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Network centrality and evolution<p>Yeast transcription factors that are more central in the transcription network tend to evolve more quickly.</p>

Abstract

Background: Transcription factors play a fundamental role in regulating physiological responses
and developmental processes. Here we examine the evolution of the yeast transcription factors in
the context of the structure of the gene regulatory network.

Results: In contrast to previous results for the protein-protein interaction and metabolic
networks, we find that the position of a gene within the transcription network affects the rate of
protein evolution such that more central transcription factors tend to evolve faster. Centrality is
also positively correlated with expression variability, suggesting that the higher rate of divergence
among central transcription factors may be due to their role in controlling information flow and
may be the result of adaptation to changing environmental conditions. Alternatively, more central
transcription factors could be more buffered against environmental perturbations and, therefore,
less subject to strong purifying selection. Importantly, the relationship between centrality and
evolutionary rates is independent of expression level, expression variability and gene essentiality.

Conclusions: Our analysis of the transcription network highlights the role of network structure
on protein evolutionary rate. Further, the effect of network centrality on nucleotide divergence is
different among the metabolic, protein-protein and transcriptional networks, suggesting that the
effect of gene position is dependant on the function of the specific network under study. A better
understanding of how these three cellular networks interact with one another may be needed to
fully examine the impact of network structure on the function and evolution of biological systems.

Background
Understanding of the function and evolution of any specific
gene or protein requires knowledge of the context in which
that gene operates, because change in any single component
of a complex system can have ramifications for all other com-
ponents. This system-orientated view, largely enabled by the
omics revolution, has sparked increasing interest in the inves-
tigation of biological networks and has yielded promising

results in the understanding of cellular [1], developmental [2]
and ecological [3] processes. A major challenge within this
area is to determine how the various parts of a system interact
in order for the system as a whole to function. With a more
global understanding of system function in hand, a larger
question then emerges: in what ways does the structure of the
network influence the evolution of the components of that
network? For example, in the yeast protein-protein interac-
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tion (PPI) and metabolic networks, central and highly con-
nected proteins tend to evolve more slowly than peripheral
genes [4-7]. Is this a global feature of all such networks, or
does the specific function of a given network have a strong
influence on its evolutionary properties? Here, we address
these questions by analyzing the evolution of the yeast tran-
scription factors in the context of the structure of the tran-
scriptional regulatory network.

The premise that biological systems are more than the sum of
their parts implies that such systems possess emergent prop-
erties that cannot be captured by a purely reductionist
approach. For a network, one such emergent property is its
topology. Comparisons of entirely different types of networks,
including social, technological and biological networks, have
revealed intriguing shared topological properties, such as an
overall hierarchical organization, similar node-degree distri-
butions, and a tendency toward a small-world structure in
which most nodes are connected by only a few other interven-
ing nodes [1]. The observation that both metabolic and PPI
networks display approximately scale-free topologies, with a
few highly connected nodes and a majority of nodes with only
a few connections, leads to the proposal that network struc-
ture may be the result of selection, perhaps as a means of pro-
viding mutational robustness [8]. This hypothesis remains
uncertain, however, because networks with node connectivity
following a power-law distribution can be assembled without
natural selection [9] and because natural selection is very
weak on second order network properties such as robustness
[10]. Further, networks with similar power-law distributions
can have different fine-scale architectures, which may be
functionally important [11].

In this study we examine the evolution of the yeast transcrip-
tion factors and ask whether fine differences in network
structure and function lead to different evolutionary impacts
on the elements of those networks. Gene regulatory networks
are of particular interest because they allow the cell to modify
its physiology, cycle and shape in response to environmental
or developmental demands [12]. Metabolic and gene regula-
tory networks have a different level of complexity than PPI
networks because they are directed and explicitly model the
flow of information passing through the nodes. Moreover,
even though all three cellular networks are characterized by
having a small number of highly connected nodes, these net-
works differ in their node-degree distribution [1]. The yeast
transcription regulatory network consists of a mixed scale-
free and exponential topology: only the number of target
genes follows a power-law distribution whereas the number
of regulators is exponential [13]. These structural and func-
tional differences may result in different effects on the evolu-
tion of network components. For instance, underlying the
power-law distribution of target genes is a distributed archi-
tecture that may cause the apparent independence between
connectivity and the retention of regulatory proteins across
genomes [14].

Overall, we show that network structure does indeed lead to
different evolutionary dynamics that depends more specifi-
cally on the overall function of the network. Therefore, under-
standing the relationship between network structure and the
evolution of network components will depend on a deeper
knowledge of gene function.

Results
Central transcription factors tend to evolve faster
We obtained node statistics, specifically the number of regu-
latory inputs (in-degree, kin), the number of target genes (out-
degree, kout), and betweenness, measuring the centrality of a
gene in the network, from two separately derived representa-
tions of the yeast transcriptional network. The first dataset
(YTN1) [15] includes 286 transcription factors, 3,369 target
genes and 8,372 regulatory interactions. The second dataset
(YTN2) [14] includes 157 transcription factors, 4,410 target
genes and 12,873 regulatory interactions. Only transcription
factors clearly identified as orthologs in the yeast genome
database (Saccharomyces Genome Database (SGD)) were
retained for analysis of evolutionary rates, leading to the
retention of a set of 256 genes for YTN1 and a set of 138 genes
for YTN2. Because the first network contains 85% more tran-
scription factors than the second, we have much more power
to detect significant effects using the first network and there-
fore focus most of our discussion on that dataset. Neverthe-
less, both datasets yield qualitatively similar results for each
of our major conclusions.

Large-scale analyses have shown that multiple genomic vari-
ables have an effect on the rate of protein evolution [16,17].
Among them, expression level has been shown to correlate
strongly with a gene's evolutionary rate [18-22], leading to a
wide debate about the importance of other genomic variables
such as essentiality [21-25] and connectivity [7,21,24,26-28].
Therefore, we first examine the separate effects of expression,
function and network related variables on rates of transcrip-
tion factor sequence evolution in turn, and then tease apart
their independent effects using a multivariate approach.

As noted in previous studies, expression level has a strong
effect on transcription factor sequence evolution (Figure 1),
with more highly expressed genes being under stronger puri-
fying selection against both amino acid replacements and
synonymous changes, as predicted by the translational
robustness hypothesis [20]. Further, essential transcription
factors (those having a lethal phenotype in deletion-mutants
[29]) also tend to evolve slower than non-essential transcrip-
tion factors, at least in the network that includes more tran-
scription factors (YTN1: dN/dS: t249 = 3.62, P < 0.001;
Wilcoxon two-sample P < 0.0001). Similarly, we find a corre-
lation between protein evolutionary rates and genes' essenti-
ality estimated by the growth rate of deletion strains [19]
(Figure 1).
Genome Biology 2009, 10:R35
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To further investigate the impact of functional constraints on
sequence evolution, we used the number of Gene Ontology
(GO) terms [30,31] as a proxy for a gene's pleiotropic effects.
GO describe a gene's properties and functions by assigning
attributes under the categories 'cellular component', 'biologi-
cal process' and 'molecular function'. There is a correlation
between the number of GO terms and essentiality (YTN1:
Spearman's ρ = 0.171, P = 0.007), indicating that pleiotropy
has direct fitness consequences. Accordingly, transcription
factors with more GO terms tend to evolve more slowly (Fig-
ure 1), presumably because mutations arising in genes with
larger pleiotropic effects are more likely to be deleterious and
are thus selected against.

Finally, the position of a gene within the network, or its cen-
trality, has a significant influence on its evolutionary rate

(Figure 1). Previous studies have determined that central
metabolic enzymes and central proteins in the PPI network
are under stronger selective constraints and evolve slower
[4,6]. In contrast, we find that for the transcriptional net-
work, protein evolution is positively correlated with between-
ness, indicating that transcription factors that occupy a more
central position in the network tend to evolve faster (Figure
1). Similarly, contrary to metabolic and PPI networks, protein
sequence divergence correlates positively with connectivity.
However, the relationship between out-degree and evolution-
ary rate differs between the two network datasets (Figure 1).

The effect of centrality on protein sequence evolution 
is independent of other genomic variables
Interpretation of these simple correlation patterns is compli-
cated by the fact that different genetic properties are corre-

Correlation between expression (blue), function (green), and network topology (red) related variables with evolutionary ratesFigure 1
Correlation between expression (blue), function (green), and network topology (red) related variables with evolutionary rates. Darker colors represent 
results from analyses of YTN1, and lighter colors represent results from analyses of YTN2. Correlations are Spearman's nonparametric ρ. *P < 0.05, **P < 
0.01, ***P < 0.001.
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lated with one another and so any single correlation between
two characteristics might actually be generated by a shared
correlation with a third causal element. To correct for this, we
examined the relative contribution of function, network and
expression-associated constraints on transcription factor
evolution using multivariate analysis.

We first used multiple regression analysis with network con-
nectivity and network centrality separately with function and
expression-related predictor variables in order to estimate
the contribution of each of these elements to variation in evo-
lutionary rates among transcription factors. Consistent with
the univariate patterns, our analysis reveals that transcrip-
tion factors having larger effects on organismal fitness when
deleted tend to evolve more slowly than those with lesser fit-
ness effects (Table 1). In the same vein, transcription factors
with a larger number of GO terms are subject to stronger
functional constraints and tend to evolve more slowly (Table
1). These results indicate that sequence divergence for the
yeast transcription factors depends at least in part on the cost
of mutations altering protein function and affecting organis-
mal fitness. Among the genomic variables analyzed, only
expression level has a strong effect on the rate of synonymous
changes (Table 2)

We find no significant correlation between in-degree and
essentiality (kin: YTN1: Spearman's ρ = -0.082, P = 0.2;
YTN2: ρ = 0.033, P = 0.7), although the relationship between
out-degree and essentiality differs between the two datasets

(kout: YTN1: Spearman's ρ = -0.071, P = 0.26; YTN2: ρ = 0.27,
P = 0.002). However, when growth rate is measured under
different conditions, transcription factors with numerous tar-
get genes in YTN2 are not enriched in essential genes [14].
Nevertheless, the correlation between the number of target
genes and protein sequence divergence is fairly weak, as mul-
tiple regression analysis failed to disentangle the effect of out-
degree from the causal effect of other predictor variables
(Table 1). Therefore, contrary to the PPI [4,8] and metabolic
[5,6] networks, there is no significant correlation between
connectivity and essentiality, while in-degree is in fact posi-
tively correlated with protein sequence divergence.

Importantly, this analysis also shows that the contribution of
network centrality to protein divergence is independent of
expression and function-related variables (Table 1). Thus, a
striking difference among cellular networks lies in the influ-
ence of the position of a gene within the network on its rate of
evolution. However, transcription factors that are more cen-
tral in the network do tend to show higher variability in their
expression level under changing conditions (YTN1: Spear-
man's ρ = 0.178, P = 0.004), but centrality is not correlated
with expression level (YTN1: Spearman's ρ = 0.006, P =
0.924) and essentiality (YTN1: Spearman's ρ = -0.022, P =
0.735).

The high degree of correlation among predictor variables has
led some to question the use of multiple regression for these
types of analyses [21]. We therefore also analyzed these data

Table 1

Multiple regression of genomic variables and protein evolutionary rates

dN dN/dS dN/dS' Residuals dN-dS

Predictor YTN1 YTN2 YTN1 YTN2 YTN1 YTN2 YTN1 YTN2

Relationships between evolutionary rates and six predictor variables

Expression level -0.105 -0.022 -0.043 0.058 -0.051 0.061 -0.038 0.050

Expression variability -0.047 -0.064 -0.010 -0.015 -0.011 -0.013 -0.019 -0.024

CAI -0.096 -0.037 0.026 -0.060 -0.088 -0.046 -0.072 -0.055

GO -0.135* -0.277† -0.149* -0.311‡ -0.165† -0.313‡ -0.168† -0.307‡

Essentality -0.185† -0.104 -0.229‡ -0.121 -0.208‡ -0.122 -0.181† -0.121

Centrality 0.162† 0.199* 0.151* 0.191* 0.164† 0.190* 0.164† 0.201*

Relationships between evolutionary rates and seven predictor variables

Expression level -0.107 -0.030 -0.044 0.047 -0.053 0.050 -0.040 0.041

Expression variability -0.053 -0.084 -0.016 -0.036 -0.020 -0.035 -0.028 -0.043

CAI -0.111 -0.059 0.010 -0.083 -0.105 -0.069 -0.091 -0.077

GO -0.113 -0.204* -0.129* -0.244† -0.142* -0.246† -0.145* -0.237†

Essentiality -0.177† -0.039 -0.222‡ -0.060 -0.199† -0.062 -0.173† -0.057

kin 0.139* 0.291† 0.132* 0.288† 0.148* 0.288† 0.152* 0.290†

kout 0.042 -0.165 0.032 -0.148 0.037 -0.147 0.031 -0.154

Network, function and expression-related variables have independent effects on the rate of protein evolution. Entries show standardized regression 
coefficients. *P < 0.05, †P < 0.01, ‡P < 0.001.
Genome Biology 2009, 10:R35
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Table 2

Multiple regression of genomic variables and rates of synonymous changes

dS dS'

Predictor YTN1 YTN2 YTN1 YTN2

Relationships between evolutionary rates and six predictor variables

Expression level -0.216† -0.229* -0.218† -0.229*

Expression variability -0.090 -0.137 -0.091 -0.137

CAI -0.086 0.050 0.046 0.005

GO 0.075 0.051 0.076 0.051

Essentality -0.041 0.037 -0.041 0.037

Centrality 0.020 0.026 0.020 0.026

Relationships between evolutionary rates and seven predictor variables

Expression level -0.213† -0.228* -0.215† -0.229*

Expression variability -0.083 -0.140 -0.084 -0.140

CAI -0.077 0.046 0.055 0.001

GO 0.075 0.069 0.076 0.069

Essentiality -0.039 0.053 -0.040 0.053

kin -0.014 0.048 -0.014 0.048

kout 0.039 -0.059 0.040 -0.059

Entries show standardized regression coefficients. *P < 0.05, †P < 0.01.

Table 3

Principal component regression analysis: principal components PC1 to PC4

PC1 PC2 PC3 PC4

YTN1 YTN2 YTN1 YTN2 YTN1 YTN2 YTN1 YTN2

Percent variance explained by each PC 27 29 20 19 15 15 12 10

Effect of PCs on response variables

dN 0.118† -0.026 -0.172‡ 0.166* 0.015 0.199† -0.065 0.144

dS -0.001 -0.009 -0.122* -0.046 -0.161† -0.094 0.073 0.096

dS' -0.014 -0.019 -0.053 -0.030 -0.108 -0.114 0.082 0.078

dN/dS 0.114† -0.028 -0.113* 0.194† 0.106 0.240† -0.123* 0.117

dN/dS' 0.132† -0.025 -0.169‡ 0.190† 0.064 0.248† -0.106 0.122

Residuals dN-dS 0.124† -0.024 -0.141† 0.189† 0.071 0.239† -0.093 0.120

Contribution of predictor variables to each PC

CAI -0.095 0.228 0.535 -0.356 0.419 0.435 0.069 0.405

Expression level 0.008 0.289 0.515 -0.297 0.154 0.468 -0.596 -0.280

Expression variability 0.290 -0.105 -0.350 0.616 0.454 -0.050 0.132 -0.009

kin 0.538 0.423 0.195 0.413 0.288 0.333 0.061 0.140

kout 0.464 0.453 -0.047 0.052 -0.419 -0.353 -0.023 -0.157

Centrality 0.623 0.564 0.176 0.312 -0.095 -0.010 0.067 0.050

Essentiality -0.115 0.230 0.415 -0.241 -0.102 -0.506 0.776 0.634

GO 0.011 0.314 0.287 -0.277 -0.562 -0.313 -0.109 -0.556

No single variable dominates the rate of protein evolution. *P < 0.05, †P < 0.01, ‡P < 0.001. PC, principal component.
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using principal component regression analysis [21]. For
YTN1, the first principal component, composed mostly of
contributions from network-related variables, is positively
correlated with protein divergence but the second principal
component, mostly composed of expression and function-
related variables, correlates negatively with substitution rates
(Tables 3 and 4). Both principal components explain a similar
amount of the total variance in the data, indicating that no
single variable dominates the rate of protein evolution for the
yeast transcription factor genes. The pattern is more complex
for YTN2 because the principle components tend to confound
expression and network properties. For instance, the first
principle component for YTN2 does not show a significant
effect on evolutionary rate, presumably because the positive
and negative effects of the network, function, and expression
variables are counterbalancing one another (Tables 3 and 4).

To get around these issues, we defined a new set of variables
composed of principal components derived separately from
the expression, network and function-related variables. Mul-
tiple regression analysis on these composite variables shows
that each of these causal components has independent effects
on the rate of nonsynonymous changes (Table 5). Results
from the two network datasets are qualitatively and quantita-
tively very similar to one another, although particular coeffi-
cients from YTN2 tend to be less significant because of
reduced power.

In summary, our results on the yeast transcription network
and previous work on the yeast metabolic and PPI networks
[4-6] show that the structure of cellular networks influences
the evolution of proteins within these networks. However, the
system-level pattern of selective constraints at individual
nodes differ despite the three networks having grossly similar
topologies, perhaps in relation with the function and the
nature of the network.

Discussion
Genomic information generated in recent years has not only
offered new insights into biological processes at various levels
of organization [1-3,32], but has also enabled a shift from
studying the evolution of single or few genes to a system-level
view of molecular evolution that integrates interactions
among genes within their cellular context. A first conse-
quence of this new perspective is the recognition that several
factors in addition to protein function control rate divergence
in coding sequences [16,17], with expression level having a
strong effect [20,21].

A second consequence of this systems molecular evolution
perspective is that it yields novel insights into how cellular
networks and their components evolve. Previous studies have
noted that metabolic enzymes with high degree are no more
essential than those with low degree, perhaps because rerout-

Table 4

Principal component regression analysis: principal components PC5 to PC8

PC5 PC6 PC7 PC8

YTN1 YTN2 YTN1 YTN2 YTN1 YTN2 YTN1 YTN2

Percent variance explained by each PC 10 9 7 8 7 8 2 2

Effect of PCs on response variables

dN -0.067 -0.170 -0.127 0.109 -0.144 -0.188 -0.088 -0.213

dS 0.055 0.078 -0.043 0.034 -0.131 -0.249 0.011 0.074

dS' 0.081 0.050 0.022 0.046 -0.195* -0.251* -0.014 -0.073

dN/dS -0.045 -0.209* -0.052 0.098 -0.167* -0.106 -0.103 -0.147

dN/dS' -0.081 -0.201* -0.117 0.093 -0.114 -0.102 -0.083 -0.143

Residuals dN-dS -0.089 -0.203* -0.119 0.103 -0.108 -0.118 -0.089 -0.200

Contribution of predictor variables to each PC

CAI 0.194 0.624 0.501 -0.279 -0.485 0.027 -0.022 -0.025

Expression level -0.255 -0.366 0.025 0.178 0.539 0.603 0.001 -0.032

Expression variability 0.400 0.447 0.377 0.098 0.518 0.630 -0.010 -0.020

kin 0.101 -0.060 -0.505 0.328 -0.139 -0.296 0.549 0.567

kout -0.353 -0.090 0.584 -0.691 -0.062 0.177 0.370 0.354

Centrality -0.026 -0.086 -0.102 -0.023 -0.083 -0.170 -0.741 -0.738

Essentiality -0.192 -0.125 -0.022 0.367 0.402 0.277 -0.049 -0.063

GO 0.752 0.492 0.012 0.400 0.121 -0.119 0.098 0.047

No single variable dominates the rate of protein evolution. *P < 0.05. PC, principal component.
Genome Biology 2009, 10:R35
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ing of metabolic fluxes in highly connected regions circum-
vents loss of function mutations at a given node [5]. The
absence of correlation between connectivity and essentiality
observed here may be the consequence of a similar mecha-
nism of genetic robustness achieved through rerouting of
information flow through the transcriptional network. This
hypothesis is further suggested by a recent study showing that
the mean sequence divergence among intermediate regula-
tors between a top regulator and its target gene increases with
the number of alternative pathways between the regulator-
target gene pair [33].

We obtain qualitatively similar results from our analysis of
both representations of the transcriptional network [14,15].
This is especially true if we account for the overall correlation
structure among the variables within the network, function,
and expression classes (Table 5). Many more transcription
factors are represented in the first network, however, which
makes it much easier to detect significant evolutionary asso-
ciations. It is clear, therefore, that completeness of the net-
work will influence conclusions from global analyses such as
that conducted here. Nevertheless, the fact that similar
results are obtained from different network datasets, which
undoubtedly capture different levels of network complexity,
suggests that the results presented here are somewhat robust
to overall sampling issues.

Our results on the yeast transcription network and previous
work on the yeast metabolic and PPI networks [4-6] show
that the structure of cellular networks influences selective
constraints at individual nodes, but that these system-level
constraints differ despite the three cellular networks having
similar, although not identical, topological properties [1,13].
These differences may ultimately be due to the nature of the
networks and how they function. Highly connected proteins
in the PPI and metabolic networks are subject to stronger
purifying selection, presumably because of a larger fraction of

sites involved in interactions and because of kinetic con-
straints due to highly used metabolites, respectively [5,7].

In contrast, transcription networks play fundamental roles in
regulating cell state during developmental processes and dur-
ing physiological adjustment to changing environmental con-
ditions [12]. For instance, changes in growth conditions lead
Escherichia coli to regulate transcript and protein levels to
maximize growth rate and maintain stable metabolite levels,
whereas when enzymes of the carbon metabolism network
are disrupted, system stability is achieved through redun-
dancy and flux rerouting [34]. In eukaryotes other than yeast,
transcriptional variability (which might serve as an indicator
of environmental sensitivity), rather than expression level per
se, seems to correlate better with protein divergence [35].
Here, transcription factors that are more central in the net-
work tend to show higher variability in their expression level
in changing conditions. At a local scale, expression variability
within a regulatory motif also depends on network structure
[36]. However, we do not find a significant effect of expres-
sion variation on transcription factor evolution (Table 1). The
influence of centrality on the rate of protein evolution in the
yeast transcription factor network is therefore not a second-
ary effect of selection acting directly on transcriptional varia-
bility. Because central transcription factors have rapid access
to many regions of the network and may act to control the
flow of information across the network, they may be impor-
tant components of sensory systems that transduce environ-
mental changes and coordinate the response of the regulatory
network. It is possible that the higher level of amino acid
change seen in central transcription factors is therefore the
result of historical adaptation to changing environmental
conditions. An alternative hypothesis is that more central
transcription factors are instead more buffered from outside
influences and therefore less subject to strong purifying selec-
tion.

Table 5

Results of multiple regression analysis on composite variables

PC1-network PC1-expression PC1-function

YTN1 YTN2 YTN1 YTN2 YTN1 YTN2

Percent of variance explained by PC1 69 65 48 50 54 60

dN 0.095* 0.099 -0.112* -0.007 -0.196† -0.246†

dS -0.016 -0.031 -0.170† -0.032 0.065 0.098

dS' -0.016 -0.032 -0.094 -0.058 0.068 0.099

dN/dS 0.098* 0.112 -0.014 -0.001 -0.249‡ -0.295‡

dN/dS' 0.107† 0.113 -0.083 0.008 -0.245‡ -0.298‡

Residuals dN-dS 0.106* 0.113 -0.061 0.003 -0.229‡ -0.289‡

Each composite variable is the first principal component of expression (CAI, expression level, expression variability), network (betweenness, kin, kout) 
and function (GO, essentiality) related variables. *P < 0.05, †P < 0.01, ‡P < 0.001.
Genome Biology 2009, 10:R35
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Although the relationship between centrality and evolution-
ary rate is somewhat unexpected, examination of the fine
scale structure of other networks indicates that this may be a
general property of control systems. For example, although
highly connected proteins (hubs) in the yeast PPI network
evolve slowly [4,7], intermodule hubs (those that display tem-
poral variation in their connections) are more divergent than
intramodule hubs (those displaying static patterns of interac-
tions) [37]. Similarly, directional selection has recently been
inferred at controlling, branch-point enzymes in four out of
five metabolic pathways converging to glucose-6-phosphate
in Drosophila [38]. Thus, proteins that exert some control in
flux distribution, information processing or in connecting
various protein complexes may, in general, be the target of
adaptation because mutations arising in these proteins have
the potential to affect the entire system and may, therefore, be
more exposed to natural selection.

Conclusions
The system-level pattern of evolutionary rates is different
from that observed in the protein-protein interaction and
metabolic networks: central transcription factors tend to
evolve faster. This suggests that the higher nucleotide rate
divergence in central transcription factors may result from
the role that these proteins play in controlling the flow of
information and may be the result of adaptation to changing
environmental conditions. The conclusions derived from net-
work level analyses of molecular evolution can clearly vary
depending on the functional role played by the components of
that network. In the same way that we have shown that the
particular function of a network can influence how one inter-
prets the impact of its structure on protein evolution, it is
clear that we must begin to link all of these networks (regula-
tory, protein-protein, and metabolic) together so that the
complete nature and consequences of network structure on
the function and evolution of biological systems can be exam-
ined.

Materials and methods
We used two distinct datasets of the yeast transcriptional net-
work. The first dataset [15], YTN1, includes 286 transcription
factors, 3,369 target genes and 8,372 regulatory interactions.
The second dataset [14], YTN2, includes 157 transcription
factors, 4,410 target genes and 12,873 regulatory interactions.
The two networks were derived from largely independent
genetic, biochemical and ChIP-chip experiments. Node sta-
tistics, including in-degree (kin), out-degree (kout) and
betweenness, were obtained for each dataset using the tYNA
platform [39].

Protein sequences of orthologous genes from Saccharomyces
cerevisiae [40] and S. paradoxus, the most closely related
species [41] having its genome sequenced [42], were retrieved
from the SGD [43], aligned [44], and subsequently used to

generate codon-based DNA sequence alignments. Maximum
likelihood estimates of the rates of amino acid replacements
(dN) and synonymous changes (dS) were computed in
CODEML [45]. In addition, we computed the rate of synony-
mous changes corrected for selection at silent sites (dS') [46].
We also attempted to correct for the correlation between dN
and dS by using the residuals of the regression between dN
with dS in our analyses.

Essentiality was defined by a lethal phenotype in deletion
strains [29]. For a quantitative measure of a gene's essential-
ity we used growth rates measured in deletion mutants [19].
The number of GO terms [30,31] used as a proxy for a gene's
pleiotropic effect was obtained from the SGD. Protein and
mRNA abundance have been used as estimates of gene
expression in studies of evolutionary rates in yeast [18-
22,24,25,37]. We obtained protein [47] and mRNA [48]
abundance from the literature. However, in our sample faster
evolving genes are more likely to be missing from the mRNA
abundance (YTN1: N = 206; YTN2: N = 108) and protein
abundance (YTN1: N = 195; YTN2: N = 96) datasets, leading
to an obvious bias (YTN1: protein abundance: dN/dS: Wil-
coxon two-sample P = 0.004; mRNA abundance: dN/dS:
Wilcoxon two-sample P = 0.04; YTN2: protein abundance:
dN: Wilcoxon two-sample P = 0.03; mRNA abundance: dN/
dS: Wilcoxon two-sample P = 0.06). Nevertheless, the trans-
lational robustness hypothesis suggests that the frequency of
translation events is a better indicator of evolutionary rate
than the number of proteins per cell [20]. Therefore, we used
the codon adaptation index (CAI) [49], which measures syn-
onymous codon usage bias and correlates with mRNA abun-
dance [50], as well as direct measures of expression level, as
substitutes for other abundance measures. CAI was com-
puted [51] using the reference gene set defined by Carbone et
al. [52]. Expression level is the average level of expression
across 198 microarrays from a wide range of conditions [35].
Expression variation is measured by the coefficient of varia-
tion defined as the mean over the standard deviation [35].

Statistical analyses were performed using JMP 4.0.4 (SAS
Institute Inc., Cary, NC, USA). The number of GO terms and
kout were natural-logarithmic transformed to approximate a
normal distribution. One unit was added to betweenness and
kin, as well as kout in YTN2, prior to the natural logarithmic
transformation because of null values for these variables. All
variables, including predictor and response variables, were
standardized to a mean of 0 and 1 standard deviation unit. In
addition to Spearman's rank correlations and multiple
regression analysis, we also performed principal component
regression analysis, first using single predictor variables
together and then by defining a new set of principal compo-
nents separately from the expression, network and function-
related variables. These composite variables were obtained
from the first principal component of expression (CAI,
expression level, expression variability), network (between-
ness, kin, kout) and function (GO, essentiality) related varia-
Genome Biology 2009, 10:R35
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bles. Principal component analyses were performed on
correlations.
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