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Metabolic modularity<p>A novel evolutionary analysis of metabolic networks across 26 taxa reveals a highly-conserved but flexible core of metabolic enzymes.</p>

Abstract

Background: Cellular metabolism is a fundamental biological system consisting of myriads of
enzymatic reactions that together fulfill the basic requirements of life. The recent availability of vast
amounts of sequence data from diverse sets of organisms provides an opportunity to systematically
examine metabolism from a comparative perspective. Here we supplement existing genome and
protein resources with partial genome datasets derived from 193 eukaryotes to present a
comprehensive survey of the conservation of metabolism across 26 taxa representing the three
domains of life.

Results: In general, metabolic enzymes are highly conserved. However, organizing these enzymes
within the context of functional pathways revealed a spectrum of conservation from those that are
highly conserved (for example, carbohydrate, energy, amino acid and nucleotide metabolism
enzymes) to those specific to individual taxa (for example, those involved in glycan metabolism and
secondary metabolite pathways). Applying a novel co-conservation analysis, KEGG defined
pathways did not generally display evolutionary coherence. Instead, such modularity appears
restricted to smaller subsets of enzymes. Expanding analyses to a global metabolic network
revealed a highly conserved, but nonetheless flexible, 'core' of enzymes largely involved in multiple
reactions across different pathways. Enzymes and pathways associated with the periphery of this
network were less well conserved and associated with taxon-specific innovations.

Conclusions: These findings point to an emerging picture in which a core of enzyme activities
involving amino acid, energy, carbohydrate and lipid metabolism have evolved to provide the basic
functions required for life. However, the precise complement of enzymes associated within this
core for each species is flexible.

Background
Cellular metabolism, represented by complements of enzy-
matic and transport reactions, is a fundamental biological
system required for sustaining life. With a strong tradition in

biochemistry, metabolism is probably the most widely char-
acterized biological system studied to date. Several resources
are now available that detail the metabolic complement of a
wide range of organisms [1,2]. With the exception of a few
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model organisms, for the most part these are derived through
automated methods capable of reconstructing metabolic net-
works through sequence similarity searches of known
enzymes against their genomes [1-8]. Representation of
metabolism is typically provided in the form of pathway maps
that collate enzymes on the basis of their involvement in
related biochemical conversions [1,2]. However, given that
many pathways share common enzymes, metabolism is
increasingly being viewed as an assemblage of functional
modules, interconnected through common enzymes and sub-
strates that together coordinate a cell's biochemical activities.
This treatment of metabolism as a single integrated network
allows the application of sophisticated graph theoretical anal-
yses to uncover fundamental organizational principals within
the network. For example, it has been suggested that metab-
olism displays the typical scale free behavior of small world
networks [9-11] (that is, most of the enzymes within the net-
work have only a few connections while a few enzymes, so
called hubs, are very highly connected), although this has
been questioned in a more recent study [12].

Recently, with the availability of increasing numbers of
genomes, there has been considerable interest in examining
biological networks from an evolutionary perspective [13-16].
Applied to metabolism, such studies are beginning to yield
insights into the effects of selection pressures at both local
(pathway) and global (network) scales. Recent studies sug-
gest a 'core' set of metabolic reactions, conserved across many
organisms, highlighting the fundamental role of metabolism
that is subject to strong evolutionary constraint [17-19]. How-
ever, aside from the core, there is increasing evidence that
pathway expansions have evolved through the recruitment
and/or loss of functional modules of enzymes with related
activities [17,18,20]. The ability of a functional module to
evolve may play a key role in developing or limiting biological
robustness [21]. For example, evolutionarily 'frozen' modules
may be less able to withstand errors, such as mutational inac-
tivation of gene products, within the same functional module.
Focusing on metabolism, two recent studies have used Jac-
card coefficients (JCs) to measure the similarity of phyloge-
netic profiles and identify modules of evolutionarily related
enzymes [16,22]. Yamada and colleagues [16], for example,
identified over 200 'phylogenetic network modules' consist-
ing of enzymes proposed to behave in a similar way in the evo-
lutionary process of the metabolic network. Additional
studies have further suggested that enzyme modularity is
affected by both environmental factors and evolutionary rela-
tionships [23,24]. For example, Kreimer and colleagues [23]
noted a trend of modularity decrease from ancestors to
descendants. Together these studies suggest the need to
explore modularity from the perspective of known phyloge-
netic relationships.

Due to the paucity of available eukaryotic genomes (to date
the full genome sequence of only approximately 60 eukaryo-
tes are currently available [25]), previous comparative studies

of metabolism have largely focused on prokaryotes. Recently,
we have collated and processed expressed sequence tag data-
sets to generate so called 'partial genomes' for almost 200
eukaryotes, including members of underrepresented taxo-
nomic classes such as plants, nematodes and various groups
of protists [26]. These data represent a valuable sequence
resource that provides a unique opportunity to perform more
comprehensive studies of metabolic pathways within Eukary-
otes, allowing comparisons to be placed within a detailed tax-
onomic context. The inclusion of these expressed sequence
tag datasets allows us to build further on previous studies of
metabolic conservation by providing greater confidence to
determining the taxonomic coverage afforded by individual
enzymes as well as pathways. We highlight enzymes and
pathways associated with taxonomic innovations and exam-
ine the evolution of these metabolic processes in the context
of a novel approach to examining enzyme co-conservation.

Results
Conservation of enzyme activities over the three 
domains of life
Collating 2.7 million sequences associated with 193 partial
genomes [26,27], 167 fully sequenced genomes and the non-
redundant protein database (nr), we performed a systematic
scan to detect potential homologs of 29,893 proteins repre-
senting 1,474 distinct enzyme activities (Table 1; Additional
data files 1 and 2). The accurate annotation of catalogs of
enzymes from genome sequences remains a significant chal-
lenge [28]. Due to the scale of this analysis and consistent
with other genome annotation schemes [2,18,29,30] we
employed BLAST as an efficient means of inferring the con-
servation of the 1,474 enzyme activities. It is appreciated that
the use of BLAST can lead to a high rate of false positive
assignments. For example, the well annotated genomes of
Escherchia coli strain O157:H7 and Saccharomyces cerevi-
siae have 567 and 426 enzymes, respectively, curated in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
resource [2]. With a bit score cutoff of 50 (equivalent to an E-
value of approximately e-5), BLAST identifies an additional
512 enzymes for E. coli and an additional 501 enzymes for S.
cerevisiae, resulting in a false positive rate of approximately
50%. On the other hand, the rate of false negatives is less than
2%. Increasing the cutoff to 100 (equivalent to an E-value of
approximately e-20) was found to lower the false positive rate
to only approximately 42%. Aside from BLAST, profile-based
methods have also been employed [6,31]. However while
these methods significantly reduce the incidence of false pos-
itives, they also result in a high incidence of false negatives.
Finally, it is worth noting that approaches based on orthology
mappings, such as that employed by KEGG, can greatly
improve on BLAST annotations. However, such approaches
are limited to organisms with complete genome sequences
and may be problematic where such sequences are highly
divergent. Here the aim is to incorporate non-genome
sequence data to provide a more global survey of enzyme con-
Genome Biology 2009, 10:R63
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Table 1

Number and sources of genomes and sequences used in this study broken down into taxonomic categories

Domain Taxonomic grouping Partial
genomes

Partial genome
sequences

Complete
genomes

Complete genome
sequences

nr sequences Total sequences

Archaea Crenarchaeota - - 4 11,120 12,339 23,459

Archaea Euryarchaeota - - 14 30,396 38,863 69,259

Archaea Archaea - Other - - 1 563 3,180 3,743

Archaea Total - - 19 42,079 54,382 96,461

Bacteria Actinobacteridae - - 14 49,608 68,041 117,649

Bacteria Alphaproteobacteria - - 14 48,997 81,233 130,230

Bacteria Betaproteobacteria - - 9 37,184 51,947 89,131

Bacteria Gammaproteobacteria - - 27 94,933 188,458 283,391

Bacteria Deltaproteobacteria - - 4 13,778 15,449 29,227

Bacteria Epsilonproteobacteria - - 4 7,128 16,452 23,580

Bacteria Cyanobacteria - - 6 20,983 32,380 53,363

Bacteria Firmicutes - - 31 72,975 163,215 236,190

Bacteria Spirochaetes - - 4 10,163 18,324 28,487

Bacteria Bacteria - Other - - 14 36,760 61,550 98,310

Bacteria Total - - 127 392,509 697,049 1,089,558

Eukarya Protist - Alveolata 10 29,707 2 8,691 24,211 62,609

Eukarya Protist - Euglenozoa/
Haptophyceae/
Stramenophiles

7 13,846 1* 11,397* 9,484 34,727

Eukarya Protist - Other - - - - 12,862 12,862

Eukarya Protists - Total 17 43,553 3 20,088 46,557 110,198

Eukarya Fungi - Ascomycota 17 44,358 9 52,271 67,765 164,394

Eukarya Fungi - Basidiomycota 7 14,785 1† 431† 10,264 25,049

Eukarya Fungi - Glomeromycota/
Zygomycota

3 3,398 - - 734 4,132

Eukarya Fungi - Other - - 1 1,996 2,558 4,554

Eukarya Fungi - Total 27 62,541 10 52,271 78,763 193,575

Eukarya Metazoa - Lophotrochozoa 4 14,631 - - 12,416 27,047

Eukarya Metazoa - Arthropods/
Tardigrades

17 22,528 2 33,585 95,953 152,066

Eukarya Metazoa - Deuterostomes 21 90,244 2 57,406 276,682 424,332

Eukarya Metazoa - Nematoda 34 95,345 2 39,464 38,657 173,466

Eukarya Metazoa - Other - - - - 3,424 3,424

Eukarya Metazoa - Total 76 222,748 6 130,455 427,132 780,335

Eukarya Plantae 76 221,896 2 30,533 190,711 443,140

Eukarya Total 196 550,738 21 233,347 743,163 1,527,248

Total 196 550,738 167 667,935 1,494,594 2,713,267

All partial genome sequences were obtained from PartiGeneDB [26]. Complete genome sequences refer to protein coding sequences obtained from 
the COGENT database [56] with the exception of those marked with an asterix, which represents the genome of Thalassiosira pseudonana, obtained 
from the Joint Genome Institute [58], and those marked with a dagger, which represent the genome contigs of Coprinopsis cinerea, obtained from the 
Broad Institute [59].
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servation. The effect of using BLAST with a relatively flexible
score cutoff will result in an over-prediction of enzyme con-
servation, but has the benefit of providing highly conservative
estimates of which enzymes and pathways are likely absent
from specific taxa. Consequently, care must be taken when
interpreting the results of these analyses.

In the following we use the term 'enzyme' to refer to a collec-
tion of isoforms associated with a single enzyme activity
(defined by unique Enzyme Commission (EC) numbers). To
explore the distribution of enzymes across a broad set of
informative taxonomic groupings, we defined 26 distinct taxa
on the basis of number of species, sequence coverage and
diversity (Table 1). These taxa are broadly consistent with
previous studies of molecular evolution across the three
domains of life [32]. Of the 1,474 enzymes studied here, half

possessed significant sequence similarity in at least 60% of
the completely sequenced genomes (complete genomes) and
at least 17% of the partial genomes (Figure 1a; Additional data
file 3). The lower observed incidence of detectable enzymes in
the partial genomes reflects the incomplete nature of these
datasets. In terms of taxonomic distribution, 190 enzymes
(13%) were detected in 25 of our 26 defined taxa (Table 1);
933 (63%) enzymes were detected in all six major taxonomic
groups (defined as: Archaea, Bacteria, Protists, Fungi, Meta-
zoa and Plants); and 1,145 (78%) enzymes were detected in
each of the three domains of life (Archaea, Bacteria and
Eukarya) (Figure S1 in Additional data file 1). Overall, meta-
bolic enzyme sequences were found to be more highly con-
served than randomly selected sets of proteins from nr
(Figure S2a in Additional data file 1), consistent with previous
findings [18].

Representation of enzymes within three large-scale datasetsFigure 1
Representation of enzymes within three large-scale datasets. (a) Coverage of enzymes and genes provided by the three different datasets: the non-
redundant protein database (nr); partial genomes; and complete genomes. Fifty percent of all enzymes are associated with approximately 15% of all partial 
genomes, approximately 60% of all complete genomes and approximately 75% of the nr categories used in this study. Compared to all the genes within the 
partial and complete genome datasets, the enzymes are more highly represented. (b) Relationships of enzyme coverage between the partial and complete 
genome datasets. Each point indicates a discrete enzyme (color indicates superclass membership - see inset key in (d)). Enzymes involved in secondary 
metabolism appear to be more highly represented in the partial genome datasets than the complete genome datasets. (c,d) As for (b) but showing the 
relationship of enzyme coverage between the nr dataset and the complete and partial genome datasets, respectively.
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Relationships between enzyme function and patterns 
of conservation
In addition to organizing enzymes into 118 distinct biochem-
ical pathways, the KEGG database (version 33) [2] groups
these pathways into ten functional subcategories (which we
term 'superclasses'): carbohydrate metabolism; energy
metabolism; lipid metabolism; nucleotide metabolism;
amino acid metabolism; other amino acid metabolism; glycan
metabolism; co-factors and vitamins; secondary metabolites;
and xenobiotics. Enzyme conservation was therefore exam-
ined in the context of enzyme superclasses (Figure 1b-d;
Additional data file 3).

Enzymes involved in multiple metabolic superclasses had sig-
nificantly higher rates of detection in both complete and par-
tial genomes (median number of complete/partial genomes =
126/57) compared with all other enzymes (median number of
complete/partial genomes = 93/30; Mann-Whitney test, P <
10-5 for both genome datasets). Conversely, those involved in
glycan metabolism (median complete/partial genomes = 19/
14; Mann-Whitney test, P < 10-5 for both genome datasets)
and xenobiotics (median complete/partial genomes = 72.5/7;
Mann-Whitney test, P < 5 × 10-5 for complete genomes, P <
10-5 for partial genomes) were significantly less conserved in
both genome datasets.

Between the datasets some notable differences in enzyme
conservation were observed (Additional data file 3). Specific
to the complete genome datasets, enzymes involved in nucle-
otide metabolism had significantly higher rates of detection
(median number of genomes = 127; Mann-Whitney test, P <
10-4), while enzymes involved in secondary metabolites had
significantly lower rates of detection (median number of
genomes = 24; Mann-Whitney test, P < 10-5). Within the par-
tial genome datasets, enzymes involved in lipid metabolism
had significantly higher rates of detection (median number of
partial genomes = 41; Mann-Whitney test, P < 0.01). Interest-
ingly, enzymes associated with co-factors and vitamins had
significantly higher rates of detection in the complete
genomes (median number of complete genomes = 116; Mann-
Whitney test, P < 0.02), but significantly lower rates of detec-
tion in partial genomes (median number of partial genomes =
18; Mann-Whitney test, P < 10-5). Differences between the
two datasets are also apparent from Figure 1b (note, for
example, the higher incidence of enzymes associated with
secondary metabolites and lipid metabolism in the partial
genome datasets compared with the complete genome data-
sets). Overall, there was good correlation between enzyme
conservation as measured by nr categories and complete
genomes (Figure 1c; Additional data file 3). Interestingly
many enzymes were identified as being restricted to specific
domains of life. For example, 204 enzymes (14%) had
homologs in Bacteria and Eukarya but appear absent from
Archaea while 34 enzymes associated with 30 KEGG-defined
pathways appear specific to bacteria (Additional data file 4).

A detailed discussion of these findings is presented in Addi-
tional data file 1.

Complicating factors in interpreting these results include
both the incomplete nature of the partial genome datasets
and their bias towards highly expressed proteins (see Addi-
tional data file 1 for further discussion). However, in a previ-
ous study of global sequence diversity, we noted that findings
obtained from the use of partial genome datasets were con-
sistent with those obtained from the use of fully sequenced
eukaryotic datasets [32]. Hence, we expect the observed dif-
ferences between the complete and partial genome datasets
likely reflect their taxonomic bias (complete genomes are
mainly derived from prokaryotes, while partial genomes are
derived solely from eukaryotes). In the following sections we
explore these relationships in more detail.

Conservation and taxonomic distribution of metabolic 
pathways
In the previous section we examined the conservation of indi-
vidual enzymes and found that, with a few notable exceptions,
enzymes are broadly conserved across the three domains of
life. Given that enzymes operate within the context of bio-
chemical pathways, we next investigated the extent to which
the pathways themselves are conserved. For each of the 118
pathways defined in KEGG, we identified the proportion of
enzymes with homologs in each of the 26 taxonomic groups
(Figure 2). For groups represented by fewer sequences (for
example, lophotrochozoa and glomeromycetes/zygomycetes;
Table 1; Figure S2c in Additional data file 1), metabolic path-
ways will consequently appear less well conserved. Neverthe-
less, from Figure 2 general trends in pathway conservation
can be observed. Although pathways appear well conserved,
77 pathways having a mean percentage of conservation (MPC;
the average percentage of enzymes detectable in each of the
26 defined taxonomic groups) of 70% or more (Additional
data file 5), closer examination of conservation in the context
of the three domains of life revealed that only 25 pathways
had a MPC of 70% or more in each of Archaea, Bacteria and
Eukarya. Five pathways were significantly more conserved
than expected (P < 0.05 corrected for multiple testing - see
Materials and methods): ubiquinone biosynthesis; fatty acid
metabolism; glutamate metabolism; valine, leucine and iso-
leucine metabolism; and pyruvate metabolism. On the other
hand, 11 pathways (all involved in glycan and secondary
metabolism) had a MPC of less than 50%.

Across the 26 taxa, pathways display a spectrum of conserva-
tion, from those that are well conserved across all groups (for
example, many pathways associated with carbohydrate,
energy, nucleotide, amino acid, other amino acid and co-fac-
tor and vitamin metabolism) to those that are conserved in
only a few specific taxonomic groups (for example, many gly-
can pathways are conserved only in metazoans) (Figure 2).
These patterns are further emphasized through hierarchical
clustering of the pathways based on their conservation pro-
Genome Biology 2009, 10:R63
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Heatmap showing the conservation of individual metabolic pathwaysFigure 2
Heatmap showing the conservation of individual metabolic pathways. Each row indicates an individual metabolic pathway grouped by their superclass 
membership (defined by KEGG). Each column indicates specific taxonomic divisions (see Materials and methods; Table 1). Colored tiles indicate the level 
of conservation (percentage of enzymes detected) of each pathway within each taxonomic group (see inset color key top left). For example, many Glycan 
metabolic pathways are poorly conserved with the exception of several groups of metazoans.
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files (Figure S3 in Additional data file 1). Such taxa-specific
pathways represent unique innovations providing novel met-
abolic capabilities [33].

Pathways limited to specific domains include C5-branched
dibasic acid metabolism, lipopolysaccharide biosynthesis and
peptidoglycan biosynthesis, all poorly conserved in eukaryo-
tes. The former pathway provides alternative sources of car-
bon and energy, while peptidoglycan and lipopolysaccharides
are important components of the bacterial cell walls and
envelope, respectively. On the other hand, inositol phosphate
metabolism and sphingophospholipid biosynthesis were
poorly conserved in prokaryotes, consistent with their roles
as important components of secondary messenger systems
and eukaryotic cell membranes [34-36]. Aside from these
taxa-specific pathways, we noted that many pathways
involved in secondary metabolism are more highly conserved
in plants, ascomycetes and certain groups of bacteria such as
the actinomycetes. Such pathways are associated with
defense mechanisms (plants) [37], or as a means of surviving
within a highly competitive environment (ascomycetes and
bacteria) [38,39]. Finally, we note that many glycan biosyn-
thetic pathways are restricted to a limited number of taxa, in
particular the metazoa. This is consistent with the role of gly-
cans in developmental and signaling processes associated
with multicellularity [40,41].

Identification of evolutionarily distinct modules of 
enzymes
From the preceding analysis it is not clear to what extent each
pathway is conserved as a single entity. For example, path-
ways displaying moderate levels of conservation may arise
from either a few organisms possessing the entire pathway, or
many organisms possessing different, limited sets of
enzymes. We therefore investigated the extent to which each
pathway behaves as an evolutionarily distinct 'module'
through the calculation of JCs (see Materials and methods).
Due to the incomplete nature of the partial and nr datasets,
modularity analyses were performed using the complete
genome datasets only.

As for the conservation analyses, pathway modularity was
calculated for a range of different taxonomic groups (Figure
S4 in Additional data file 1; Additional data file 6). Similar to
pathway conservation, we observe a well populated spectrum
of pathway modularity with mean JCs (MJCs) for entire path-
ways ranging from 0.05 (type I polyketide biosynthesis) to
0.83 (inositol metabolism); where a MJC of 1.0 would indi-
cate that the enzymes of an individual pathway are always
present in the same genome. In addition, some pathways are
more modular (higher MJC) in the context of specific taxa
(for example, C21 steroid hormone metabolism has a MJC of
0.95 when considering only eukaryotic species, but a MJC of
0.60 when all species are considered. From Figure S4 in Addi-
tional data file 1, we see that many pathways involved in gly-
can metabolism (for example, glycosaminoglycan

metabolism) are more modular in metazoans; certain path-
ways involving amino acids and lipids (for example, gluta-
mate metabolism and fatty acid metabolism) are more
modular in metazoans and plants; and several pathways
involved in secondary metabolism (for example, clavulanic
acid biosynthesis and diterpenoid biosynthesis) are more
modular in plants and/or bacteria.

From these initial investigations we noted that pathways pos-
sessing enzymes that are highly conserved are likely to also
have high raw JCs (Figure S5 and Results in Additional data
file 1). We therefore assessed the significance of the observed
modularity scores (as defined by MJC) through comparisons
with 200 sets of randomly generated enzyme profiles. To
account for biases in the phylogenetic relationships of the
species sampled in this study (Figure S6 in Additional data
file 1) [42], we applied a novel simulated annealing protocol
to generate sets of adjusted enzyme profiles (see Materials
and methods). These were used to obtain distributions of
MJCs for each pathway allowing the calculation of Z-scores
for the observed MJC (Additional data file 6). These provide
a clearer view of which pathways may be defined as modular,
accounting for biases in both enzyme conservation and evolu-
tionary relationships of the organisms in which the compo-
nent enzymes are found. It should be noted that the over-
prediction of enzyme conservation discussed earlier has the
potential to introduce noise into these analyses. Conse-
quently, the modularity scores presented here should be
treated as conservative estimates.

We found 49 pathways to be significantly modular (P < 0.01
corrected for multiple testing - see Materials and methods).
These included many of the glycan metabolism pathways,
several lipid pathways, monoterpenoid and diterpenoid bio-
synthesis, inositol phosphate metabolism, and phenylalanine
and tyrosine metabolism. Many (26) of these were also asso-
ciated with low MJCs (< 0.4), compared with only nine that
had relatively high MJCs (> 0.6). In pathways with low MJCs,
there was a significant enrichment in enzyme pairs with high
JCs (> 0.6), suggesting that modularity arises through
smaller sets of enzymes. To examine this in more detail, we
selected three pathways with moderate to low MJCs but with
a significant enrichment of high JCs (> 0.8). These were dit-
erpenoid biosynthesis (MJC 0.27; Z-score = 17.4; 12% enzyme
pairs with JC > 0.8); C21-steroid hormone metabolism (MJC
0.60; Z-score = 8.5; 26% enzyme pairs with JC > 0.8); and
histidine metabolism (MJC 0.45; Z-score = 3.9; 12% enzyme
pairs with JC > 0.8). For each pathway, genome profiles for
each enzyme were clustered into distinct groups and mapped
onto KEGG pathway maps (Figure 3). From the profiles of
each group, it is clear how inclusion of all pairwise combina-
tions of enzymes can result in a low to moderate pathway
MJC (for example, note the large difference in the profiles of
the enzymes in the groups colored yellow and orange in diter-
penoid biosynthesis; Figure 3a). Figure 3b reveals that many
of these groups representing evolutionarily distinct modules
Genome Biology 2009, 10:R63
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Representative examples of pathways containing evolutionary submodules of enzymesFigure 3
Representative examples of pathways containing evolutionary submodules of enzymes. (a) Clustergrams showing the phylogenetic profiles of individual 
enzymes in three metabolic pathways. For each clustergram, rows indicate individual enzymes and columns indicate individual genomes. A grey box 
indicates that the enzyme has been detected in that genome, black boxes indicate that it has not. Hierarchical clustering was performed using Cluster3.0 
[70] using Spearman rank correlation coefficients and average linkage. Colored boxes indicate manually assigned groups of enzymes with similar 
phylogenetic profiles. (b) KEGG pathway representations of the three clustered pathways presented in (a). Enzymes are colored by the groups derived 
from (a). Within each pathway, groups of similar colored enzymes can be located to specific areas of each pathway, suggesting an evolutionarily cohesive 
module of function. For example, in diterpenoid biosynthesis, the red cluster of enzymes form a spatially distinct section of the pathway connected to the 
orange cluster of enzymes, while the green cluster of enzymes appears to form the beginnings of the pathway.
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additionally represent limited but functionally cohesive units
within their respective pathways.

Metabolic network reconstruction and analysis
Metabolic pathways are typically defined through linked
sequences of enzyme-catalyzed reactions with their bounda-
ries determined through manual curation [43]. While such
definitions can provide biological meaning, they tend to
ignore the integrated nature of metabolism. Consequently,
metabolism is increasingly being studied in the context of a
single integrated network with nodes representing substrates
and links between these nodes representing enzyme reactions
(or vice versa) [4,10,16,17,22]. To examine evolutionary rela-
tionships outside pathway boundaries, we reconstructed a
global metabolic network (with 1,329 nodes representing
enzymes and 5,906 links representing common substrates)
based on information of reaction pathways from KEGG. Con-
sistent with previous studies [10], the network is scale-free (R
= -0.92); that is, most enzymes have few links, while a few
'hub' enzymes possess many links. Note this network does not

represent a true biological network in the sense of being spe-
cific to a single species, but rather represents the collection of
metabolic pathways from across the three domains of life
[16].

Visualization of the network (Figure 4) reveals the complex
nature of this network. At the network periphery the distinct
pathway structure of several pathways can be clearly dis-
cerned (for example, diterpenoid biosynthesis, penicillin and
cephalosporin biosynthesis, folate metabolism, fatty acid bio-
synthesis pathway, N-glycan metabolism, and porphrin and
chlorophyll biosynthesis). However, at the center of the net-
work is a large 'core' of highly connected enzymes involved in
multiple pathways, amino acid metabolism and carbohydrate
metabolism. Many of these core enzymes are also highly con-
served (Figure 5a). Since proteins with wider phylogenetic
extent are expected to be of an older origin [18,44], this net-
work core is likely associated with the ancestral form of the
extant metabolic network.

Conservation within the global metabolic networkFigure 4
Conservation within the global metabolic network. An integrated view of metabolism in which individual enzymes (1,329 nodes) are connected through 
common metabolites (5,906 edges) (see Materials and methods). Colors of nodes represent which metabolic superclass (as defined by KEGG) each 
enzyme belongs to (see inset key). Node size indicates the number of genomes (of 167 complete genomes) in which the enzyme could be detected. A 
number of pathways with connected enzymes are indicated with red circles for illustrative purposes. While some nodes such as those involved in 
diterpenoid biosynthesis - pathway 11 - form a separate network, the vast bulk of metabolic pathways form connections with many others (for example, 
Nitrogen metabolism - pathway 21).

Carbohydrate metabolism

Energy metabolism

Lipid metabolism

Nucleotide metabolism

Amino acid metabolism

Other amino acid metabolism

Glycan metabolism

Co-factors and vitamins

Secondary metabolites

Xenobiotics

Multiple superclasses

Multiple pathways

 in same superclass

Highly conserved (>=140 genomes)

Less well conserved (< 140 genomes)

Superclass membership : Node color

Conservation : Node size

White border

(18) Purine 

metabolism

(10) Penicillin and cephaloporin biosynthesis

(14) Fatty acid

biosynthesis pathway I

(11) Diterpenoid biosynthesis

(20) Phenylalanine, tyrosine and

tryptophan biosynthesis

(22) Pantothenate and CoA

biosynthesis

(25) Porphyrin and cholorophyll

biosynthesis

(23) Riboflavin 

metabolism

(4) N-glycan metabolism

(3) Fructose and mannose metabolism

(2) Aminosugars biosynthesis

(1)

(1) Blood group glycolipid and ganglioside 

biosynthesis; globoside metabolism

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(5) Alkaloid biosynthesis I

(6) Flavanoids, stilbene and lignin

biosynthesis

(7) Inositol phosphate metabolism

(8) Prostaglandin and leukotriene metabolism

(9) Folate metabolism

(11)

(12)

(13)

(14)

(12) Glutathione metabolism(13) Lysine biosynthesis and

 degradation

(15)

(16)

(15) Glycine, 

serine and 

threonine 

metabolism

(16) Urea cycle

and metabolism

of amino groups

(17) Thiamine 

metabolism (17)

(19) Pyrimidine

metabolism

(18)

(19)

(20)

(21)

(21) Nitrogen 

metabolism

(22)

(23)

(24) Galactose

metabolism

(24)

(25)

Pathway examples
Genome Biology 2009, 10:R63



http://genomebiology.com/2009/10/6/R63 Genome Biology 2009,     Volume 10, Issue 6, Article R63       Peregrín-Alvarez et al. R63.10

Genome Biology 2009, 10:R63

Metabolic network propertiesFigure 5
Metabolic network properties. The graphs indicate the relationships between enzyme superclass categories, conservation and connection within the 
metabolic network. (a) Number of connections as a function of enzyme conservation. (b) Centrality (as measured by betweenness) of enzymes as a 
function of conservation. (c-e) Enzyme superclass and its conservation, connection and centrality properties.
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We applied topological metrics in conjunction with their con-
servation profiles to analyze these relationships in more
detail (Figure 5). Consistent with previous studies of biologi-
cal networks [14,45], highly conserved enzymes (those identi-
fied in > 140 of 167 genomes) were more highly connected and
more centrally located (higher values of betweenness) within
the network (Figure 5a, b). They were also more likely to be
involved in multiple KEGG-defined pathways (chi-squared
score = 25.8; P < 0.001). Focusing on superclass designa-
tions, enzymes involved in multiple superclasses were also
found to be highly connected (share many substrates) and
more centrally located within the network than any other
class of enzyme (Figure 5c-e). Enzymes involved in nucleotide
metabolism were almost as highly connected but did not have
similar high values of betweenness. This suggests that these
pathways form highly integrated systems that operate at the
periphery of the network. Along similar lines, enzymes
involved in glycan metabolism, although poorly conserved,
were also highly connected yet peripheral to the network (low
betweenness values). Conversely, enzymes involved in xeno-
biotic metabolism, also poorly conserved, were not well con-

nected and, intriguingly, had high betweenness values.
Finally enzymes involved in secondary metabolism are poorly
conserved, not well connected and peripheral to the network.
The implications of these findings are presented in the Dis-
cussion.

We next examined co-conservation relationships (as defined
by JC), between pairs of linked enzymes, within the context of
the global network (Figure S7 in Additional data file 1). Using
a cutoff Z-score of 2.0, 432 links involving 422 enzymes could
be defined as significantly modular compared with the shuf-
fled enzyme profiles (although as noted above, due to over
prediction of enzyme conservation, this is likely to be a con-
servative estimate). Within this graph, many subnetworks
consisting of co-conserved enzymes can be assembled into
coherent pathways - mainly associated at the periphery of the
network (for example, diterpenoid biosynthesis, N-glycan
metabolism, folate biosynthesis and C21 steroid hormone
metabolism). These pathways appear to provide specific func-
tions requiring specialized enzymes that utilize unique sub-
strates. For example, the main precursor in the diterpenoid

Crosstalk between metabolic pathwaysFigure 6
Crosstalk between metabolic pathways. The network diagram represents the number of enzymes shared between pathways. Each pathway is represented 
by a node. Connections (edges) between these nodes represent the number of enzymes common to each pathway. Nodes are colored according to their 
superclass category; node size indicates the number of enzymes in that pathway; and thickness of edges indicate the number of enzymes common to each 
pathway (see inset keys).
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biosynthetic pathway is geranyl geranyl pyrophosphate from
which tree resin, plant hormones and anti-bacterial/fungal
agents are synthesized.

Although co-conserved enzyme pairs associated with the core
of the network are observed, it is interesting to note the rela-
tively low ratio of links to enzymes (432:422) compared with
the entire network (5,906:1,329). Hence, although many of
these core enzymes tend to be highly connected, they tend
only to be co-conserved with one or two other enzymes. The
lack of complex networks of modularity within this core indi-
cates that although the network core may represent the basic
metabolic framework required for life, there is a degree of
flexibility in the precise combination of enzymes.

Discussion
Here we describe a systematic and comprehensive analysis of
the conservation of the universal metabolic network (defined
from the KEGG database) across a range of structural and
taxonomic hierarchies. The inclusion of partial genomes pro-
vides a unique opportunity to extend our knowledge of the
conservation of metabolism, particularly with respect to some
of the more neglected Eukaryotic taxa (Figure S1 and Results
in Additional data file 1). As such, this work builds on prior
studies of metabolic conservation that were more restrictive
in terms of sequence coverage and phylogenetic extent
[18,33,46,47]. For example, Tanaka and colleagues [46]
examined enzyme gain and loss events across six eukaryotes
to reveal a gain in lipid metabolic processes in vertebrates.
Similarly Freilich and colleagues [33] looked at the evolution
of the human metabolic network from the perspective of ver-
tebrate evolution. In the current paper, we provide a broader
perspective and examine the conservation of enzymes and
pathways across 26 taxa, selected on the basis of species cov-
erage and evolutionary relationships [32].

Consistent with previous studies, we found enzymes involved
in multiple superclasses were most highly conserved and
those involved in glycan metabolism were least highly con-
served [18]. Observed differences between the three datasets
(complete genomes, partial genomes and nr), revealed the
bias towards prokaryotes in the complete genome datasets
and highlight the need to consider integrative analyses such
as these within a phylogenetic context. As noted earlier, the
use of BLAST with a relatively flexible score cutoff will result
in an over-prediction of enzymes. Consequently, the lack of
homologs of enzymes involved in inositol phosphate and
sphingophospholipid pathways in prokaryotes highlights the
unique role of these pathways in the formation and function
of lipid membranes associated with multi-compartment cells
[36,48]. Similarly, many glycan biosynthetic pathways are
largely restricted to the Metazoa. The expansion of glycan
pathways in these organisms increases the repertoire of post-
translational modifications, resulting in the production of
proteins of greater complexity. This enables the addition of

new functionalities and specificities that likely underlie the
complex array of developmental and signaling processes that
facilitate multi-cellular life [49].

To circumvent biases that may occur in pathway definitions,
recent studies of metabolic conservation are beginning to
adopt a network approach in which metabolic components
are linked as nodes in a graph [10,16,22,50]. The use of a glo-
bal metabolic network map (Figure 4) allowed the identifica-
tion of a highly interconnected core of conserved enzymes,
many of which are involved in multiple pathways. Such
enzymes support the notion that 'enzyme recruitment' plays a
large role in metabolic evolution where novel pathways can
emerge through the recruitment of enzymes (and hence their
metabolites) from existing pathways [18,51]. This is more
clearly seen in Figure 6, which shows the overlap of enzyme
activities between different pathways. Pathways involving
carbohydrate, amino acid and energy metabolism form a dis-
tinct core network with many shared enzyme activities. For
example, pyruvate, butanoate and proponoate metabolism
share large numbers of activities that are applied in slightly
different contexts (for example, EC1.2.1.3, which represents a
class of oxidoreductases with wide specificities). Tyrosine,
tryptophan, phenylalanine and histidine pathways are also
highly interlinked, presumably reflecting their common
usage of aromatic substrates. Interestingly, xenobiotic path-
ways form their own interconnected cluster with a number of
links (perhaps indicative of their origins) to the amino acid
pathways: tyrosine and tryptophan metabolism and lysine
degradation. On the other hand pathways involved in glycan
metabolism and the generation of secondary metabolites are
largely disconnected from the network, indicating their inde-
pendent origins, perhaps from other processes not defined as
part of metabolism. It should be noted that pathway overlap
does not explicitly depict evolutionary relationships for the
following reasons: firstly, enzyme activity relationships are
independent of sequence relationships; and secondly, it is not
clear to what extent pathway borders overlap. Nonetheless,
these observations highlight the potential for enzymes to
transcend pathway borders to facilitate new functions.

Previous studies examining the evolution of metabolism sug-
gest the existence of functional modules of enzymes that
share similar patterns of conservation and may act as evolu-
tionary building blocks [16,22-24,52]. Two recent studies
applied JCs to measure evolutionary modularity [16,22].
However, as we have shown here, the use of JC to infer mod-
ularity can be misleading if conservation is not taken into
account: a high JC may merely reflect proteins that are highly
conserved rather than mutual evolutionary trajectories. Fur-
thermore, as noted by Kreimer and colleagues, evolutionary
modularity can be influenced by both phylogenetic and envi-
ronmental relationships [23]. Consequently, in our analyses,
we developed a novel algorithm to generate simulated meta-
bolic complements that reflect such relationships. Compari-
sons with these simulated datasets enable us to identify
Genome Biology 2009, 10:R63
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genuine instances of co-inheritance that do not simply reflect
patterns of conservation and common evolutionary histories.
For the most part, co-inheritance was restricted mainly to
enzymes peripheral to the global metabolic network (for
example, N-glycan metabolism and diterpenoid biosynthe-
sis), and represent functions that support taxonomic innova-
tions [53]. The relatively low number of links between co-
inherited enzymes at the core of the network or in the nucle-
otide pathways indicates that despite such enzymes being
very highly conserved, they do not always occur together in
the same genomes. Given the highly connected nature of
many of these proteins, we may further infer that hub pro-
teins may only be co-conserved with a limited number of part-
ners.

These findings point at an emerging picture in which a core of
enzyme activities involving amino acid, energy, carbohydrate
and lipid metabolism have evolved to provide the basic func-
tions required for life. However, as indicated by the relatively
low number of significantly modular links, the precise com-
plement of enzymes associated within this core for each spe-
cies is flexible. It is important to remember that the network
view provided in Figure 4 represents a conglomeration of
metabolic pathways from many different species. Subse-
quently, if we were to visualize any single species, we may
expect to find a varying fraction of these core components
missing. This is consistent with the idea that the large number
of connections provided by these core enzymes might provide
a wide variety of alternative routes for the production of key
metabolites. The integration of poorly conserved enzymes
and pathways involving xenobiotics within this core (high
betweenness values) yet possessing low connectivities, sug-
gests that they arise through the recruitment and divergence
of existing enzymes from the network core. The periphery of
the metabolic network consists of more recent enzyme inno-
vations that, unlike the core enzymes, do not possess similar
flexibility in the production of substrates. In the case of path-
ways involved in glycan metabolism, the large number of
shared substrates, together with their relatively recent origin,
suggests that they may have evolved from recent gene family
expansion events resulting in a large number of enzymes
sharing substrates. For example a number of reactions in the
N-glycan biosynthetic pathway involve sequential additions
of UDP-N-acetyl-D-glucosamine through a set of N-acetylglu-
cosaminyltransferases. Pathways producing secondary
metabolites are also of relatively recent origin but, unlike the
glycan pathways, involve the use of novel substrates and con-
sist of linear chains of reactions. Their modularity and lack of
integration within the rest of the network may reflect the need
to tightly control the production and conversion of pathway
intermediates to ensure that potentially toxic products are
not produced through exposure to unrelated enzymes.

These analyses provide indications on the adaptations to met-
abolic networks that have been acquired by different sets of
organisms. Applied in the context of organisms of industrial

importance, such findings could find application in metabolic
engineering. For example, there is considerable interest in the
production of the diterpenoid paclitaxel, an important anti-
cancer therapeutic. Alternatively, applied to organisms asso-
ciated with pathogenicity, these findings could be exploited
for identifying pathways and enzymes that could be usefully
targeted for therapeutic intervention (see Additional data file
1 for a simple example). Finally, the approaches outlined here
have been limited to the study of metabolism, but may also be
applied to other systems such as regulatory pathways (Addi-
tional data files 1 and 7).

Conclusions
Here we have combined multiple sources of sequence data to
perform a systematic and comprehensive analysis of the con-
servation and modularity of metabolism across the three
domains of life. Intriguingly, while we identified a highly con-
served set of enzymes at the core of the metabolic network,
there appears to be enormous flexibility in their use across
different organisms. It should be appreciated that in using
BLAST to infer homology, this study does not claim to recon-
struct the metabolic network of any single organism, but
instead focuses on levels of sequence conservation associated
with specific enzymes and pathways. As such a more detailed
comparison of the metabolic networks encoded by individual
species would help to further understand and interpret the
biological meaning of the differences we have found. Given
the scope of the analysis, we have been able to report only a
small fraction of our findings. To facilitate further, in-depth
explorations of the conservation and modularity of the meta-
bolic network, we make the Cytoscape [54] files generated in
this analysis freely available at [55].

Materials and methods
Sequence input data
Three types of sequence data were used in this study (see
Table 1 and Additional data file 2 for details about the number
of sequences, and taxonomic information on the genome
datasets analyzed in this study). The first type comprised pro-
tein coding sequences of 167 complete genomes (19 Archaea,
127 Bacteria and 21 Eukarya) were derived from the COGENT
database [56,57]. While 200 datasets were originally
obtained, to avoid species redundancy in bacteria, if there
were different strains from the same species, only one strain
(the one with the largest number of open reading frames) was
considered. In addition, we also obtained the protein coding
sequences of Thalassiosira pseudanana [58] and the genome
contigs of Coprinopsis cinerea [59]. The second type com-
prised the consensus DNA sequences associated with 193
eukaryotic partial genomes obtained from our in-house data-
base, PartiGeneDB [26,60]. The third type comprised pro-
teins from the non-redundant (nr) protein database SWALL
(Swissprot and TrEmbl) [61].
Genome Biology 2009, 10:R63
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Reference enzyme datasets were obtained from the KEGG
database [2,62]. We obtained 29,893 sequences associated
with 1,474 distinct EC numbers from 260 species (sequences
with more than one EC number per sequence were excluded
to reduce the number of potential false positive assignments
when performing BLAST searches). In certain cases, we iden-
tified enzymes with EC numbers that were not assigned a
sequence within the KEGG dataset. For example, according to
KEGG, ten enzymes participate in the retinol metabolism
pathway. However, we were only able to extract two of the
sequences assigned to this pathway. Therefore, in a comple-
mentary approach, enzymes associated with EC numbers
with no apparent sequence in the KEGG database were used
as queries to search the nr database via the sequence retrieval
system (SRS) [63]. This step has previously been successfully
applied to identify missing genes in predicted metabolic path-
way databases such as EcoCyc and MetaCyc [3] and was also
found to extend the coverage of our approach by adding an
additional 1,181 new protein sequences to the reference data-
set.

Taxonomic divisions
Species were classified into 26 taxonomic divisions on the
basis of the NCBI taxonomy resource [64] (Table 1; and Addi-
tional data file 2). Each domain of life was split into the fol-
lowing major taxonomic divisions: Archaea (Crenarchaeaota,
Euryarchaeota and Archaea_Others); Bacteria (Actinobac-
teridae, Alphaproteobacteria, Betaproteobacteria, Gamm-
aproteobacteria, Deltaproteobacteria, Epsilonproteobacteria,
Cyanobacteria, Firmicutes, Spirochaetes and
Bacteria_others); and Eukarya (Protists, further subdivided
into Alveolata, Euglenozoa/Haptophyceae/Stramenophiles
and Protist_Others; Fungi, further subdivided into Ascomy-
cota, Basidiomycota, Glomeromycota/Zygomycotina and
Fungi_Others; Metazoa, further subdivided into Annelida/
Mollusca/Platyhelminthes, Arthropoda/Tardigrada, Chor-
data/Echinodermata, Nematoda and Metazoa_Others; and
Plantae). Note that both the Euglenozoa/Haptophyceae/
Stramenophiles group and the eukaryotic groups specified as
'Others' represent paraphylyetic groups and, therefore, artifi-
cially grouped together for convenience.

Conservation of metabolic enzymes and pathways
The process for obtaining the metabolic complement for each
species and taxonomic divisions was as follows. First, we
applied BLAST [65] to identify sequences with significant
sequence similarity (defined using a raw bit score threshold of
50 and E-value of 10-5) to 29,893 metabolic enzymes from the
KEGG dataset and the additional 1,181 enzymes derived
through the SRS procedure (see above) from the previously
defined taxonomic partitions. The above threshold was con-
sidered to be a useful compromise between the rate of discov-
ery of false negatives and false positives and is similar to the
threshold adopted in previous studies [18,46]. This process
results in a taxonomic profile for each of the 1,474 EC num-
bers analyzed in this study, displaying the presence or

absence of a sequence sharing significant sequence similarity
with an enzyme with the appropriate EC number within each
of the 167 complete genome datasets, 196 partial genome
datasets and the nr protein dataset (divided into the 26 afore-
mentioned taxonomic divisions). Note that these profiles are
different to the phylogenetic profiles traditionally applied to
individual proteins, as they represent a consensus 'EC profile'
that may have been derived through many different isoen-
zymes.

The MPC of each pathway (MPCij) was calculated by:

where eij is the number of isoenzymes in the jth pathway with
homologs in the ith taxonomic group, Ej the total number of
isoenzymes with sequence in the jth pathway according to
KEGG, and N is the number of taxonomic groups analyzed.
Since the pathway content we are analyzing is based on the
number of enzymes (reactions) involved in metabolic path-
ways, multiple isoenzymes catalyzing the same reaction were
counted only once, and multifunctional enzymes were
counted as many times as they catalyze different reactions. To
assign levels of significance associated with the conservation
of each pathway, we compared the observed MPC for each
pathway with the MPCs derived from 10,000 pathways of
equivalent-sized pathways generated through random sam-
pling of enzymes. P-value thresholds associated with the
derived Z-scores were then adjusted using the Bonferroni cor-
rection for multiple testing. For 116 pathways examined in the
conservation analyses, a conventional P-value of 0.05 is cor-
rected to an α-score of 4 × 10-4, resulting in a critical Z-score
of 3.33. This approach is similar to that described by Lopez-
Bigas and colleagues [66].

To assess whether the observed phylogenetic distribution
patterns of metabolic enzymes were different from any other
proteins, 25 sets of proteins of equal size to the enzyme data-
set were randomly taken from proteins from the nr database
with no EC numbers in their annotations (that is, potentially
representing unknown metabolic enzymes) as control sets,
and were subjected to an identical analysis. For the statistical
analysis we used a two-tailed t-test at 99% confidence level.

Evolutionary modularity
The evolutionary modularity of metabolic pathways was
quantified using only sequence data from complete genomes.
Briefly, we calculated the relative distance of the phylogenetic
profiles for pairs of enzymes [67]. For each pair of enzymes we
calculated the JC, an established measure of similarity
between two phylogenetic profiles [16,68]; a JC of 1 indicates
100% overlap, and a JC of 0 indicates no similarity. Finally,
we assessed pathway modularity using both approaches by
calculating the MJC of all pairs of enzymes considered for the
pathway as follows:

MPC e Eij ij j

i N

=
=
∑100

1

( / )

,
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where JCij is the JC measure of each pair of enzymes involved
in the jth pathway, and N is the number of distinct enzyme
pairs known to participate in the jth pathway. By definition, a
pathway is perfectly modular (100%) if all enzymes within the
pathway have exactly the same phylogenetic profile (either
present or absent in a given species; that is, the modularity
should be 1).

To ascribe a level of significance to the calculated JCs, we cre-
ated 200 sets of randomly assigned enzyme profiles. These
were created to reflect the observed distribution of enzyme
profiles using an approach based on simulated annealing
(Additional data file 6). Three properties were measured from
the original profile: number of genomes each enzyme is found
in, number of enzymes each genome contains and the similar-
ity of each genome with each other. Prior to annealing, each
genome was initialized with the correct number of enzymes,
but shuffled randomly. During each annealing step an
enzyme was selected from one species, and swapped with a
different species. The change in scoring function was evalu-
ated and the swap accepted or rejected with the probability:

Where ΔE is an energy term associated with the change in
scoring function (see the following equation) and T is a tem-
perature term associated with the simulated annealing proto-
col:

where δs is the sum of the Hamming distances between the
target similarity matrix (a matrix of Hamming distances
between the enzyme profiles of every pair of genomes - effec-
tively providing a measure of the relatedness of enzyme con-
tent between organisms) and the current matrix, Sw (= 1) is a
weight associated with this first term, δe is the Hamming dis-
tance between the target number of genomes each enzyme is
found in and the current matrix, and Ew (= 15) is a weight
associated with this second term. The temperature term, T,
was initialized to 1,000 and decreased in a non-uniform
adaptive fashion to 0.00001. Temperature was decreased to
0.9 of its previous value only after 106 consecutive swap
attempts failed to improve the overall score. The procedure
was re-run for 200 different initially assigned profiles. This
resulted in sets of enzyme profiles in which, although the spe-
cific enzyme membership for each genome was shuffled, the
similarity between the enzyme content from closely related
species was maintained.

Metabolic network reconstruction and analysis
Several methods and databases are available to reconstruct
an organism's metabolic network from genome information,
such as KEGG [2] and MetaCyc [1]. In this study, we recon-
structed and represented the complete metabolic network as
an undirected enzyme (or reaction) interaction graph. In this
graph, enzymes (EC numbers) are represented as nodes and
substrates connecting two enzymes are represented as edges
in the network. Common metabolites were ignored, consist-
ent with previous studies [4]. Pathway relationships were
inferred from KEGG. Certain enzymes can catalyze several
different reactions and are involved in different metabolic
pathways. These enzymes are represented by single nodes in
the network. Thus, these nodes are linked to all other nodes
that are connected to the different reactions or pathways
undertaken by these enzymes. Network properties (node
degree and betweenness values) were obtained using the
tYNA network analysis platform [69].

Abbreviations
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