to handle large datasets produced in
high-throughput experiments [17]. For PECA-SI, the data
were pre-processed using the quantile normalization method
as in the previous PECA applications [20,21]. The gene- and
exon-level changes were calculated as the medians over the
probes. For RMA-SI, the gene- and exon-level intensities
were estimated using the RMA procedure. The FIRMA model
was fitted using the default implementation in the
aroma.affymetrix package together with logarithmic trans-
formation. To detect consistent splicing differences between
sample groups, ordinary or modified t-statistics were deter-
mined. With small sample sizes (n < 10), the modified t-sta-
tistic in the Bioconductor limma package was utilized [35,36].
With larger sample sizes (n  10), the ordinary t-statistic was
calculated. In the present work, we focused on paired two-
sample designs and, hence, the t-statistics were calculated
using the SI values from the paired samples.

The RMA-MIDAS and PLIER-MIDAS analyses were per-
formed using the Affymetrix Power Tools software provided
by the array manufacturer [37]. In addition to the RMA pro-
cedure, the pre-processing of the data was also done using the
PLIER. The standard PLIER algorithm was used to estimate
the exon-level intensities, whereas its iterative version (Iter-
PLIER) was applied to derive the gene-level intensities, simi-
larly as in [27]. Default parameters were used in each of the
algorithms. For the PLIER-SI and the two-way ANOVA anal-
yses, referred to as RMA-LM and PLIER-LM, the RMA or
PLIER pre-processed data from the Affymetrix Power Tools
software were imported into R. For PLIER-SI, the SI-calcula-
tions were performed in R similarly as with the RMA-SI pro-
cedure. For RMA-LM and PLIER-LM, the exon-sample group
interactions were assessed using the function lm in R.

Gene-level probeset definitions based on the human Ensembl
build 49 were downloaded from the aroma.affymetrix website
[38]. Within these probesets, the original exon-level probeset
definitions of Affymetrix were retained.

The R package PECA implementing the PECA-SI procedure is
available from our website [39].

rugk gk= − −x ugk ug˘
˘μ θ

x uec c uec= + + + +μ α β γ εe ec (7)
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Datasets and evaluation criteria
Synthetic data
Synthetic data were generated using a similar model as in
[15], featuring additive background, multiplicative noise and
probe-specific affinities. More specifically, the intensity of a
probe k for a gene g in a sample u was simulated from the
model:

  (Equation 8)

where log2 (Bgk) ~ N(5,0.352) is the background, ug ~
N(7,1.52) is the expression level in sample u, gk ~ N(0,32) is
the probe affinity, ugk ~ N(0, 2) is the measurement error at
noise level  = 0.7 or  = 1, and Iugk is an indicator function
determining whether the exon is included in the transcript
(Iugk = 1) or not (Iugk = 0). The parameters were taken from
[15]. Additionally, a higher noise level  = 1 was considered.
The exon structure of the genes was taken from the Affyme-
trix Human Exon 1.0 ST array based on the Ensembl annota-
tions. For each gene, one to five differentially spliced exons
between two groups of ten samples were generated. In total,
10,000 genes were considered, 1,000 at each parameter set-
ting (number of differentially spliced exons and the noise
level). Since the true differential splicing events in the syn-
thetic data are known, the performance of the methods was
assessed in terms of their ROC curves. A ROC curve deter-
mines the true positive rate of a method as a function of the
false positive rate when the number of top-ranking exons is
varied. To summarize each ROC curve into a single value, the
AUC was calculated.

Mixture data
The mixture data were downloaded from the Affymetrix web-
site [25]. In these data, total RNA from brain and heart were
mixed together in nine different proportions (sample sets
mix1, mix2, ..., mix9 in [25]) and hybridized in triplicate on
the Affymetrix Human Exon 1.0 ST arrays. Even if the true
expression changes are not known, it is known that the detec-
tions made when comparing the pure brain and heart samples
(mix1 versus mix9) should also be identified in the mixtures.
Thus, the performance of the methods can be evaluated in
terms of their capability to reproduce the original pure sam-
ple detections across a range of mixture differences. In the
present work, seven comparisons with different levels of mix-
ture differences were investigated: 0.05 (mix2 versus mix3),
0.2 (mix2 versus mix4), 0.4 (mix3 versus mix5a), 0.5 (mix4
versus mix6), 0.7 (mix2 versus mix6), 0.8 (mix3 versus mix7),
0.9 (mix2 versus mix8). For details of the particular mixtures,
the reader is referred to [25]. The reproducibility was defined
as the overlap of the top-ranked k detections between the
mixture and the pure data, k = 100, 500, 1,000, 1,500, 2,000.

Between-laboratory comparison data
The between-laboratory comparison data [GEO:GSE13072]
contain measurements from human brain and tissue pool ref-
erence samples [26]. Five technical replicates of both sample
types were hybridized independently in two different labora-
tories, resulting in a total of ten arrays per laboratory. In addi-
tion to the whole datasets, we investigated the performance of
the different splicing detection methods in all the possible
subsamples of sizes two to four. In each case, two replicate
estimates of differential splicing across the exons were
obtained corresponding to the same samples in the different
laboratories. Similarly as in the mixture data, the agreement
of the top-ranked k candidates was examined at k = 100, 500,
1,000, 1,500, 2,000. To assure the biological relevance of the
detections, the performance of the different methods was fur-
ther evaluated using a set of brain-specific exons previously
confirmed with RT-PCR [11]. Of these confirmed exons, 51
matched the probesets in our analysis. The evaluation was
performed in a ROC-type manner by assessing the number of
true positives as a function of the false discovery rate, simi-
larly as suggested in [28]. Since there was no sufficient set of
true negatives available, false discovery rates were estimated
using a randomization procedure. More specifically, random
datasets were generated by repeatedly permuting the sample
labels 100 times; each of the procedures was then applied to
these randomized datasets; and the false discovery rate of a
procedure was finally estimated as the expected proportion of
falsely called exons among all the positive predictions at a
particular cutoff level of the statistic.

Colon cancer data
The colon cancer data of [27] involve ten matched pairs of
human colon primary tumour and adjacent normal tissue (20
total RNA samples), being a representative example of a real
biomedical microarray study. As opposed to the other data-
sets, the colon cancer data are expected to be noisy due to, for
instance, different stages of the cancer progression (poorly/
moderately/well differentiated tumours), heterogeneous tis-
sue samples, and high variability between the individuals
[27]. To evaluate the methods in these data, we first assessed
the reproducibility of the top-ranked candidates detected in
independent subsets of two to four randomly selected sample
pairs. This gives indications of the robustness of the proce-
dure, as biologically relevant splicing events should be
detected across replicates. Similarly as before, the reproduci-
bility was determined as the overlap of the top-ranked k can-
didates, k = 100, 500, 1,000, 1,500, 2,000. At least 15 pairs of
independent subsets were considered at each sample size. In
order to compare how accurately the methods could discrim-
inate the true splicing differences from background noise, we
utilized the relatively large set of RT-PCR validations per-
formed on the same data [27]. Of the exons included in the
RT-PCR runs and matching the probesets in our analyses, 17
were confirmed to have cancer-specific splicing and 14
showed clearly negative results by RT-PCR. To assess the per-

y ugk = + ++
log ( )2 2B Igk ugk ugk

ug gkμ θ ε (8)
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formance of the methods with respect to the validated exons,
a ROC analysis among them was conducted.
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