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Transcription factor catalog<p>TFCat is a catalog of mouse and human transcription factors based on a reliable core collection of annotations obtained by expert review of the scientific literature</p>

Abstract

Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to
understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable
core collection of annotations obtained by expert review of the scientific literature. The collection,
including proven and homology-based candidate TFs, is annotated within a function-based
taxonomy and DNA-binding proteins are organized within a classification system. All data and user-
feedback mechanisms are available at the TFCat portal http://www.tfcat.ca.

Rationale
The functional properties of cells are determined in large part
by the subset of genes that they express in response to physi-
ological, developmental and environmental stimuli. The
coordinated regulation of gene transcription, which is critical
in maintaining this adaptive capacity of cells, relies on pro-
teins called transcription factors (TFs), which control profiles
of gene activity and regulate many different cellular functions
by interacting directly with DNA [1,2] and with non-DNA
binding accessory proteins [3,4]. While the biochemical prop-
erties and regulatory activities of both DNA-binding and
accessory TFs have been experimentally characterized and
extensively documented (for example, in textbooks devoted

to TFs [5,6]), a well-validated and comprehensive catalog of
TFs has not been assembled for any mammalian species.

Many gene transcription studies have linked the subset of TFs
that bind specific DNA sequences to the activation of individ-
ual genes and, more recently, these have been pursued on a
genome-wide basis using high-throughput laboratory studies
(for example, by performing chromatin-immunoprecipita-
tion) as well as computational analyses (for example, by iden-
tifying over-represented DNA motifs within promoters of co-
expressed genes). To facilitate such efforts, inventories of TFs
have been assembled for Drosophila and Caenorhabditis
species as well as for specific subfamilies of mammalian TFs
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(Table 1). Since only a limited number of protein structures
can mediate high-affinity DNA interactions, collections of TF
subfamilies have been constructed using predictive sequence-
based models for DNA-binding domains (DBDs) [7-10]. For
example, the PFAM Hidden Markov Model (HMM) database
[11] and Superfamily HMMs [12] have been applied to sets of
peptide sequences to identify nearly 1,900 putative TFs in the
human genome [10] and over 750 fly TFs, of which 60% were
well-characterized site-specific binding proteins [13]. While
these collections have emphasized DNA binding proteins,
recent evidence suggests that the contributions of accessory
TFs may be equally or more important in establishing the spa-
tio-temporal regulation of gene activity. For example, micro-
array-based chromatin immunoprecipitation studies have
highlighted the key regulatory contributions of histone mod-
ifying TFs over the control of gene expression [14]. Therefore,
any comprehensive study of TFs must extend beyond a nar-
row focus of DNA binding proteins to serve as a foundation
for regulatory network analyses.

The four research laboratories contributing to this report
were originally pursuing parallel efforts to compile reference
collections of bona fide mammalian TFs. In order to maxi-
mize the quality and breadth of our gene curation, we com-
bined our efforts to create a single, literature-based catalog of
mouse and human TFs (called TFCat). The collection of anno-
tations is based on published experimental evidence. Each TF
gene was assigned to a functional category within a hierarchi-
cal classification system based on evidence supporting DNA
binding and transcriptional activation functions for each pro-
tein. DNA-binding proteins were categorized using an estab-
lished structure-based classification system [15]. A blind,
random sample of the functional assessments provided by
each expert was used to assess the quality of the gene annota-
tions. The evidence-based subset of TFs was used to compu-
tationally predict additional un-annotated genes likely to
encode TFs. The resulting collection is available for download
from the TFCat portal and is also accessible via a wiki to
encourage community input and feedback to facilitate contin-
uous improvement of this resource.

TF gene candidate selection, the annotation 
process, and quality assurance
Prior to the initiation of the TFCat collaboration, each of the
four participating laboratories constructed mouse TF data-
sets using manual text-mining and computational-based
approaches. As each dataset was created specifically to suit
the needs of the research lab that generated it, combinations
of overlapping and distinct procedures were applied to collect
and filter each dataset (Figure S1 in Additional data file 1).
These four, independently established, putative TF datasets
laid the foundation for this joint initiative.

To ensure the comprehensiveness and utility of our reference
collection, we broadly defined a TF as any protein directly
involved in the activation or repression of the initiation of
synthesis of RNA from a DNA template. Incorporating this
standard, the union of the four sets yielded 3,230 putative
mouse TFs (referred to as the UPTF). As complete manual
curation of all literature to evaluate TFs is not practical, our
curation efforts were prioritized to maximize the number of
reviews conducted for UPTFs linked to papers. A manual sur-
vey of PubMed abstracts was performed, using available gene
symbol identifiers and aliases, to identify genes for which
experimental evidence of TF function might exist. Since
standardized naming conventions have not been fully applied
in the older literature, the associations between abstracts and
genes may be incomplete or inaccurate due to the redundant
use of the same identifiers for two or more genes. In addition,
we did not consider abstracts that made no mention of the
gene identifiers of interest or those that, by their description,
were unlikely to have conducted transcription regulation-
related analyses. From this list of 3,230 putative mouse TFs,
coarse precuration identified 1,200 putative TFs with scien-
tific papers describing their biochemical or gene regulatory
activities in the PubMed database [16]. The majority of pre-
dicted TFs (2,030 of 3,230) had no substantive literature evi-
dence supporting their molecular function. The remaining
1,200 transcription factor candidates (TFCs) were prioritized
for expert annotation.

Genes belonging to the TFC set that were associated with two
or more papers in PubMed were selected and randomly
assigned for evaluation by one or more of 17 participating
reviewers. Gene annotations were primarily performed by a

Table 1

Transcription factor data resources

Resource Organism Reference/URL

Human KZNF Gene Catalog Human Huntley et al. (2006) [68]/[69]

Database of bZIP Transcription Factors Human Ryu et al. (2007) [70]/[71]

The Drosophila Transcription Factor Database Fly Adryan et al. (2006) [13]/[72]

wTF2.0: a collection of predicted C. elegans transcription factors Worm Reece-Hoyes et al. (2005) [73]/[74]
Genome Biology 2009, 10:R29



http://genomebiology.com/2009/10/3/R29 Genome Biology 2009,     Volume 10, Issue 3, Article R29       Fulton et al. R29.3
single reviewer, with the exception of 20 genes assigned to
multiple reviewers for initial training purposes and 50 genes
assigned to pairs of reviewers for a quality assurance assess-
ment. In total, 1,058 genes (Table 2) have been reviewed. For
each candidate, a TF confidence judgment was assigned
(Table 3) based on the literature surveyed. Annotation of each
TFC required evidence of transcriptional regulation and/or
DNA-binding (for example, a reporter gene assay and/or
DNA-binding assay). A text summary of the experimental evi-
dence was extracted and entered by the reviewer, along with
the PubMed ID, the species under study, and the reviewer's
perception of the strength of the evidence supporting their
judgment. Although reviewers were not obligated to continue
beyond two types of experimental support, they were encour-
aged to review multiple papers where feasible. Based on their
literature review, annotators were required to classify their
determination of each TFC into a positive (TF gene or TF gene
candidate), neutral (no data or conflicting data) or negative
group (not a TF or likely not). Of the 1,058 TFCs reviewed,
83% were found to have sufficient experimental evidence to
be classified either as a TF gene or as a TF gene candidate.

To simplify data collection and curation, we focused our liter-
ature evidence collection and annotation efforts on mouse
genes. However, literature pertaining to mouse genes and
their human (or other mammalian) orthologs was used inter-
changeably as evidence for the annotations. Roughly 83% of
the annotation literature evidence surveyed was based on a
combination of mouse and human data, with roughly equal
numbers of papers pertaining to each of these species. Mouse
TF genes were associated with their putative human ortholog
using the NCBI's HomoloGene resource [16]. With the excep-
tion of 40 mouse genes, putative ortholog pairs were matched
using defined HomoloGene groups. All but 13 of the remain-
ing 40 were mapped using ortholog relationships in the
Mouse Genome Database [17]. Each gene's predicted human
ortholog is included in the download data and in the pub-
lished wiki data.

Depending upon the subset of available papers reviewed for a
given TFC, two curators could arrive at different judgments.
To ascertain the consistency and quality of our reviewing
approach and judgment decisions, we randomly selected 50
genes for re-review and assigned each to a second expert
(Tables S1 and S2 in Additional data file 1). Out of the 100
annotations (2 reviews each for 50 genes), 37 paired gene

judgments (74 annotations) were concordant and 13 paired
gene judgments (26 annotations) were discordant. Examina-
tion of the discordant pairs suggested that review of different
publications may have produced the disagreement in annota-
tion. To further evaluate this assumption, we extracted a non-
quality assurance (non-QA) sample of multiple annotations
where different reviewers curated the same genes or gene
family members using the same articles (Table S3 in Addi-
tional data file 1) and found that these curation judgments
were in perfect agreement. Under the assumption that judg-
ment conflicts identified in the QA sample would be resolved
in favor of one of the assigned judgment calls, we conclude
that 13% of judgments may be altered after additional anno-
tation, suggesting that a system to enable continued review
would be beneficial.

Since mouse and human TFs have been evolutionarily con-
served among distantly related species [18], we assessed the
coverage of our curated TF collection by comparing it with a
list of expert annotated fly TFs documented in the FlyTF data-
base [13]. Over half (443 of 753) of the FlyTF genes were
found in NCBI HomoloGene groups, producing 184 fly TF-
containing clusters that also contained mouse homologs.
More than 85% (164 of 184) of these homologous TF genes
were in the UPTF set. Inspection of the 20 putative mouse
homologs of fly TFs absent from the UPTF set led to the inclu-
sion of 5 genes in both the UPTF and the TFC sets for future
curation, while there were no published studies involving the
mammalian proteins for the remaining 15 genes. We also
assessed TFCat's coverage by comparing it with a classic col-
lection of TFs prepared prior to the completion of the mouse
genome [6]. After mapping 506 TFs to Entrez Gene identifi-
ers, we found that 463 were present in the UPTF and 423
were members of the TFC gene list. The remaining 43 genes
were added to the UPTF and the TFC list was extended to
include 83 additional genes. From these analyses, we con-
clude that TFCat contains a large majority of known TFs.

Identification and classification of DNA binding 
proteins
Genes positively identified as TFs were categorized using a
taxonomy to document their functional properties identified
in the literature review (Table 4). Notably, 65% (571 of 882)
of the genes judged as TFs were reported to act through a
DNA binding mechanism and 94% (535 of 571) of these DNA-

Table 2

TFCat catalog statistics

Total number of genes annotated 1,058 100%

Proportion of genes with positive TF judgments 882 83%

Proportion of positive TFs with DNA-binding activity 571 65%

Proportion of DNA-binding TFs that are (double-stranded) sequence-specific 535 94%
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binding TFs were found to act through sequence-specific
interactions mediated by a small number of protein structural
domains (Table 5).

Members of a DNA-binding TF family share strongly con-
served DNA binding domains that, in most cases, have over-
lapping affinity for DNA-sequences; therefore, a prediction of
a TF binding site can suggest a role for the family but does not
implicate specific family members. As such, a TF DNA-bind-
ing classification system is an essential resource for many
promoter sequence analyses in which researchers should pri-
oritize potential trans-acting candidates from a set of equally
suitable candidate TFs within a structural class. Capitalizing
on large-scale computational efforts for the prediction of pro-
tein domains [11,12,19-21], we analyzed each of the TFCat
DNA-binding TF protein sequences with the full set of PFAM
and Superfamily HMM domain models to predict DBD struc-
tures. A total of 20 Superfamily structure types were identi-
fied in our set, along with 54 PFAM DBD models (Table S4 in
Additional data file 1). Where possible, we linked each dou-
ble-stranded DNA-binding TF to a family within an estab-
lished DNA-binding structural classification system [15] that
was developed initially to organize the DNA-bound protein
crystal structures found in the Protein Data Bank (PDB) [22].
In light of more recent studies, along with a modification of
classification requirements (see Materials and methods), an
additional set of 16 DBD family classes were added to the sys-
tem to map domain structures (Table S5 in Additional data
file 1).

The DNA binding domain analysis offers some noteworthy
observations. The homeodomain-containing genes are prom-
inently represented in our set, comprising 24% (131 of 545) of
the classified DBD TFs and 16% of all predicted domain
occurrences. The beta-beta-alpha zinc-finger and helix-loop-
helix TF families account for 14% (79 of 545) and 13% (71 of
545) of the classified genes, respectively. Given the abun-
dance of zinc-finger proteins in the eukaryotic genomes [23]
and recent predictions that this DNA-binding structure
makes up a significant portion of all TFs [10], this class may
be under-represented. On the other hand, since zinc-finger
containing genes are involved in a wide variety of functions,
the number of predicted zinc-finger proteins that possess a
TF role may be overestimated. In addition, it is likely that cer-
tain families of TFs, with central roles in well-studied areas of
biology, have been more widely covered in the literature,
which may account for the prevalence of literature support for
homeodomain TFs.

The majority (392 of 545) of the classified DBD TFs in our list
contain a single DNA interaction domain; however, a notable
portion (145 of 545) of genes belonging to just a few protein
families contain more than one instance of its designated
DBD structure. These multiple instances predominantly
reside in TFs containing zinc-finger, helix-turn-helix, and
leucine zipper domains (Table S6 in Additional data file 1).
While most TFs contained single or multiple copies of a single
DNA binding motif, our predictions identified eight TFs with
two distinct DBDs (Table S7 in Additional data file 1). We

Table 3

TFCat judgment classifications

Judgment classification Number of annotations % of annotations

TF gene 733 61.9

TF gene candidate 256 21.7

Probably not a TF - no evidence that it is a TF 41 3.5

Not a TF - evidence that it is not a TF 30 2.5

Indeterminate - there is no evidence for or against this gene's role as a TF 114 9.6

TF evidence conflict - there is evidence for and against this gene's role as a TF 10 0.8

Table 4

TFCat taxonomy classifications

Taxonomy classification Number of annotations % of annotations

Basal transcription factor 39 3.7

DNA-binding: non-sequence-specific 30 2.9

DNA-binding: sequence-specific 591 56.5

DNA-binding: single-stranded RNA/DNA binding 20 1.9

Transcription factor binding: TF co-factor binding 315 30.1

Transcription regulatory activity: heterochromatin interaction/binding 51 4.9
Genome Biology 2009, 10:R29
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removed the second zinc finger-type domain prediction for
two of the genes (Atf2 and Atf7) as this domain is character-
ized as a transactivation domain in Atf2 [24] and may have a
similar function in family member Atf7. All other predicted
gene domains were retained, based on literature that sup-
ported their activity or failed to support their removal. Four

PFAM DBD models detected in eight proteins are not repre-
sented by a solved structure and, therefore, could not be
directly appointed in the classification system (see Table 5,
Protein group 999). In addition, three nuclear factor I (NFI)
proteins were annotated with DNA-binding evidence and
predicted to contain a SMAD MH1 DBD. Interestingly, a

Table 5

DNA-binding TF gene classification counts

Protein group Protein group description Protein family Protein family description Gene count Predicted occurrences

1.1 Helix-turn-helix group 2 Homeodomain family 131 160

1.1 Helix-turn-helix group 100 Myb domain family 7 16

1.1 Helix-turn-helix group 109 Arid domain family 5 5

1.1 Helix-turn-helix group 999 No family level classification 2 2

1.2 Winged helix-turn-helix 13 Interferon regulatory factor 7 7

1.2 Winged helix-turn-helix 15 Transcription factor family 10 11

1.2 Winged helix-turn-helix 16 Ets domain family 23 23

1.2 Winged helix-turn-helix 101 GTF2I domain family 2 12

1.2 Winged helix-turn-helix 102 Forkhead domain family 26 26

1.2 Winged helix-turn-helix 103 RFX domain family 4 4

1.2 Winged helix-turn-helix 111 Slide domain family 1 1

2.1 Zinc-coordinating group 17 Beta-beta-alpha-zinc finger family 79 450

2.1 Zinc-coordinating group 18 Hormone-nuclear receptor family 43 43

2.1 Zinc-coordinating group 19 Loop-sheet-helix family 1 1

2.1 Zinc-coordinating group 104 GATA domain family 7 12

2.1 Zinc-coordinating group 105 Glial cells missing (GCM) domain family 2 2

2.1 Zinc-coordinating group 106 MH1 domain family 3 3

2.1 Zinc-coordinating group 114 Non methyl-CpG-binding CXXC domain 2 4

2.1 Zinc-coordinating group 999 No family level classification 2 2

3 Zipper-type group 21 Leucine zipper family 41 64

3 Zipper-type group 22 Helix-loop-helix family 71 71

4 Other alpha-helix group 28 High mobility group (Box) family 24 28

4 Other alpha-helix group 29 MADS box family 4 4

4 Other alpha-helix group 107 Sand domain family 3 3

4 Other alpha-helix group 115 NF-Y CCAAT-binding protein family 2 2

5 Beta-sheet group 30 TATA box-binding family 1 2

6 Beta-hairpin-ribbon group 34 Transcription factor T-domain 11 11

6 Beta-hairpin-ribbon group 108 Methyl-CpG-binding domain, MBD family 2 2

7 Other 37 Rel homology region family 10 10

7 Other 38 Stat protein family 6 6

7 Other 110 Runt domain family 3 3

7 Other 112 Beta_Trefoil-like domain family 2 2

7 Other 113 DNA-binding LAG-1-like domain family 2 2

8 Enzyme group 47 DNA polymerase-beta family 1 7

999 Unclassified structure 901 CP2 transcription factor domain family 3 3

999 Unclassified structure 902 AF-4 protein family 1 1

999 Unclassified structure 903 DNA binding homeobox and different 
transcription factors (DDT) domain family

1 1

999 Unclassified structure 904 AT-hook domain family 3 6

999 Unclassified structure 905 Nuclear factor I - CCAAT-binding transcription 
factor (NFI-CTF) family

3 3
Genome Biology 2009, 10:R29
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recent study noted that the DBDs of NFI and SMAD-MH1
share significant sequence similarity [25]. These TFs were
also assigned to their own family in the unclassified protein
group (Table 5, and Table S5 in Additional data file 1, Protein
group 999 and Protein family 905). A group of ten literature-
based DNA-binding TFs had no predicted DBDs (Table S8 in
Additional data file 1). The absence of detected DBDs may be
due, in part, to the limited sensitivity of the models. For
example, the Tcf20 gene (alias Spbp) purportedly contains a
novel type of DBD with an AT hook motif [26] that was not
predicted by the corresponding AT hook PFAM model.
Restricted model representation is also likely the reason for
the missing domain predictions of the C4 zinc finger domain
in the Nr0b1 gene and the basic helix-loop-helix (bHLH)
domain in the Spz1 gene. Similarly, four DBDs detected with
protein group class-level Superfamily models (specifically for
zinc coordinating and helix-turn-helix models) could not be
further delineated to a protein family level assignment (Table
S9 in Additional data file 1), suggesting that their sequences
deviate from the family-specific properties represented in
PFAM. It is quite possible that there remain to be discovered
domains involved in DNA binding by human and mouse TFs.

Most TF DNA-protein interactions occur when the DNA is in
a double-stranded state; however, a small number of TF pro-
teins preferentially bind single-stranded DNA [27,28]. We
identified in the literature review a set of 16 single-stranded
DNA-binding TFs, of which 12 contain HMM-predicted pro-
tein domains that are characterized as single-stranded RNA-
DNA-binding (Table S10 in Additional data file 1). There may
be other DBD TFs in our list that act on both single-stranded
DNA and double-stranded DNA but were not classified in the
single-stranded DNA DBD taxonomy because this property
was not specifically characterized in the literature reviewed.
The distinction and overlap between single-stranded DNA
and double-stranded DNA binding TFs warrants future atten-
tion.

Generation and assessment of mouse-human TF 
homology clusters to predict additional putative 
TFs
Since a transcriptional role can be inferred for closely related
TF homologs [7,29-31], researchers interested in the analysis
of gene regulatory networks would benefit from access to a
broad data collection of both experimentally validated TFs
and their homologs. The curated TF gene list was used to
identify putative mouse TF homologs in the genome-wide
RefSeq collection that have not yet been annotated in our cat-
alog or that were not evaluated because they lack PubMed lit-
erature evidence. While sequence homology is often used in
preliminary analyses to infer similar protein structure and
function, its success may be limited when similar protein
structures have low sequence similarity [32] or short homol-
ogous protein domains. Based on recent evidence that over
15% of predicted domain families have an average length of

50 amino acids or less [33], we evaluated whether pruning
BLAST-derived clusters using a previously published
sequence similarity metric [34] could be further improved by
explicitly including domain information. Our evaluation of
both pruning methods indicated that the inclusion of domain
knowledge improved homolog cluster content (Figures S2
and S3 in Additional data file 1). We therefore incorporated
both domain structure predictions, using HMMs, and
sequence similarity in our homology-based approach to pre-
dict additional TF genes.

The homolog prediction and clustering process yielded 227
homolog clusters containing 3,561 genes (3,419 unique
genes). The vast majority of the genes (3,284 of 3,561) are
associated with only 1 cluster each, although 128 genes were
members of 2 clusters and 7 genes were present in 3 clusters.
We also identified 72 single gene clusters (singletons), which
included 36 TF genes that had only significant BLAST
matches to themselves, 12 genes that derived BLAST hits that
did not satisfy the homolog candidate cut-offs, 21 genes with
cluster members that did not satisfy the pruning criteria, and
3 genes that had no RefSeq model sequence. While our TF-
seeded homology inference analysis used cut-offs that likely
pruned some false negatives, in an effort to emphasize specif-
icity, it is likely that these singletons represent TFs that share
common protein structural features with low sequence simi-
larity.

The curated TF set contains some proteins with properties
not commonly associated with TF function. For example, our
catalog included the cyclin dependent kinases (cdk7, cdk8,
and cdk9), which are reported to directly activate gene tran-
scription (for a review, see [35]). Therefore, the homolog
analysis of TFs identified numerous other protein kinases
that will likely have no direct involvement in transcription.
Similarly, larger clusters seeded by TFs containing other
domains not frequently associated with transcription, such as
calcium-binding, ankyrin repeats, armadillo repeats, dehy-
drogenase, and WD40, also attracted false TF predictions.

To assign a quantitative confidence metric for the large clus-
ters of TF predictions, we developed a scoring procedure
based on protein domain associations to TF activity annota-
tions from the Gene Ontology (GO) molecular function sub-
tree [36]. The cluster confidence metric was employed using
a four-tier ranking system for clusters containing more than
ten gene members (42 out of 227 homolog clusters). The
majority of these clusters (52% or 22 clusters) received high
scores, indicating that they contain a high proportion of TF
genes. Given that GO currently annotates only 39% of the TF
genes in our catalog in the TF activity node in the molecular
function subtree (Table S11 in Additional data file 1), we
expect that less frequently occurring protein domains found
in small homolog clusters may not yet be represented in GO.
Therefore, we did not analyze clusters containing fewer than
ten members and we anticipate future refinements in the
Genome Biology 2009, 10:R29
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homolog cluster confidence rankings as TF gene annotation is
expanded in GO.

We incorporated our curated set and cluster counts in an
analysis to estimate both the total number of TFs and, a
smaller subset, the number of double-stranded DNA-binding
proteins (see Materials and methods). The cluster counts
were adjusted using the observed approximate mean TF
(OAMTF) proportions associated with each rank level (Table
6) to account for false positives. From this mouse RefSeq-
based analysis, we arrived at an estimate of 2,355 DNA-bind-
ing and accessory TFs. Since peptide sequence-dependent
analyses can result in both omissions and false predictions of
homologous protein structures, readers should regard this
figure as a 'best-guess' approximation [32]. A similar analysis
conducted over the homolog clusters containing double-
stranded DNA-binding TFs resulted in an estimate of 1,510
DNA-interacting TFs. We also performed an extraction of
DBD-containing genes from the Ensembl database using the
DBDs defined in TFCat. This analysis derived a list of 1,507
putative DNA-binding TFs. These estimates agree well with
earlier publications [10,37,38].

Maintenance and access of TFCat annotation 
data
All gene annotations, mouse homolog clusters and human
orthologs are published in the TFCatWiki, which is accessible
from the TFCat portal. Each wiki article page houses the
annotation information for one gene with its content secured
against modification. Each gene article page is associated
with a discussion page, which is available for comments and
feedback by all wiki users. Wiki users can specify that they
wish to receive periodic e-mail notification of lists of gene
wiki pages and their associated discussion pages that have
been updated. Semantic features and functional capabilities
are included in the wiki implementation to facilitate easy
access to all gene annotation data.

We established a TFCat annotation feedback system work-
flow process (Figure S4 in Additional data file 1) to encourage
continuous improvement of the catalogued gene entries. An
issue tracking management system is integrated with the wiki
to capture, queue, and track feedback contributions for fol-

low-up by the wiki annotator. Wiki users may view a gene's
feedback report summaries and current workflow status
through an inquiry made available on each gene's article
page. Gene annotation changes, entered through our inter-
nally accessible TFCat annotation system, will be flagged and
forwarded to the wiki through an automated updating proc-
ess. Community members who wish to directly contribute to
the wiki contents through the backend web application (Fig-
ure S5 in Additional data file 1) may contact the authors.

The complete TF catalog resource can be downloaded from
our website [39]. The website application enables download
of the complete list or a subset of annotated genes by assigned
judgment, functional taxonomy, and DNA-binding classifica-
tion. The data extraction is run real-time against a relational
database providing access to the most current TF catalog
data.

Catalog characteristics, comparisons, and utility
The comprehensive catalog of TFs contained in TFCat pro-
vides an important resource for investigators studying gene
regulation and regulatory networks in mammals. The cura-
tion effort assessed the scientific literature for 3,230 putative
mouse and human TFs, including detailed evaluation of
papers describing the molecular function of 1,058 TFCs, to
identify 882 confirmed human and mouse TFs. Each TF was
further described within TFCat using a newly developed TF
taxonomy. DNA binding proteins, a subset of TFs, were
mapped to a structural classification system. As an aide to
researchers, an expanded set of putative TFs was generated
through a homology-based sequence analysis procedure.
Online access to the annotations and homology data are facil-
itated through a wiki system. An annotation feedback system,
linked from the wiki, enables reporting and tracking of com-
munity input. An additional website application offers capa-
bilities to extract all or a subset of the catalog data for file
download.

For many researchers, the greatest utility of TFCat is the pro-
vision of an organized and comprehensive list of DNA binding
proteins. The protein-DNA structural classification system
used to organize the DBD TFs in the catalog was originally
proposed by Harrison [40], further modified by Luisi [41] and

Table 6

Large cluster ranking criteria

Cn Rank Implication for unannotated genes in cluster Fraction of observed approximate mean TFs (OAMTF)

Cn ≥ 0.20 1 The majority of genes are likely TFs 95%

0.10 ≤ Cn < 0.20 2 A higher proportion of genes are likely TFs 75%

0.03 ≤ Cn < 0.10 3 A higher proportion of genes are likely not TFs 35%

0.00 ≤ Cn < 0.03 4 The majority of genes are likely not TFs 15%
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extended by Luscombe et al. [15]. The DBD analysis and
gene/domain counts (Table 5) confirmed that well-known
DBD families are represented. The DNA-binding classifica-
tion system was extended with new family classes to accom-
modate the majority of predicted DNA-binding structures in
our curated TF set (Table 5; Table S5 in Additional data file 1).
A new family category was included for unrepresented, dou-
ble-stranded TF protein-DNA binding mechanisms that were
supported by PDB structures or publications. Similar to the
analysis and classification performed by Luscombe et al. [15],
we added structural domain families that were characterized
by distinct DNA-binding mechanisms. However, unlike the
Luscombe et al. approach, we did not consider biological
function in our classification decisions. To preserve the prop-
erties of the system, the necessary extensions were made
within the existing protein groups.

The value in having inventories of TFs has spurred previous
efforts to compile collections of DNA-binding proteins. To
evaluate the comprehensiveness of our curated collection, we
performed a comparison with the gene annotations provided
by GO and our DBD classification analysis with domains
found in a DBD collection [42]. GO assigns molecular func-
tion labels to proteins, including functions falling under the
broad category of transcription. The challenge of annotating
all genes is daunting and, therefore, it was not a surprise that
only 39% (343) of our expert curated collection of TFs has
thus far been associated with GO terms linked to transcrip-
tion (Table S11 in Additional data file 1).

While TFCat is unique in its evidence-based approach to
identify mouse and human TFs, there are other compilations
of TF binding domain models and predictions of domain-con-
taining proteins. For example, a catalog of sequence-specific
DNA-binding TFs (which we will refer to as DBDdb) has been
compiled using HMMs to catalog double-stranded and sin-
gle-stranded sequence-specific DBDs [42]. Comparison of the
double-stranded DNA binding subdivision of TFCat with the
predictions in DBDdb highlights some key differences
between these efforts (Tables S12-S14 in Additional data file
1). For example, the TFCat DNA binding subdivision includes
only TFs with published evidence from mammalian studies,
whereas the DBDdb collection includes domain predictions
based on evidence of sequence-specific DNA binding in any
organism. While the two TF resources overlap, they serve
complementary purposes. DBDdb is a set of computational
predictions generated with protein motif models associated
with sequence-specific single or double-stranded binding
domains, while TFCat is an expert-curated, highly specific
resource that targets the organized identification of all TFs,
regardless of DNA binding, in human and mouse. For exam-
ple, the high mobility group (HMG) domain TFs, which
exhibit both specific and non-specific DNA-binding, are
excluded from DBDdb but included in TFCat. Moreover,
TFCat included only TFs with literature support in mamma-
lian cells, which excludes certain domains included in

DBDdb. For example, CG-I has been shown to regulate gene
transcription in fly [43] but not in mammals [44].

To complement our large set of curated TF proteins, we con-
ducted a sequence-based homology analysis, propagated
from our positively judged TFs, to predict additional TF
encoding genes. We applied a confidence ranking metric to
predict the number of false positives included in larger
homolog clusters (Table 6), which should be considered when
extracting un-annotated, predicted TFs. Future adaptations
of the TFCat resource could include literature-based judg-
ments of TF homolog predictions. While the homolog clusters
as provided are an essential and useful supplement to our evi-
dence-based TF catalog, future predictions may benefit from
further structure-based homology research.

Creation of a comprehensive TF catalog provides an impor-
tant first step in unraveling where, when and how each TF
acts. For example, a number of recently published genome-
scale studies constructed lists of predicted TFs prior to inves-
tigating the spatial and temporal expression characteristics of
sets of regulatory proteins [8,9,45,46], in advance of conduct-
ing a phylogenetic analysis of genes involved in transcription
[47], and as initial input to the analysis of conserved non-cod-
ing regions in TF orthologs [48]. The set of literature evi-
dence-supported TFs in TFCat will provide an important
foundation for similar future studies.

TF catalogs will become increasingly important and neces-
sary to facilitate the investigation and analysis of TF-directed
biological systems. Recent ground-breaking stem cell studies
[49,50] have shown the central role of TFs in regulating stem
cell pluripotency and differentiation. Understanding the cen-
tral role of TFs in the control of cellular differentiation has
therefore taken on increased importance. Computational pre-
dictions in regulatory network analysis of cellular differentia-
tion often highlight a pattern consistent with binding of a
structural class of TFs, but fail to delineate which TF class
member is acting. TFCat will serve as a reference and organ-
izing framework through which such linkages can progress
towards the detailed investigation of candidate TF regulators.

Materials and methods
Creation of four independent murine and human TF 
preliminary candidate data sets
Four TF collections were compiled by four independent
approaches. All data sets are available on the TFCat portal.

Dataset I
A list of 986 human genes considered 'very likely' plus 913
considered 'possibilities' to code for TFs was manually
curated in February 2004 [51] using personal knowledge
combined with information in LocusLink (now Entrez Gene),
the Online Mendelian Inheritance in Man database (OMIM)
[52], and PubMed [16]. Selection was guided by the following
Genome Biology 2009, 10:R29
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definition of a TF: 'a protein that is part of a complex at the
time that complex binds to DNA with the effect of modifying
transcription'. Inclusion was necessarily subjective for two
reasons: the definition of 'transcription factor' is difficult to
precisely constrain; and there was not enough information
available for many genes to be certain of their function. Genes
that primarily mediate DNA repair (for example, ERCC6) or
chromatin conformation (for example, CBX1) were excluded.
To be considered, a gene had to have an Entrez Gene entry
with a GenBank accession number. Text-based searches for
the terms 'transcription factor' or 'homeobox' were used to
identify Entrez Gene entries for further analysis. GO node
descriptions including the terms 'nucleic acid binding', 'DNA
binding', and 'transcription' were used as a supplement to
guide gene selection. A total of 998 TFs were present in the set
following this initial compilation. After February 2004, peri-
odic additions were made based on new reports in the litera-
ture.

Dataset II
The objective of this analysis was to identify a comprehensive
list of DBDs for TF gene candidate extraction. Firstly, the
SwissProt database [53] protein entries (obtained in April
2005) were scanned for descriptors or assigned PFAM [11]
and/or Interpro [54] domains (downloaded in April 2005)
indicating DNA-binding, DNA-dependent, and transcription.
The extracted gene set was then further extended by including
SwissProt gene entries that had assignments to the biological
process GO node GO:0006355 (regulation of DNA transcrip-
tion, DNA-dependent) and SwissProt records with text
descriptions that included JASPAR database transcription
factor binding site class names [55]. A list of unique DBDs
was compiled from this extraction. All domains were manu-
ally reviewed for evidence strongly suggesting DNA binding
and transcription factor activity using both Interpro and
PFAM domain descriptions and associated literature refer-
ences. Domains that did not meet these criteria were pruned
from the list. Both known and putative TF genes were
extracted from the Ensembl V29 database [56] using the TF
DBD PFAM-based list, yielding a set of 1,266 mouse and
1,500 human DNA-binding TF candidates.

Dataset III
GO trees were constructed for all mouse and human entries in
Entrez Gene by starting with the leaf term from gene2go [36]
(downloaded July 19th, 2005) and enumerating all parent
terms using file version 200507-termdb.rdf-xml. As we were
interested in all genes that could be involved in altering tran-
scription, genes were selected if they had any annotation
(including Inferred Electronic Annotations) to GO terms with
descriptors 'transcription regulator activity', 'transcription
factor activity' and/or 'transcription factor binding' in their
tree. We identified 970 mouse genes and 1,203 human genes
using this method. As this first extraction did not identify all
family members of a putative transcription factor, we per-
formed an additional extraction using the term searches

'DNA binding' and 'transcription factor' against the domain
information in the Interpro database [54]. The resulting
genes were mapped to Entrez Gene entries using the Affyme-
trix annotation for the MOE-430 v2 chip. Merging the two
lists and removing duplicate entries resulted in 2,131 mouse
and 2,900 human candidate genes involved in transcriptional
regulation.

Dataset IV
We assembled approximately 350,000 isoforms representing
approximately 48,000 known and predicted protein-coding
mouse genes by mapping seven collections of known and pre-
dicted mRNAs to the mouse chromosomes, and clustering
them on the basis of overlap (see [57] for source sequences, a
representative mRNA from each cluster, and a description of
the clustering method). We then assembled 36 known tran-
scription-factor DBDs from PFAM and SMART [58], and
screened the approximately 350,000 isoforms using the
HMMER software [59] to identify approximately 2,500
known or predicted genes containing at least one of the 36
domains. To map the International Regulome Consortium
entries to Entrez Gene, the sequences [60] were compared
with RefSeq sequences using BLAST. Only sequences with an
expectation value of at most 10-05 were selected and subse-
quently mapped to Entrez Gene using the Gene2Refseq table.

Standardizing TF gene candidate annotation
A website annotation tool and MySQL database were devel-
oped to standardize and centralize the annotation effort (Fig-
ure S5 in Additional data file 1). TF candidate judgments and
a high-level taxonomy classification system were established
(Tables 3 and 4) for this web-based annotation process. The
secure website enables access to only those genes assigned to
each annotator. Each gene annotation required input of text
summarizing the journal article evidence that, to some
degree, supported or refuted the judgment of a gene (or the
gene's ortholog in a closely related species) as a TF. One or
more PubMed journal articles were summarized in the
reviewer comments and a final judgment and general taxon-
omy classification were assigned.

Ten trial genes, randomly selected from the list of TFCs, were
assessed by four reviewers. The set of annotations for each
trial gene was evaluated for literature evidence selected and
annotation content and formatting. This evaluation was used
to develop annotation evidence guidelines and a suggested
general documentation format for the annotation process,
which was included in the annotator help guidelines.

Selection and annotation of a subset of TF candidates
The mouse TF candidate datasets were merged, using
mapped NCBI Entrez Gene identifiers, into a single non-
redundant dataset. Gene2PubMed file counts were extracted
and merged by Entrez Gene ID. Genes were manually pre-
curated for evidence supporting TF activity by scanning NCBI
PubMed abstracts (where available) using both standard gene
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symbols and aliases and examining GeneRIF entries for each
gene in the dataset. Genes with literature evidence suggesting
TF function were included in the list of TFCs to be annotated.
A set of TFCs associated with two or more PubMed abstracts
(based on Gene2Pubmed data and excluding the large anno-
tation project articles) were extracted from the TFC list and
randomly assigned to each of 17 reviewers based on pre-
determined reviewer allocation counts. Each TFC was
reviewed and judged by the assigned reviewer for TF evidence
in the literature as described above. We also extracted and
entered the PubMed information accompanying 22 TF DNA-
binding profiles from the JASPAR database [55].

During this research project, the Entrez Gene numbers were
maintained using the NCBI Gene History file. TFCat gene
identifiers were maintained (changed or merged or deleted) if
a corresponding change was recorded in this file.

Randomly sampled quality assessment and auditing of 
TF annotations
TF gene candidates were randomly selected from each
reviewer-assigned gene set based on the assigned proportions
across all reviewers to form a list of 50 genes for annotation
QA testing. Each gene was allocated to two reviewers for
annotation in a blind QA test. The QA gene annotations were
extracted and reviewed for TF judgment and taxonomy clas-
sification consistency. A second round of annotation auditing
was performed to ensure consistency in the recorded annota-
tion data. All annotations were examined for alignment of
PubMed evidence reviewed and assigned judgment and func-
tional taxa. Misaligned annotations were forwarded to the
annotator for review and revision.

TFC quality assurance comparisons
To assess sensitivity (coverage) in our initial curated TF list,
we compared our gene set with TF genes identified in two TF
collections. Approximately 800 gene symbols listed in a TF
textbook index, authored by Joseph Locker [6], were manu-
ally reviewed and mapped, where possible, to 506 mouse Ent-
rez Gene identifiers using gene descriptions and citations
provided in the text. A TF comparison was also performed
against the list of annotated fly TFs found in the FlyTF data-
base [13] by mapping, where possible, FlyBase identifiers to
NCBI gene identifiers to locate their corresponding mouse
homolog in a HomoloGene group [16].

Upon completion of the TFCat curation phase, we performed
comparisons with GO [36] and the DBD Transcription Factor
Prediction Database resource [42]. To compare our curated
set with GO, we developed software to enumerate the number
of our TF genes in the GO molecular function subtree under
the 'transcription regulator activity' node. We used the Mouse
Xref file found in the GO Annotation Database [61] to map the
TF Entrez gene numbers to the gene identifiers available in
the GO database. The DBD resource comparison involved
downloading the mouse (Mus musculus 49_37 b) and human

(Homo sapiens 49_36 k) predicted TF sets and development
of software to extract all DBD models identified in those
records. We then compared the domains found in the DBD
mouse/human set with those domain models annotated as
DNA-binding in our curated TF set.

Human-mouse ortholog assignment
Human-mouse predicted orthologs were assigned using
NCBI HomoloGene groups [16] with one-to-one relationships
between the mouse and human genes. Those few genes that
did not have a one-to-one relationship were manually
inspected and, when available, a preference was given to the
human non-predicted RefSeq gene model or an assignment
was made using the closest Blast alignment scores between a
mouse and human gene pair. Where HomoloGene entries
were not available for both human and mouse, ortholog
assignments identified in the Mouse Genome Database were
used.

TF DNA-binding structure analysis and classification
A DNA-binding protein classification system, an extension of
the work from Luscombe et al. [15], was utilized to classify all
genes judged as TFs with DNA-binding activity. Structural
assignments were made utilizing the HMMER software to
enumerate a full set of Superfamily (SCOP-based) HMMs [12]
with a threshold of 0.02 and PFAM HMMs [11] for each gene
using gathering threshold cut-offs and a calculated model sig-
nificance value ≤ 10-2. The Superfamily domain sequences
predicted in the TF gene set were subjected to a PFAM HMM
analysis to identify PFAM domain models that are satisfied by
the same sequences (Table S4 in Additional data file 1). Both
redundant and non-redundant models were then mapped to
the DNA-binding structure classification using model struc-
tural descriptions and based on review of related literature for
PDB entries that contain these domains.

The DNA-binding classification was extended with additional
family classes to accommodate the predicted DNA-binding
structures encountered in the curated set of DBD TFs (Table
5; Table S5 in Additional data file 1). To evaluate the struc-
tural similarity of DBDs, we performed alignments using the
protein structure comparison web tool Secondary Structure
Matching (SSM) [62]. We identified PDB entries for each of
the new DBD families, with a preference for DNA-bound
structures. The DBD chains of each PDB entry were aligned
with the entire PDB archive (incorporating lowest acceptable
matches of 40% and defaulting the remaining parameters) to
identify similar DBD structures based on Q-score metric clus-
tering results. A new protein family classification was estab-
lished if the structure aligned only to itself or was clustered
(by Q-value) within its own set of family class structures. In a
few cases, where a structure aligned reasonably well with
another family in the classification system, PubMed articles
were consulted to derive a final decision and any borderline
cases were noted and described in the family class description
text (Table S5 in Additional data file 1). Each DNA-binding TF
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was then assigned to one or more DNA-binding families in
the classification system if it was predicted to contain the
related DBD structure.

Identification of homolog sets for mouse TF genes
A homolog analysis process was implemented that considers
both sequence similarity and predicted protein domain com-
monality, and uses a computationally simplified clustering
approximation, loosely motivated by proportional linkage
clustering [63]. We initially identified sequence similarity
using BLASTALL [64] analysis over a full mouse protein Ref-
Seq [65] dataset with an expect value cut-off of 10-3 and enu-
merated all HMM PFAM domains over an extracted full
representation of the mouse genome using NCBI RefSeq
sequences. To extract putative homolog candidates for each
TF gene, we incorporated a metric, originally proposed by Li
et al. [34], which considers the ratio of aligned sequence
length to the entire length of each sequence. Given the focus
on mouse genes, the formula for this metric, which we will
refer to as metric I's , was revised to utilize sequence similarity
rather than identity. Our metric is computed as:

- where S is the proportion of similar amino acids (as defined
by the Blosom62 matrix) across the hit, Li is the length of
sequence i (i is the query or hit sequence), and ni is the
number of amino acids in the aligned region of sequence i. We
considered only homolog candidates that had a maximum hit
significance of 10-4 and allowed for a high level of sensitivity
by requiring that the computed I's values were at least 0.06.
We did not include any genes that had been reviewed and
deemed not TFs.

Our survey of a set of TF gene family sequence characteristics
suggested that some known DBDs were contained in a small
fraction of the total TF protein sequence. However, similarly
short alignments between a TF gene and other hit sequences
(low I's values) can yield a significant amount of false posi-
tives. We used well-documented SRY-related HMG-box tran-
scription factor (Sox) and Forkhead transcription factor (Fox)
TF families (Tables S15 and S16 in Additional data file 1) to
evaluate two cluster pruning strategies and selected an
approach that increased cluster specificity (proportion of
members of a test set in a cluster) without decreasing cluster
sensitivity (number of cluster members that are members of
a test set). To evaluate cluster pruning of the Blast-based clus-
ters using strictly an I's threshold method, we computed clus-
ter sensitivity and cluster specificity over an increasing range
of I's values, using the Sox and Fox validation sets (Figures S2
and S3 in Additional data file 1). An I's value was computed
between the query sequence and every member in the cluster
and a member (gene) was pruned if the I's did not satisfy a
cut-off threshold. Cluster sensitivity and cluster specificity
were computed for the range of I's values and compared. We
then assessed a second cluster pruning approach over a suc-

cessive range of I's values requiring that all predicted domains
in a cluster member (gene) match the query gene or, when
this criteria could not be met, a particular I's value threshold
be satisfied (Figures S2 and S3 in Additional data file 1).
Inclusion of a domain-based method as a primary criteria for
pruning with the incorporation of a stricter I's value criteria
when the domains did not match, in most cases, maintained
cluster sensitivity while preserving or improving cluster spe-
cificity. Importantly, higher cluster sensitivity and cluster
specificity levels enabled comprehensive Sox HMG and Fox
Forkhead families to emerge when we applied a proportional
linkage clustering approximation approach to merge the
overlapping clusters (Figures S6 and S7 in Additional data file
1). While the sole application of an I's value as a pruning cri-
teria may not generate comprehensive TF family clusters
(compare panel B in Figures S6 and S7 in Additional data file
1), our analyses suggested that this metric on its own, imple-
mented with higher parameter values, is useful for identifying
closely related subfamily members (Figure S8 in Additional
data file 1). Motivated by these assessment results, we imple-
mented a cluster pruning step that required that either all
predicted PFAM enumerated domains in the TF gene be
matched in a homolog candidate or that the I's value between
the query TF gene and its homolog hit be no smaller than 0.21
with a sequence similarity no less than 30%. This resulted in
830 overlapping sets consisting of 48,555 members in total.

To cluster and merge the sets, we implemented a method that
considers a proportional linkage median-based relationship
between sets. The algorithm performed iterations of set
merges, combining two sets S and T if at least half of the genes
in the smaller set matched genes in the larger set, that is, if
there were |(min(|S|,|T|))/2| matching genes. To mitigate
the cluster attraction strength properties of initially larger
and possibly noisier clusters, the merge process iteratively
considered and executed merging over smaller to progres-
sively larger cluster cardinalities using increments of 10.
Cluster membership attained a steady-state convergence
within 700 iterations.

A cluster confidence metric was developed to measure the
number of potential false positives in a large (cardinality > 10)
homolog cluster using predicted domain content. We mapped
the mouse genes with the enumerated PFAM domains to
terms in the GO molecular function subtree. We tallied the
number of times a specific domain is contained within a gene
annotated to the transcription regulator activity node and its
child nodes versus the number of times the domain is found
in a gene annotated to some other activity node to compute a
probability of a particular domain Pd being associated with TF
function. The majority of GO annotation evidence codes were
included, with the following exceptions: IEA (Inferred from
Electronic Annotation), ISS (Inferred from Sequence or
Structural Similarity), and RCA (Inferred from Reviewed
Computational Analysis). To evaluate cluster confidence Cn,
we first enumerated the number of genes that contain a spe-

′ = ×I S Min n L n Ls ( / , / )1 1 2 2
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cific domain within a cluster Cd and the number of genes in
each cluster Cg to weight a domain's association to TF activity:

- and, secondly, included those cluster domains that satisfy D
= {Cd ≥ LCg/4O} to compute Cn, using the following equation:

All cluster confidence values and cluster membership were
reviewed and qualitatively assessed based on the proportion
of verified TFs and binned into four partitions with associated
confidence rankings (Table 6).

To derive an estimate for the total number of TFs in the
human and mouse species, we computed the number of
known and predicted TF homologs and adjusted this amount
by the cluster rank OAMTF (Table 6) to obtain a prediction of
2,355 DNA-binding and accessory TFs. To obtain a ballpark
figure for a total number of DBD TFs, we performed a sepa-
rate homolog clustering analysis seeded by genes curated
with double-stranded DNA binding activity and reduced the
counts using the OAMTF proportions by cluster rank, where
applicable. The homolog-based analysis generated an esti-
mate of 1,510 DBD TFs. To support our DBD homology-based
count analysis, we developed PERL scripts to query the
mouse Ensembl mus_musculus_core_47_37 and
ensembl_mart_47 databases for extraction of predicted
DNA-binding TFs using the identified PFAM DBDs in TFCat.
This extraction produced a total of 1,507 Ensembl mouse
genes (1,416 records supported by Mouse Genome Informat-
ics (MGI); 23 RefSeq and Entrez Gene sourced records; 29
Uniprot/SPTREML predicted genes; and 39 Ensembl pre-
dicted gene models).

Website download access, wiki publication and 
annotation feedback
The MediaWiki software was used to implement the TFCat-
Wiki, with some modifications and additions made to the
base software code and configuration files. We included the
Semantic MediaWiki [66] extension to facilitate access and
searching. Each article page contains the annotation informa-
tion for one gene and has been configured to disallow edits,
although enabling all associated discussion pages for contri-
bution. Software was developed to extract data from the
TFCat wiki database to create the wiki pages.

We implemented a feedback tracking function using the Man-
tisBT software system [67], a well-established, open-source,
issue monitoring system, to accommodate tracking and fol-
low-up management of TFCat feedback contributions. PHP
interfaces and software were developed to populate Medi-

aWiki user information to the feedback system and provide
direct query access to feedback records by gene. We also inte-
grated new data update flagging mechanisms into our inter-
nally available TFCat annotation software tool to identify new
or modified gene annotation information that requires re-
population to the gene wiki page.

The MediaWiki software includes a Watch function, which
issues individual e-mails when information is changed on a
wiki page by a wiki user. We developed an e-mail feature that
optionally provides lists of wiki pages that have been changed
via the backend auto-update process. To enable this feature,
we developed an external PHP program (MediaWiki) hook
and an associated MySQL database table to solicit user entry
and capture of desired e-mail parameter options and notifica-
tion frequency. An e-mail notification process was developed
that issues e-mails for wiki content updates based on user-
selected parameters.

Abbreviations
DBD: DNA-binding domain; DBDdb: DBD Transcription
Factor Database; Fox: Forkhead transcription factor family;
GO: Gene Ontology; HMG: high mobility group; HMM: hid-
den Markov model; NFI: nuclear factor I; OAMTF: observed
approximate mean TF; PDB: Protein Data Bank; QA: quality
assurance; Sox: SRY-related HMG-box transcription factor
family; TF: transcription factor; TFC: transcription factor
candidate; UPTF: union of putative TFs.

Authors' contributions
Initial putative TF datasets were created by JR (dataset I),
DLF (dataset II), SS (dataset III), and GB (dataset IV). SS cre-
ated the merged dataset and performed an NCBI mapping for
dataset IV. DLF designed, implemented, and populated the
centralized TFCat database and annotation website tool. SS
provided some text data extractions for the TFCat database.
RS and DLF precurated the unified dataset. JR, RS, DLF, SS,
GB, TH, and WWW acted as the core group of gene annota-
tors. DLF performed the TF reference collection compari-
sons. Annotation audits were performed by DLF, WWW, RS,
and SS. DLF established and implemented the structural clas-
sification mapping methodology and performed the analysis
of DNA-binding structures to extend the DNA-binding struc-
tural classification. DLF devised and implemented the
homolog analysis and gene clustering process. DLF, SS, and
RS worked on the wiki gene page format. DLF designed,
developed and implemented the wiki. DLF developed and
implemented the website TFCat data download portal.
WWW, JR, and RS provided co-supervision for this project,
with the implementation led by DLF. DLF wrote the draft of
the manuscript, with further modifications and edits contrib-
uted by WWW, RS, JR and SS. All authors read and approved
the final manuscript.

N
Cd
C g

Pd d=

C

N di
i D

Dn = ∈
∑

Genome Biology 2009, 10:R29



http://genomebiology.com/2009/10/3/R29 Genome Biology 2009,     Volume 10, Issue 3, Article R29       Fulton et al. R29.13
Additional data files
The following additional data is available with the online ver-
sion of this paper: a PDF that includes Tables S1-S16 and Fig-
ures S1-S8 (Additional data file 1).
Additional data file 1Tables S1-S16 and Figures S1-S8Table S1: gene annotation judgment summary counts from the quality assurance assessment process. Table S2: quality assurance gene pair judgment annotations. Table S3: independent annota-tions of TFs when the same PubMed evidence was used. Table S4: PFAM and Superfamily group model DBD predictions for the annotated TF genes. Table S5: DNA-binding classification exten-sions added to the Luscombe et al. [15] classification system. Table S6: protein class counts of genes predicted to contain multiple instances of the same DBD. Table S7: DNA-binding TFs predicted to contain two different DNA-binding classes. Table S8: DNA-bind-ing TFs that do not contain a detected DBD. Table S9: DNA-bind-ing TFs with no detected protein family-level domain. Table S10: annotated single-stranded DNA-binding TFs. Table S11: summary of the counts enumerated in the TFCat comparison with GO. Table S12: summary of the counts enumerated in the comparison of TFCat classified HMM DBDs with the DBD database (DBDdb). Table S13: Superfamily DBD comparisons with DBDdb. Table S14: PFAM DBD comparisons with DBDdb. Table S15: Fox family test set genes. Table S16: Sox family test set genes. Figure S1: Venn dia-gram of the overlap of the four initial TF datasets. Figure S2: plots for the analysis of cluster pruning methods using the Fox test set. Figure S3: plots for the analysis of cluster pruning methods using the Sox test set. Figure S4: TFCat annotation workflow implemen-tation. Figure S5: screen shots of the backend web-based TFCat annotation tool. Figure S6: Sox-containing cluster membership for the evaluated cluster pruning methods. Figure S7: Fox-containing cluster membership for the evaluated cluster pruning methods. Figure S8: an example of pruned Fox-containing clusters generated using the I's only method using a threshold of 0.21.Click here for file
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