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Aspergillus niger pH response<p>Systems modeling of <it>Aspergillus niger</it> under different pH conditions reveals novel pH-regulated metabolic genes and sign-aling genes in the pal/pacC pathway.</p>

Abstract

Background: The filamentous fungus Aspergillus niger is an exceptionally efficient producer of
organic acids, which is one of the reasons for its relevance to industrial processes and commercial
importance. While it is known that the mechanisms regulating this production are tied to the levels
of ambient pH, the reasons and mechanisms for this are poorly understood.

Methods: To cast light on the connection between extracellular pH and acid production, we
integrate results from two genome-based strategies: A novel method of genome-scale modeling of
the response, and transcriptome analysis across three levels of pH.

Results: With genome scale modeling with an optimization for extracellular proton-production, it
was possible to reproduce the preferred pH levels for citrate and oxalate. Transcriptome analysis
and clustering expanded upon these results and allowed the identification of 162 clusters with
distinct transcription patterns across the different pH-levels examined. New and previously
described pH-dependent cis-acting promoter elements were identified. Combining transcriptome
data with genomic coordinates identified four pH-regulated secondary metabolite gene clusters.
Integration of regulatory profiles with functional genomics led to the identification of candidate
genes for all steps of the pal/pacC pH signalling pathway.

Conclusions: The combination of genome-scale modeling with comparative genomics and
transcriptome analysis has provided systems-wide insights into the evolution of highly efficient
acidification as well as production process applicable knowledge on the transcriptional regulation
of pH response in the industrially important A. niger. It has also made clear that filamentous fungi
have evolved to employ several offensive strategies for out-competing rival organisms.

Background
The subject for much discussion has been why Aspergillus
niger produces organic acids in the amounts of which it is

capable of. If A. niger is grown in an unbuffered medium, it
will fairly quickly acidify the medium to a pH below 2. Pro-
duction processes with cultivation of A. niger can convert as
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much as 95% of the available carbon to organic acids, making
it a viable process for producing bulk chemicals [1]. The evo-
lutionary strategy behind this trait remains obscure, but one
of several hypotheses suggests that the secretion of acids
helps degrade the plant cell walls on which the saprotrophic
fungus thrives, that it slows the growth of competing organ-
isms, and that the organic acids chelate sparse trace metals
and make them available to the fungus [2].

The production of organic acids by A. niger has been shown
in several studies to be dependent on ambient pH. Oxalic acid
production is most efficient at pH 5 to 8 and is completely
absent below pH 3.0 [3]. Gluconic acid production is optimal
at pH 5.5, but it is found at all levels of pH from 2 through 8
[4,5]. Citric acid production begins at pH 3.0 and is optimal
just below pH 2.0 [1,6]. This suggests that an evolutionary
process has selected for production of a given acid at different
pH values. In this context, the work of Ruijter et al. [3] is
interesting. They showed that a mutant strain of A. niger,
deficient in producing gluconic acid and oxalic acid, produces
citric acid at an optimum pH of 5 and without the demand for
an Mn2+-deficient medium, which is normally essential for
the production of citric acid. This suggests that the aforemen-
tioned evolution of acid production has resulted in a sophisti-
cated system of preferred acids as a function of ambient pH,
which even ensures that another acid is produced when con-
ditions are unfavorable for production of the preferred acid.
To improve our understanding of these systemic behaviors,
we have adopted a genome-scale-based strategy founded on
the integration of multiple types of genome-wide data
('omics'), particularly genome-scale modeling, functional
genomics, and transcriptomics.

This approach allowed us to formulate the hypothesis that A.
niger strives to produce - at a given pH - the organic acid that
most efficiently acidifies the medium. To test this hypothesis,
the model of A. niger metabolism presented by Andersen et
al. [7] was expanded with reactions describing the average
number of protons released from one mole of a given acid at
a given pH, based on acid disassociation constants (Figure 1).
This allows the use of mathematical optimization principles
coupled with the knowledge of metabolic pathways, and
thereby computationally determining the most efficient way
of producing protons to acidify the surrounding medium as a
function of pH. If these computations are in agreement with
the pH dependencies of the organic acids described earlier, it
will be strong evidence that A. niger is evolutionally opti-
mized for acidifying its environment.

The response to ambient pH is relevant not only in the context
of organic acid production. Aspergillus niger is an expression
system for both homologous and heterologous proteins, and
the expression of yield-lowering proteases has been shown to
be dependent on pH [8]. Additionally, whereas processes
with A. niger have until now been considered safe for food-
grade enzyme production, a recent analysis of the A. niger

genome [9] suggested that it may be capable of producing the
carcinogenic compound fumonisin B2, which was confirmed
by Frisvad et al. [10]. The carcinogen ochratoxin A has also
been known to be produced by A. niger under certain cultur-
ing conditions [11,12]. Secondary metabolite production, such
as penicillin from Aspergillus nidulans, has in some cases
been shown to be dependent on pH [13]. Therefore, to expand
on the results of the model-driven investigation of the organic
acid response to pH, a physiological characterization and
transcriptome analysis of triplicate cultivations at pH 2.5, 4.5,
and 6.0 was made to provide a systems-wide insight into the
transcriptional response to ambient pH. This allowed the
identification of several genes involved in the production of
organic acids reacting directly and in a coordinated manner
to ambient pH.

Given that A. niger can grow stably at pH values ranging from
below 2 to above 8 [14], it is reasonable to expect sophisti-
cated transcriptional regulation. To use this, putative pH-
dependent cis-acting regulatory motifs were identified. With
genetic engineering of promoter regions, this may be applied
to induce the production of a given gene product at the pH of
the process. Another analysis was on the production of
organic acids as well as identification of secondary metabolite
clusters responding to pH. Furthermore, the pacC/palAB-
CFHI system, a conserved fungal signal-transduction and
transcriptional-regulation system, described in detail for A.
nidulans and partially conserved in Saccharomyces cerevi-
siae [15,16], was examined, and likely orthologues were found
and confirmed to have similar transcriptomic profiles in A.
niger.

Results
Reproducing pH-dependent acid production in silico
A previously described genome-scale stoichiometric model of
A. niger metabolism [7] was expanded, as described in Mate-
rials and methods. Acid production was simulated from pH

Protons per molecule of the original un-disassociated acid as a function of pHFigure 1
Protons per molecule of the original un-disassociated acid as a function of 
pH.
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1.5 through 6.5 by using two different strategies: either opti-
mization for maximal biomass production coupled to acid
generation, or optimization for maximal proton generation
with a fixed biomass production. The model was allowed us to
use acetate, oxalate, lactate, malate, succinate, citrate, and
gluconate to acidify the medium, all acids that have been
observed in fermentations in our laboratory or that have been
reported to be produced by A. niger. For each set of simula-
tions, the acids were removed one at a time, to explore the
order in which the A. niger simulation preferred to produce
the different acids at the investigated values of pH. For com-
plete modeling results, see Additional data files 1 and 2.

Interestingly, if all acids are included, the simulations predict
oxalate as the only produced acid throughout the spectrum of
pH. This is in agreement with the observation of Ruijter et al.
[3] (and the physiological characterization in the experiments
described later) that oxalate is the preferred acid in a strain
capable of producing all acids.

Ruijter et al. [3] also reported that the production of oxalate
peaks above pH 5.5, and as the calculations of Figure 1 show,
this is the value at which oxalate is fully disassociated, and the
value of pH at which the effect of producing oxalate for acidi-
fying the medium levels out. The modeling results are thus in
very good agreement with the hypothesis that oxalate is pro-
duced to acidify the medium, and this explains how this trait
has evolved.

One could think that because oxaloacetate hydrolase - the
only enzyme producing oxalic acid in A. niger [17] - forms 1
mole of acetate for every mole of oxalate, acetate should also
appear as a product in the model simulations. However, ace-
tate formation is not seen, meaning that the simulations pre-
dict that it is more energetically efficient to remetabolize this
acetate than to use it for acidification of the medium. This is
in agreement with the report by Ruijter et al. [3] that A. niger
catabolizes acetate at a rate sufficient to prevent its formation
during production of oxalate.

However, this initial modeling did not predict how oxalate
production diminishes drastically below pH 3 [3] (Pedersen
et al. [2] reported this limit to be below pH 4), suggesting that
it is due, not to inefficient acidification of the medium, but to
some other factor. To simulate this, the model was adjusted to
disallow medium acidification by oxalate below pH 3 (mode-
ling results in Figure 2).

With this model, it was found that for both modeling strate-
gies at pH levels of 1.5 to 2.5, citrate is the optimal acid for
medium acidification when oxalate cannot be produced. This
is the same interval used for industrial production of citric
acid [1]. The necessity of the absence of oxalate production
may be one reason for which very low levels of manganese are
required for citrate production. Oxaloacetate hydrolase
(OahA) is dependent on manganese and has a high affinity for

the metal (Km for Mn2+ is 4 μM [2]). Deletion of oahA in the
work of Ruijter et al. [3] replicates this effect of manganese
depletion, thereby inducing citrate production.

Further simulations removing proton-producing acids one by
one from the model (see Additional data files 1 and 2) indi-
cates that the pH interval of 1.5 to 2.5 is the only area where
citrate is the most optimal acid, indicating how this pH pref-
erence may have evolved. Another interesting finding was
that gluconate is not produced in any versions of the model
unless production reactions for all other acids are removed.
Because of the optimization criterion of the model, these cal-
culations show that production of gluconate is not an energy-
efficient method of acidifying the medium. It therefore seems
likely that the efficient conversion of glucose to gluconate by
A. niger has evolved not as a way of acidifying the medium,
but rather as a mechanism to make rapidly glucose unavaila-
ble to competing organisms. In this context, it is interesting to
note that the gluconate production is more efficient around
pH 5.5, a pH level at which many fast-growing bacteria have
their pH optimum.

Physiological studies
To expand on the in silico predictions for organic acid produc-
tion with in vivo experiments, and to gain information on
other pH-dependent aspects of fungal metabolism, batch fer-
mentations of A. niger BO-1 were performed in triplicates at
three different pH values (2.5, 4.5, and 6.0). For each fermen-
tation, samples were taken for determination of sugar and
acid concentrations. Profiles of the cultures are shown in Fig-
ure 3. Examination of Figure 3 shows that the biomass yield
decreases with increasing pH. The final biomass concentra-
tion measured decreases from 9.80 ± 0.42 g/L over 6.20 ±
1.05 g/L to 4.81 ± 0.52 g/L as pH increases (average ± stand-
ard deviation). This is due to a reciprocal increase in the pro-
duced acids. Most predominant among these is gluconate
production, which is not found at all at pH 2.5, but reaches as
much as 10 g/L at pH 6.0. An increase in oxalate production

Simulated acid production with optimization criterion of maximal protons per gram of biomassFigure 2
Simulated acid production with optimization criterion of maximal protons 
per gram of biomass. Acid disassociation was included in the model for all 
of the shown species, with the exception of oxalate production below pH 
3.0.
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of roughly a factor of two also is seen with each step of pH
increase. Finally, pH does not seem to have an effect on the
citrate production in these cultivations. This is not surprising,
as manganese was added to ensure reproducible filamentous
growth for the transcriptome analysis. As Dai et al. [18]
showed, Mn2+ concentrations of 1,000 parts per billion (ppb)
(the same as in the cultivation medium) ensures filamentous
growth; however, this diminishes citrate production.

Additionally, citrate production is known to be limited at glu-
cose concentrations below 2.5% [19]. Citrate concentrations
are low in all batches, and the citrate-production profile is by
far the least-reproducible trait across the triplicates.

From each of the nine fermentations, samples were taken for
transcriptome analysis. Table 1 presents a summary of the
growth and fermentation-broth composition at the time of
sampling. As Table 1 shows, no significant acid production

Metabolite profiles under cultivations of Aspergillus niger at three levels of pHFigure 3
Metabolite profiles under cultivations of Aspergillus niger at three levels of pH. For each pH value is shown three replicates, from which biomass was 
sampled for transcriptome analysis. Sample times are shown with white vertical lines. Note that the pH shown in the left column is the pH at the time of 
sampling for transcriptome analysis. All cultures were inoculated at pH 2.5 and increased at the beginning of the growth phase if needed (see Methods for 
details).
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Table 1

Sugar, acid, and biomass concentrations for A. niger cultivations at three levels of pH

pH Time μmax Biomass Glucose Citrate Oxalate Gluconate

(h) (h-1) (g/L) (g/L) (g/L) (g/L) (g/L)

2.5 22.77 ± 0.40 0.21 ± 0.01 4.68 ± 0.16 8.93 ± 1.84 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

4.5 22.72 ± 0.63 0.21 ± 0.01 4.40 ± 0.47 7.87 ± 1.97 0.05 ± 0.05 0.02 ± 0.02 2.39 ± 3.05

6.0 21.47 ± 0.69 0.22 ± 0.02 3.71 ± 0.42 5.24 ± 1.21 0.02 ± 0.03 0.07 ± 0.05 6.36 ± 1.90

Biomass (dry weight), sugar, and acid concentrations for A. niger cultivations at three levels of pH at the time of sampling for transcriptome analysis. 
The calculated maximal specific growth rate is indicated. Values are shown as average ± standard deviations for three replicates.
Genome Biology 2009, 10:R47
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(except for gluconate production) was measured in the
medium at the time of the mRNA sampling. The sampling
time was chosen to be in midexponential phase, as the cell is
in a reproducible pseudo-steady state at this time, thus
describing pH-dependent mechanisms most reproducibly.
Later sampling could result in an increased effect from extra-
cellular acids.

Transcriptome analysis
Samples were taken from the bioreactor cultivations for tran-
scriptome analysis. All cultures were growing as dispersed
hyphal mycelium. See Table 1 and Figure 3 for details of sam-
pling times and conditions. Data from the three biologic trip-
licates at pH 2.5, 4.5, and 6.0 were statistically analyzed, and
genes that are significantly regulated (Benjamini-Hochberg
corrected Bayesian P values < 0.05) in pair-wise comparisons
between two pH levels were identified.

A surprisingly large number of genes (6,228) were identified
to show significant differences in transcription levels in one
or more of the comparisons. As the statistical test is a very
conservative one, and more than 70% of these genes are sig-
nificant in more than one comparison, this high number
should not be seen as a statistical artefact, but rather as a

combined effect of the wide range of pH, a growth effect, and
possible differences in medium composition at the time of
sampling for transcriptome analysis.

To separate the effects and to identify genes for which the
expression indices follow the level of pH, the regulated genes
were sorted into subsets according to the direction of the sta-
tistically significant responses in the pair-wise comparisons
(Figure 4a). Subsets will be referred to in the text by the letter
designated in Figure 4.

Especially noteworthy is the large subset J (2,814 genes),
which is upregulated at pH 2.5 and 6.0 compared with pH 4.5.
It is likely that this subset is not directly regulated by pH, but
rather is a part of a growth effect or a stress response, as it
contains a large number of housekeeping genes, such as
ribosomal subunits, DNA replication machinery, proteasome
subunits, RNA-processing machinery, and so on. A GO term
overrepresentation analysis (see Additional data file 3) con-
firmed that these terms are over-represented. The same
seems to be the case for the two subsets Q and N. These sub-
sets have the same regulatory pattern as subset J, but with
one of the statistical comparisons being statistically insignifi-
cant. Therefore, clustering the genes in this manner accord-

Venn diagram and clustering of genes with a significant transcriptional response to pHFigure 4
Venn diagram and clustering of genes with a significant transcriptional response to pH. The Venn diagram (a) is based on three pairwise comparisons. Each 
area in the Venn diagram is divided into subsets by the direction of the response in the different comparisons. The formation of dots in the squares shows 
the general tendency of the response, with the example of (b) having expression indices increasing with pH. Two dots on the same line means that no 
statistically significant difference was found between the two conditions. Each subset has been divided into clusters, as shown for the example subset (b). 
Predicted recognition motifs for cis-acting elements are shown (c). Sequence logos are made as described by Schneider and Stephens [63].
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ing to the direction of the responses allows a separation of
growth-related effects into subsets J, Q, and N, thus leaving
the remaining subsets (2,022 genes) with a higher likelihood
of being directly influenced by pH. Of these, the 109 genes in
subsets A and E are of especially high interest, as these are fol-
lowing the levels of pH either directly (E) or inversely (A).
This makes the genes in these clusters extremely likely to be
regulated solely by pH and by none of the other varying fac-
tors of the cultivations.

Another point worth evaluating, when doing transcription
analysis in batch cultures, is whether differing levels of glu-
cose affect the results through glucose repression. Because
the strategy of sampling at similar concentrations of biomass,
to reflect the same ages of the cultures, the residual glucose
concentration varies slightly between the cultures (Table 1).
CreA-mediated carbon repression is well described in A.
niger and known to be dependent on the concentration of the
carbon source [20]. Genes affected by carbon repression
would thus have a profile similar to those of subset I (429
genes). However, CreA is known to be autoregulated in A.
nidulans [21], and CreA is not found to have significantly
changed expression levels in any comparisons. This makes
the presence of significant carbon regulation unlikely and, if
present, restricted to the genes of subset I.

To examine patterns in transcription levels in the sets in more
detail, a clustering algorithm was applied by using expression
indices from all nine microarrays rather than averages for
each group (Figure 4b). This method allowed more-detailed
differentiation between the genes and the creation of clusters
within each subset. In total, 162 clusters with distinct tran-
scription patterns across the experiments were identified. An
overview of the expression profiles of the clusters was made
(see Additional data file 4), as well as details for each gene
(see Additional data file 5).

Clustering of these genes facilitates discovery of interesting
co-regulations. Especially interesting for the production of
gluconic acid is the observation that the cellular membrane-
bound catalase (catR) [22,23], is tightly co-regulated with the
hydrogen peroxide- and gluconic acid-producing glucose oxi-
dase (Gox/GodA; EC 1.1.3.4) [24,25]. Both are found in the
same cluster of subset G in Figure 4. The general regulation in
this subset is in good agreement with reports that oxalic acid
is produced in very low amounts below pH 4.5 [4,5]. Exami-
nation of the promoter region of the genes of that particular
cluster was performed to discover potential cis-acting ele-
ments, and two motifs were found, one being 5'-GAGGWT-3',
and the other, 5'-ACRARAG-3'. The first motif is found 9
times in the promoter of godA, and 5 times in the catR-pro-
moter, making it very likely that this motif is responsible for
the co-regulation of the two genes.

Another subset of special interest to acid production and reg-
ulation by ambient pH is subset E. This subset contains three

putative acid transporters, the oxalic acid-producing oxaloa-
cetate hydrolase (oahA) [2,17], and the gene for a protein-reg-
ulating response from neutral to alkaline pH (PacC) [26].
Clustering of the genes places oahA in cluster 1 and pacC in
cluster 3. In light of the lack of production of acetate, it is
interesting that oahA does not seem to be co-regulated with a
potential acetyl-CoA synthase or an enzyme with a similar
function. This suggests that activation of acetate with CoA is
not limiting for reassimilation.

As an application example of the clustering, cis-acting ele-
ments have been predicted for all four clusters of the subset
containing pacC and oahA. Conserved motifs were found for
each of the four clusters (Figure 4c), but not for the subset as
a whole. A survey of subset A and the three subclusters (see
Additional data file 4) showed that it was possible to find
putative regulatory motifs for each of the subclusters, but not
for the entire subset. That no common motif could be found
for neither subset A or E supports the strategy of dividing the
subsets into clusters to find truly co-regulated genes.

In an examination of the predicted motifs of subset E (Figure
4c), the second motif for cluster 2 was found to be similar to
the A. nidulans PacC consensus-binding motif 5'-GCCARG-3'
reported by Sarkar et al. [27]. This suggests that members of
this group are regulated at least in part by PacC. PacC is
known to be autoregulated in A. nidulans [28,29], and the
motif is found in the A. niger pacC promoter as well. How-
ever, the clustering of pacC outside of cluster 2 suggests that
other factors are regulating it, giving it a slightly different
transcription profile from that of the members of cluster 2.

Expanding the examination of the co-regulated groups of
genes, information was used on the physical location of the
genes on the genomic scaffolds to find 147 clusters of genes on
the genome that are colocalized as well as co-regulated. Man-
ual inspection of the clusters allowed the identification of six
putative gene clusters involved in secondary metabolite bio-
synthesis. Two of these were found in clusters J and Q, mak-
ing them less likely to be directly regulated by pH. One of the
remaining four clusters is found in subset E, cluster 2,
described earlier, and contains five colocalized and co-regu-
lated genes. A putative gibberellin-precursor synthase (Gene
ID 54123) is found in this cluster.

A specific study of the three potential citrate synthases iden-
tified by Pel et al. [30] showed that only one is significantly
regulated in any comparison: an upregulation at pH 4.5 com-
pared with pH 2.5 (An08g10920/ID 176409). This does not
correspond to a pH-dependent upregulation at pH 2.5, as
would be the expected response for a citrate-synthase
involved in citrate-overflow metabolism. This suggests that
the pH-responsive nature of citrate production is controlled
at another level (that is, transport or post-translational regu-
lation) or that the response requires other sensing responses
(manganese [18], high glucose [19], and so on) in addition to
Genome Biology 2009, 10:R47
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acidic pH. Based on the combined results of the modeling and
the transcriptome analysis, the latter option seems to be the
most likely.

Several industrially relevant proteins that are not discussed in
detail here are found in the list of regulated genes, including
the protease regulator PrtT, the acetate response regulator
FacB/AcuB, α-amylases, and a large number of characterized
and putative glucoside hydrolases, as identified by Pel et al.
[30]. A table of the 6,228 regulated genes along with informa-
tion on regulation and clustering has been compiled (see
Additional data file 5).

Data integration-based identification of the elements 
of the ambient pH signal-transduction pathway (pal) 
pathway in A. niger
It is known that proteolytic cleavage is required for activation
of PacC in both A. nidulans [28,29,31-33] and A. niger [8].
Although the signal-transduction/proteolysis pathway in A.
niger is, to our knowledge, uncharacterized, a two-step acti-
vation system for PacC is well described for A. nidulans
(reviewed in references [15,34] and [16]).

The model of the pH-signaling transduction pathway in A.
nidulans (Figure 5) consists of two distinct protein com-
plexes, a plasma membrane-localized sensing complex (PalF,
PalHI [35-41]) and an endosomal membrane complex (Pal-
ABC, Vps32 [42-46]), catalyzing the first proteolytic step of
PacC [39,45] followed by a proteasome-catalyzed cleavage to
the active form.

The pal pathway has been described as being 'mechanistically
dissimilar to all other known eukaryotic signal transduction
pathways' [44], and it is thus very likely that homologues of
the A. nidulans pal genes in A. niger are indeed orthologues.
A survey of the genome sequence of A. niger found homo-
logues of all identified genes of the signaling pathway (Table
2).

The mRNA levels of the components of the pal pathway are
not pH regulated in A. nidulans [39,46], and an investigation
of expression indices of the A. niger homologues indicates
that these behave in the same manner. The putative A. niger
palA and palC are not found to be significantly regulated in
any comparison. palB, palH, palI, and vps32 are significantly
regulated, but are found in subsets J and Q of Figure 4, which
were found earlier to be more likely to be regulated by
growth-dependent effects than by pH. It thus seems that the
A. niger homologues of the pal pathway are independent of
ambient pH as well, but may be subject to other regulation.

Discussion
Despite the great interest in organic acid production in A.
niger - citric and gluconic acid are bulk chemicals produced
by A. niger processes - very little work has been published on

regulation by ambient pH in A. niger. This study examines
the response to ambient pH by the combination of results
from two distinct strategies. One is a strictly hypothesis-
driven application of stoichiometric modeling, with which the
modeling results are compared with reported observations to
test the hypothesis of A. niger being optimized for acidifica-
tion at any given pH through the course of evolution. The
other study, the transcriptomic, is a more-classic application
of systems biology, in that it is a data-driven study, and the
analysis both gives specific directly applicable results and
allows the generation of new hypotheses on pH regulation.

The modeling part of the study showed that the optimal pH
intervals for production of acids, and the types of acids pro-
duced at certain pH values, can to a certain extent be

Model of pH sensing and regulation in A. nidulansFigure 5
Model of pH sensing and regulation in A. nidulans. Black circles denote sites 
of protein-protein interaction, as does the overlap of two protein 
domains. The dotted lines of the closed conformation of PacC illustrate 
non-covalent interaction protecting the proteasome cleavage site. Vps32 is 
a part of the ESCRT-III complex that recruits to the endosome. The figure 
is adapted from reference [34] with information added from references 
[40,41,45,64].
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explained and simulated for citrate and oxalate, based on an
assumption of an evolutionary selection for efficient acidifica-
tion. The success of this approach to modeling acid produc-
tion strongly suggests that A. niger has not evolved to
outgrow its competitors such as Escherichia coli or to have a
very efficient glucose uptake as does Saccharomyces cerevi-
siae. Instead, A. niger metabolism seems to be optimized to
produce the most protons from the sparse nutrients available
in a saprophytic environment. This also implies that acid pro-
duction in A. niger does not stem from overflow metabolism,
but rather from an objective of proton production, at least for
oxalic acid and citric acid.

The inability of the model to predict the pH optimum of glu-
conic acid production suggests that the main objective of glu-
conic acid production is not related to acidification of the
medium. This is supported by the detailed on-line fermenta-
tion chromatography results presented by van de Merbel et
al. [47], in which glucose in the medium is rapidly converted
fully into gluconic acid, which thereafter functions as a sub-
strate for the rest of the fermentation. As the modeling can
compute conditions only after a full degradation of the sub-
strates, this will not show in the model. The production of glu-
conic acid thereby seems to be a method of making glucose
unavailable to other competing organisms. This is also sup-
ported by the observations of the physiological study shown
in Figure 3, in which gluconic acid produced early in the fer-
mentation is seen to be reconsumed later.

Although the cellular response to manganese deficiency is
undoubtedly complex, as the work of Dai et al. [18] and others
have shown, it is interesting that the results of Ruijter et al.
[3] indicate that the citrate production becomes insensitive to

manganese concentrations by the deletion of glucose oxidase
and oxaloacetate hydrolase. Whereas the applied model does
not include the effects of manganese deficiency, it was able to
replicate the effect of citrate being produced in an oxalate-
deficient strain. The absence of manganese presumably has
other effects that improve citrate yields, but it seems, based
on these results, that one reason for its effect is the depend-
ence of oxaloacetate hydrolase on manganese.

In modeling acid production with optimization for growth
(see Additional data file 1), the biomass production increases
as a function of pH. This is opposite that observed in the in
vivo experiments. One reason for this effect is that it is very
unlikely that the acid-regulation systems of A. niger were
evolved in a medium as heavily buffered as a controlled bio-
reactor with pH regulation. It is thus efficient at a high pH to
sacrifice biomass production for the production of large
amounts of protons to reduce the pH quickly and to reduce
this production at low pH values. We have not attempted to
model this behavior, as there are very few available detailed
data on acid production at different pH values. The work by
Pedersen et al. [48] has sufficient detail for one level of pH,
and thus this was used to approximate a constant ratio of pro-
tons to biomass. Although the assumption of a constant pro-
ton/biomass ratio is not valid over the full range of pH, it does
allow us to study the simulated response in detail across the
range of pH shown. Changing the proton/biomass ratio for
individual pH value changes only the magnitude of the acid
production and not the species.

In examining the transcriptional response, it was interesting
- in the context of organic acids - to see that oahA and goxC
are expressed and regulated, whereas no significant acid pro-
duction occurs at the time of sampling for transcriptome
analysis (Table 1). This suggests retention of the acid inside
the cells or regulation of the gene product at a post-transla-
tional level.

In total, the number of genes influenced by ambient pH was
surprisingly high. Although the transcriptional analysis is to
some extent confounded by an effect on 'domestic' genes, the
remaining response (2,022 genes) is still high. This response
is not unlikely, as A. niger growing in nature acidifies the sur-
roundings, thus living through a scale of pH values. This pre-
sumably requires a flexible and dynamic response of a large
number of genes. Another point is, as Arst and Peñalva [49]
correctly argue, when transcription of a gene is affected by
ambient pH, this does not necessarily mean that it is regu-
lated by pH. It may be an indirect consequence caused by dif-
ferences in uptake efficiencies, intracellular metabolite levels,
or other indirect effects. Most likely, a combination of the two
is what we see here. For this purpose, the clustering and fol-
lowing identification of 109 genes with direct correlations
with pH levels have proven to be a powerful method of data
reduction.

Table 2

Identified pH-sensing genes in Aspergillus nidulans and their homo-
logues in A. niger

Gene ORFs

A. nidulans A. niger

palA AN4351 119792

palB AN0256 171058

palC AN7560 48740

palF AN1844 Not found*

palH AN6886 120044

palI AN4853 52449

vps32/snf7 AN4240 136905

pacC AN2855 47049

The A. niger open reading frames (ORFs) were identified by using 
bidirectional best blast hits.
*No hit for palF was found in the publicly available genome sequence 
for A. niger ATCC 1015, but a near-identical hit was found on the right 
arm of chromosome VI in the finished version of the genome 
sequence.
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The applied two-step clustering method allows differentia-
tion between different effects, although it cannot determine
which clusters of genes are directly or indirectly influenced by
pH. One interesting application of this transcription study
and the clustering is the prediction of regulatory motifs based
on the transcription profiles. The predicted motifs are very
likely to have the proposed function of increasing transcrip-
tion with higher levels of pH, because one of the detected
motifs was previously described to have this function.
Although this, in theory, could be done for all of the 162 iden-
tified clusters, the performed predictions are limited to those
described in the main matter of this study, but details on the
clusters (see Additional data files 4 and 5) will support further
investigation of other hypotheses. One obvious application of
this is the identification of putative transcription factors reg-
ulated by ambient pH. We are currently constructing knock-
out strains for a large number of these.

The analysis of the clusters also includes the combination
with data on the physical location of the genes. For the clus-
ters predicted to be involved in secondary metabolite produc-
tion, this physical location adds considerable value to the
transcriptome analysis. It is confirmed that putative second-
ary metabolite clusters are transcriptionally regulated by pH.
Even so, some of the identified co-regulated gene clusters
may be artefacts, because of errors in predicting gene starts/
stops. For example, if a gene erroneously has been predicted
to be several genes, these will be seen as being co-regulated in
the transcriptome analysis. Another likely explanation is that
they are co-regulated by a common promoter region. How-
ever, for clusters of more than two genes, this is unlikely to be
the case.

In a comparison of the modeling and the in vivo experiments,
the predicted values correspond well with the profiles of
oxalate production and the known literature. At all levels of
pH, oxalate is a preferred acid (second to gluconate). As man-
ganese was present in the medium and oahA was present in
the strain, the funneling of carbon into citrate at lower pH
could not be observed. As described in the work of Dai et al.
[18] and Ruijter et al. [3], this is to be expected. Furthermore,
when examining the transcription levels of oahA, which is
found in subset E of Figure 4, they are on average 83 times
higher at pH 2.5 compared with 6.0. This regulation counter-
acts citrate production. Thus, the predictions of the model are
indeed valid, but the predicted (and known) optimum of cit-
rate production are not replicated in the cultivations because
of unknown factors.

The first steps toward understanding the pH-signaling path-
way of A. niger, a pathway of great potential importance for
the fermentation industry, are provided. The investigation of
the A. niger homologue to the - in A. nidulans - well-
described pal pH-signaling pathway showed that all compo-
nents are present in A. niger and are expressed independent
of pH. The uniqueness of this pathway makes it more than

likely that these genes code for orthologues of the A. nidulans
genes. However, a classic phenotypical characterization of
mutants is still necessary to establish the function finally, but
with this study, the targets for this characterization are now
firmly established.

Conclusions
We have shown through genome-scale modeling that the
assumption of evolutionary selection for efficient acidifica-
tion allows the reproduction of the pH optimum for produc-
tion of citrate and oxalate by A. niger. Furthermore, our
results indicate that high-yield gluconic acid production has
not evolved as a trait for acidification of the growth habitat.
Transcriptome analysis of A. niger cultures grown at three
levels of pH showed 6,228 genes for which the transcription
levels were significantly changed by direct and indirect effects
of ambient pH. A two-step clustering method and GO term
overrepresentation analysis identified 2,022 genes more
likely to be influenced by pH and 109 genes with transcription
levels directly corresponding to the level of pH. Analysis of
these genes showed a strong co-regulation of catR and goxA.
By combining genome coordinates with transcriptome pro-
files and predicted gene functions, secondary metabolite clus-
ters found to be regulated by pH were identified. The cis-
acting promoter motifs increasing transcription with higher
levels of pH were identified, and a strategy for finding pro-
moter motifs for other transcription profiles was presented.
By using a combination of transcriptome data and sequence
comparisons, the candidate orthologues of the A. nidulans
Pal/PacC pH-regulation pathway were identified in A. niger.
The conservation of this system supports that filamentous
fungi have evolved to use several strategies for outcompeting
rival organisms: an aggressive acidification of the microenvi-
ronment combined with storing the available glucose as glu-
conic acid.

Materials and methods
Modeling acid production
For each value of pH, a set of reactions was added to a
genome-scale stoichiometric model of A. niger metabolism
[7], thereby creating a model for each pH value. The reactions
set consisted of seven reactions, one for each of the acids
included in the model. Each reaction contains the fully proto-
nated acid in an equilibrium with the partially unprotonated
acid species and a number of protons. This number was cal-
culated for each pH and acid by using the acid disassociation
constant equation as shown in Equation 2:

(1)
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In the case of polyprotic acids such as citric acid, a set of cou-
pled equations - one for each acid group - was used. An exam-
ple for citrate at pH 4.5 is shown in Equation 3 (see Additional
data file 6 for the full set):

The entity CIT-e of Equation 3 is a mixed species, composed
of citric acid molecules in various degrees of deprotonation,
all in equilibrium at the given pH. It is assumed that the acids
are transported across the cytoplasmic membrane fully pro-
tonated.

Modeling of acid production was performed by using stoichi-
ometric matrices and linear programming for solving them,
as described in reference [7]. Either the solving objective was
a maximization of proton production with a fixed biomass
production of 1 g or maximization for growth (growth-cou-
pled proton production). For modeling of growth-coupled
proton production, the biomass equation added a demand for
15.3 mmole of protons per gram of dry weight. This value was
calculated from the oxalate and citrate yields of a pH 6.0 cul-
tivation described by Pedersen et al. [48]. All simulations
were performed with 100 mmole glucose and unlimited
ammonium as substrates.

Fermentation protocol
Strains
The strain used was A. niger BO-1, obtained from Novozymes
A/S (Kalundborg, Denmark) and maintained as frozen spore
suspensions at -80°C in 20% glycerol.

Growth media
Complex medium: 2 g/L yeast extract, 3 g/L tryptone, 10 g/L
glucose monohydrate, 20 g/L agar, 0.52 g/L KCl, 0.52 g/L
MgSO4·7H2O, 1.52 g/L KH2PO4 and 1 ml/Lof trace elements
solution. Trace element solution: 0.4 g/L CuSO4·5H2O, 0.04
g/L Na2B4O7·10H2O, 0.8 g/L FeSO4·7H2O, 0.8 g/L
MnSO4·H2O, 0.8 g/L Na2MoO4·2H2O, 8 g/L ZnSO4·7H2O.
Batch cultivation medium: 20 g/L glucose monohydrate, 2.5
g/L (NH4)2SO4, 0.75 g/L KH2PO4, 1.0 g/L MgSO4·7H2O, 1 g/
L NaCl, 0.1 g/L CaCl2·2H2O, 0.05 ml/L antifoam 204 (Sigma-
Aldrich, Brøndby, Denmark) and 1 ml/L trace element solu-
tion. Trace element solution composition: 7.2 g/L
ZnSO4·7H2O, 0.3 g/L NiCl2·6H2O, 6.9 g/L FeSO4·7H2O, 3.5
g/L MnCl2·4H2O, and 1.3 g/L CuSO4·5H2O.

Preparation of inoculum
Fermentations were initiated by spore inoculation to a final
concentration of 2 × 10-9 spores/L. Spores were propagated

on complex media plates and incubated for 7 to 8 days at 30°C
before being harvested with 10 ml of 0.01% Tween 80.

Batch cultivations
Batch cultivations were performed in 2-L Braun fermenters
with a working volume of 1.6 L, equipped with three Rushton
four-blade disc turbines. The bioreactor was sparged with air,
and the concentrations of oxygen and carbon dioxide in the
exhaust gas were measured in a gas analyzer. The tempera-
ture was maintained at 30°C. The pH was controlled by auto-
matic addition of 2 M NaOH. Agitation and aeration were
controlled throughout the cultivations. For inoculation of the
bioreactor, the pH was adjusted to 2.5; stirring rate, 100 rpm;
and aeration, 0.1 volumes of air per volume of fluid per
minute (vvm). After germination, the stirring rate was
increased to 300 rpm, and the air flow, to 0.5 vvm. At 11 to 12
hours after inoculation, the stirring rate was increased to 600
rpm, and the air flow, to 1 vvm. When the CO2 in the exhaust
gas reached a value of 0.1% (early growth phase), the stirring
rate was set to 1,000 rpm. Additionally, at this level of CO2,
the pH was slowly increased to 4.5 or 6.0 with a drop of 2 M
NaOH every 10 seconds. For the cultivations at pH 2.5, pH
was kept constant throughout the fermentation.

The concentrations of oxygen and carbon dioxide in the
exhaust gas were monitored with a gas analyzer (1311 Fast
response Triple gas, Innova combined with multiplexer con-
troller for Gas Analysis MUX100, B. Braun Biotech Interna-
tional (Melsungen, Germany)).

Sampling
Cell dry weight was determined by using nitrocellulose filters
(pore size, 0.45 μm; Pall Corporation, East Hills, NY, USA).
The filters were predried in a microwave oven at 150 W for 15
minutes, cooled in a desiccator, and subsequently weighed. A
known volume of cell culture was filtered, and the residue was
washed with 0.9% NaCl and dried on the filter for 15 minutes
in a microwave oven at 150 W and cooled in a desiccator. The
filtrate was saved for quantification of sugars and extracellu-
lar metabolites and stored at -80°C. The filter was weighed
again, and the cell mass concentration was calculated. These
values were used to calculate maximal specific growth rates.
For gene-expression analysis, mycelium was harvested at the
mid to late exponential phase by filtration through sterile
Mira-Cloth (Calbiochem, San Diego, CA, USA) and washed
with phosphate-buffered saline (PBS) (8 g/L NaCl, 0.20 g/L
KCl, 1.44 g/L Na2HPO4, and 0.24 g/L KH2PO4 in distilled
water). The mycelium was quickly dried by squeezing, and
subsequently frozen in liquid nitrogen. Samples were stored
at -80°C until RNA extraction.

Quantification of sugars and extracellular metabolites
The concentrations of sugar and organic acids in the filtrates
were determined by using HPLC on an Aminex HPX-87H
ion-exclusion column (BioRad, Hercules, CA, USA). The col-
umn was eluted at 60°C with 5 mM H2SO4 at a flow rate of 0.6

(2)

(3)
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ml/min. Metabolites were detected with a refractive index
detector and a UV detector.

Calculation of maximum specific growth rates
The maximal growth rate was determined by performing
exponential regressions on the data points from the exponen-
tial phase (defined as the part of the growth curve that exhib-
ited linear increase in a single-log plot) for each of the nine
experiments. Means and standard deviations were calculated
for each set of triplicates.

Transcriptome analysis
Extraction of total RNA
From 40 to 50 mg of frozen mycelium was placed in a 2-ml
Eppendorf tube, precooled in liquid nitrogen, containing
three steel balls (two balls with a diameter of 2 mm and one
ball with a diameter of 5 mm). The tubes were then shaken in
a Mixer Mill, at 5°C for 10 minutes, until the mycelia were
ground to powder. Total RNA was isolated from the powder
by using the Qiagen RNeasy Mini Kit, according to the proto-
col for isolation of total RNA from plant and fungi. The qual-
ity of the extracted total RNA was assessed by using a
BioAnalyzer 2100 (Agilent Technologies, Inc., Santa Clara,
CA, USA), and the quantity determined by using a spectro-
photometer (GE Healthcare Bio-Sciences AB, Uppsala, Swe-
den). The total RNA was stored at -80°C until further
processing.

Preparation of biotin-labeled cRNA and microarray processing
Fragmented biotin-labeled cRNA (15 μg) was prepared from
5 μg of total RNA and hybridized to the 3AspergDTU Gene-
Chip [50] according to the Affymetrix GeneChip Expression
Analysis Technical Manual [51].

cRNA was quantified in a spectrophotometer (same as
described earlier). cRNA quality was assessed by using a Bio-
Analyzer. A GeneChip Fluidics Station FS-400 (fluidics pro-
tocol FS450_001) and a GeneChip Scanner 3000 were used
for hybridization and scanning.

The scanned probe array images (.DAT files) were converted
into .CEL files by using the GeneChip Operating Software
(Affymetrix).

Analysis of transcription data
Affymetrix CEL-data files were preprocessed by using the sta-
tistical language and environment R [52] version 2.5.1. The
probe intensities were normalized for background by using
the robust multiarray average (RMA) method [53] with only
perfect match (PM) probes. Normalization was performed
subsequently by using the quantiles algorithm [54]. Gene-
expression values were calculated from the PM probes with
the median polish summary method [53]. All statistical pre-
processing methods were used by invoking them through the
Affy package [55].

Statistical analysis was applied to determine genes subject to
differential transcriptional regulation. The limma package
[56] was used to perform moderated t tests between two sets
of triplicates from each pH level. Empiric Bayesian statistics
were used to moderate the standard errors within each gene,
and Benjamini-Hochberg's method [57], to adjust for multit-
esting. A cut-off value of adjusted P < 0.05 was set to assess
statistical significance.

Normalized and raw data values are deposited with Gene
Expression Omnibus [GEO:GSE11725].

Clustering
The 6,228 genes that showed significant changes in expres-
sion indices in one or more pairwise comparisons were sorted
into groups based on the direction of their response in the
three different sets of conditions. These groups were divided
into a varying number of subgroups (clusters) by using the
clustering algorithm ClustreLustre [58], with k-means nor-
malization. The groups were divided until all clusters had a
minimum separation distance of 1.01. This number was
picked empirically and was the minimal distance at which
each cluster still had a distinct regulation pattern.

Identification of co-regulated gene clusters
Co-regulated gene clusters were defined in this study as genes
on the same scaffold that are separated by no more than 5
kilobases, significantly regulated in one or more pairwise
comparisons, and having the same regulation pattern as
determined by the detailed clustering by using ClusterLustre.

Prediction of conserved motifs
Conserved motifs were predicted by using R 2.6.2 [52] with
the Cosmo package v. 1.4.0 [59]. Default settings were used
with the following exceptions: A background Markov model
was computed by using the intergenic regions from scaffold 1
of the A. niger ATCC 1015 genome sequence. Intergenic
regions containing unknown bases (Ns) were pruned from
the training set, amounting to 1.7 Mb in 1,214 sequences. The
Two-Component-Mixture (TCM), One Occurrence Per
Sequence (OOPS) and Zero Or One Occurrence Per Sequence
(ZOOPS) motif models were used to search for conserved
motifs. For all query sequences 1,000 base pairs upstream of
the start codon of the gene or of the predicted transcription
start were, if any was found. If a transcription start was pre-
dicted, the sequence from this base pair and to the start codon
was included as well, thus increasing the length of sequence
to more than 1 kilobase.

GO-term enrichment analysis
Significantly regulated subsets of genes were examined for
GO-term enrichment by using R-2.5.1 [52] with BioConduc-
tor [60] and the topGO-package v. 1.2.1 by using the elim
algorithm to remove local dependencies between GO terms
[61]. GO-term assignments were based on automatic annota-
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tion of the A. niger ATCC 1015 v1.0 gene models. Where noth-
ing else is noted, P < 0.05 is used as the cutoff for significance.

Abbreviations
JGI: Joint Genome Institute; ORFs: open reading frames;
PBS: phosphate-buffered saline; ppb: parts per billion; vvm:
volumes of air per volume of fluid per minute.

Authors' contributions
MRA wrote the manuscript, analyzed data, designed the
experiments, and performed a part of the microarray hybrid-
ization. LL wrote the expansion of the model, analyzed data,
and performed bioreactor cultivations and the majority of the
microarray hybridization. JN designed the experiments and
supervised the work.

Additional data files
The following additional data are available with the online
version of this article. Additional data file 1 is a figure contain-
ing an overview of modeled acid production as a function of
pH maximizing for growth coupled with acid (proton) pro-
duction. Additional data file 2 is a figure containing an over-
view of modeled acid production as a function of pH,
maximizing for proton production with fixed growth. Addi-
tional data file 3 is a text file with GO term overrepresentation
results for all clusters of Additional data file 5 except cluster
D, which has only one gene. For each of the three ontologies
(metabolic function, biologic process, and cellular compo-
nent) is shown the significant terms (p.elim < 0.05). Addi-
tional data file 4 is a figure showing the clusters of genes co-
regulated by ambient pH. Cluster D is not shown, as it con-
tains only one gene. The clusters are grouped based on statis-
tical significance in pairwise comparisons of transcriptome
data at pH values of 2.5, 4.5, and 6.0. Each cluster has nine
values. The first three are biologic replicates at pH 2.5; the
middle three are at pH 4.5; and the last three are from pH 6.0.
The genes are clustered by using Matlab and the ClustreLus-
tre algorithm [58]. Additional data file 5 is a table containing
the clustering of A. niger genes with significantly changed
expression indices. The HiLo, MeLo, and HiMe columns are
log2 ratios of gene-expression indices in comparisons of pH
6.0 (Hi), pH 4.5 (Me), and pH 2.5 (Lo). Negative values mean
that the index was higher in the second condition. If the com-
parison was not significant, a N/A is shown. Annotations are
manually extracted from the Joint Genome Institute (JGI)
website [62] and are the manual annotation (if that was
present), or a general Interpro or GO-term prediction (if no
manual annotation was present). A '-' means that no putative
function could be assigned. The Colocalized column: Genes
with the same number are colocalized. The Sec Metabolites
column: Genes that are believed to be in a colocalized, co-reg-
ulated secondary metabolite cluster are marked with num-
bers. Additional data file 6 is a table of the proton-creating

reactions of the acid-production model that were added to the
previously described genome-scale stoichiometric model of
A. niger [7].
Additional file 1Figure containing an overview of modeled acid production as a function of pH maximizing for growth coupled with acid (proton) productionFigure containing an overview of modeled acid production as a function of pH maximizing for growth coupled with acid (proton) production.Click here for fileAdditional file 2Figure containing an overview of modeled acid production as a function of pH, maximizing for proton production with fixed growthFigure containing an overview of modeled acid production as a function of pH, maximizing for proton production with fixed growth.Click here for fileAdditional file 3Text file with GO term overrepresentation results for all clusters of Additional data file 5 except cluster D, which has only one geneFor each of the three ontologies (metabolic function, biologic proc-ess, and cellular component) is shown the significant terms (p.elim < 0.05).Click here for fileAdditional file 4Figure showing the clusters of genes co-regulated by ambient pHCluster D is not shown, as it contains only one gene. The clusters are grouped based on statistical significance in pairwise compari-sons of transcriptome data at pH values of 2.5, 4.5, and 6.0. Each cluster has nine values. The first three are biologic replicates at pH 2.5; the middle three are at pH 4.5; and the last three are from pH 6.0. The genes are clustered by using Matlab and the ClustreLustre algorithm [58].Click here for fileAdditional file 5Table containing the clustering of A. niger genes with significantly changed expression indicesThe HiLo, MeLo, and HiMe columns are log2 ratios of gene-expres-sion indices in comparisons of pH 6.0 (Hi), pH 4.5 (Me), and pH 2.5 (Lo). Negative values mean that the index was higher in the sec-ond condition. If the comparison was not significant, a N/A is shown. Annotations are manually extracted from the Joint Genome Institute (JGI) website [62] and are the manual annotation (if that was present), or a general Interpro or GO-term prediction (if no manual annotation was present). A '-' means that no putative func-tion could be assigned. The Colocalized column: Genes with the same number are colocalized. The Sec Metabolites column: Genes that are believed to be in a colocalized, co-regulated secondary metabolite cluster are marked with numbers.Click here for fileAdditional file 6Table of the proton-creating reactions of the acid-production model that were added to the previously described genome-scale stoichiometric model of A. nigerTable of the proton-creating reactions of the acid-production model that were added to the previously described genome-scale stoichiometric model of A. niger [7].Click here for file
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