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Abstract

Coding nucleotide sequences contain myriad functions independent of their encoded protein
sequences. We present the COMIT algorithm to detect functional noncoding motifs in coding
regions using sequence conservation, explicitly separating nucleotide from amino acid effects.
COMIT concurs with diverse experimental datasets, including splicing enhancers, silencers,
replication motifs, and microRNA targets, and predicts many novel functional motifs. Intriguingly,
COMIT scores are well-correlated to scores uncalibrated for amino acids, suggesting that
nucleotide motifs often override peptide-level constraints.

Background

Over the past few years, coding nucleotide sequences have
been shown to contain a myriad of functions independent of
their encoded protein sequences [1]. Synonymous sites (sites
in coding sequence that can be changed without altering the
encoded amino acid sequence) that influence RNA localiza-
tion [2], translation efficacy [3], mRNA splicing [4], mRNA
stability [5], accessibility to the translation machinery [6], or
even the structure of the folded protein [7] have been found.
Meanwhile, theoretical studies have shown that the genetic
code is optimal for the inclusion of noncoding functional sig-
nals within genes [8]. Such findings suggest that a tremen-
dous amount of noncoding functional information may be
contained in coding sequences. Sequences functional at the
nucleotide level could be of critical importance for post-tran-
scriptional regulation, which remains poorly understood [9-
11]. However, computational methods, and in particular
motif-detection methods, to identify such functions are lack-
ing. In this work we present a novel approach to detect func-
tional motifs in coding sequences using sequence
conservation, solving the problem of how to separate noncod-

ing from protein-coding effects, and we investigate the impli-
cations for eukaryotic gene regulation.

To detect noncoding functional signals, the associated con-
servation signatures must be distinguished from those engen-
dered by the amino acid sequence. A classic method has been
to separate cross-species substitution rates into the synony-
mous substitution rate K [1,12] and the nonsynonymous sub-
stitution rate K, with low K values indicating the presence of
noncoding selection [13]. However, K; measurements have
typically been evaluated on complete genes, an approach that
does not provide information about recurrent sequence
motifs. Application of K; methods to motifs is hampered by
the variable codon frame problem - namely, that instances of
a sequence motif occur in varying codon frames in codons for
a variety of amino acids. Also, different motifs will in general
have different abundances. Because of this, for a fixed P-value
each motif will have a different threshold deviation from the
genome-average K. This prevents one from effectively evalu-
ating a motif based solely on its K.
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Some methods to detect unusually conserved motifs in inter-
genic sequence exist (for example, [14-16]), but because they
do not account for the amino acid sequence they are funda-
mentally inappropriate for coding regions. A few studies of
motif conservation have attempted to correct for the amino
acid sequence [17,18], but these have been limited in scope.
For example, Goren et al. [18] reported a method of identify-
ing conserved dicodons, a special case that ignores the vast
majority of motifs subject to the variable codon frame prob-
lem. Forman et al. [17] devised a detection algorithm that
does not penalize nonconserved copies of a motif, hindering
its applicability for motifs with large numbers of both con-
served and nonconserved instances. The algorithm also
requires conservation across 17 species, making it unsuitable
for lineage-specific analysis, despite evidence that much gene
regulation is likely to be lineage-specific [19,20].

In this work, we present a rigorous, novel computational algo-
rithm, COMIT (for Coding Motif Identification Tool), to iden-
tify noncoding motifs in coding sequences using sequence
conservation that overcomes the limitations of previous
approaches. COMIT calculates a z-score of sequence conser-
vation for each motif, corrects for the amino acid sequence in
each species, and solves the variable codon frame problem.
The z-score takes into account both conserved and non-con-
served instances, allowing one to distinguish unusual motifs
from as few as two species. To illustrate the power of the
approach, we compare COMIT motif scores to maximum like-
lihood K values, which we calculate for each motif based on
the classic Li method originally designed for genes [21].

Application of COMIT reveals large numbers of noncoding
motifs under natural selection in mammalian coding
sequences. These results are robust - motifs with strong
COMIT conservation scores also show strong sequence con-
servation via K. In addition, each motif's conservation in one
mammalian lineage strongly correlates with its conservation
in others, which we demonstrate among the mouse-rat,
human-dog, and elephant-tenrec lineages. Intriguingly, com-
parison of COMIT scores to scores calculated without cali-
brating for amino acids suggests that noncoding motifs can
often overrule peptide-level constraints.

COMIT conservation scores have strong quantitative agree-
ment with diverse experimental assays. For experimentally
tested exonic splicing enhancer (ESE) motifs, we observe a
clear correlation (Spearman p = 0.422) between COMIT score
and splicing enhancer activity, and this is far superior to the
correlation found when using K, (p = -0.0725). This ability to
detect splicing motifs is remarkable, given that COMIT uses
no information about splice boundaries. Exonic splicing
silencers show intermediate negative conservation, consist-
ent with natural selection acting to remove such sequences
from coding regions. In addition, 21 of 24 hexamer submotifs
of the ACS DNA replication origin motif in yeast have a posi-
tive COMIT score. Finally, microRNA binding motifs in both
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plants and animals exhibit higher COMIT scores, and some of
the n-mers with the strongest overall conservation corre-
spond to known microRNA binding motifs.

COMIT provides a practical, effective means to detect non-
coding motifs in coding regions based on sequence conserva-
tion. Much remains to be discovered about splicing, RNA-
protein binding, microRNA binding, and the diverse other
possible noncoding functions in coding regions. Our studies
with COMIT indicate that motifs relevant to these functions
are likely to be common in eukaryotic coding sequences, and
that many may be even more important than the amino acid
sequences. We expect that COMIT will be a valuable tool for
investigating such motifs in future studies.

Results

COMIT identifies an excess of highly conserved
noncoding motifs in coding regions

Using alignments of all mouse and human coding sequences,
we calculated a COMIT z-score for the sequence conservation
of all 4,096 6-mers. For each motif, we considered every
instance in which it occurred in the coding regions of human,
measured the number of conserved instances, and compared
this to the number of conserved instances that would be
expected given only the amino acid alignments. A schematic
of this procedure is shown in Figure 1, with a full description
provided in the Materials and methods. Out of these 4,096
motifs, we found 503 with a z-score > 15, suggesting that
many motifs are subject to noncoding pressures. In contrast,
one would expect < 1046 motifs to have z > 15 in a normal dis-
tribution. We performed a similar evaluation of motifs in the
Saccharomyces cerevisiae- Saccharomyces bayanus com-
parison. For these yeasts we found 115 motifs with z > 10,
compared to < 10719 expected, suggesting that yeast species
contain many motifs under noncoding pressures in coding
regions as well. Prokaryotes also exhibited an excess of motifs
with strong conservation. When we applied COMIT to aligned
Escherichia coli and Yersinia pestis coding regions, we found
17 hexamers with z > 20 and none with z <-10.

Z-scores were robust to the choice of species used to define
motif instances. For example, the mouse-human results
described above were based on instances matching the motif
in the human lineage. We also measured z-scores using the
motif instances in the mouse lineage and found the z-scores
under these two definitions to be extremely similar (Spear-
man correlation p = 0.971, P-value < 0.00001).

The distribution of mammalian z-scores can be seen in Figure
2. The shape of the distribution is wider than that of a normal
distribution, which likely reflects mutational influences such
as regional substitution rates, regional composition prefer-
ences, and so on. A key predictive variable appears to be
whether or not a motif contains a CpG. Motifs containing
CpGs have systematically lower conservation scores (dotted
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Schematic of the COMIT algorithm for identifying unusually conserved motifs in coding regions. The example illustrates how the score would be calculated
for the motif ACAAAG, using genome-wide coding sequence alignments for two species. Each instance of the motif is identified in species |, and the
observed conservation - that is, whether all bases are identical among the two species - is calculated. The expected conservation at each instance is
modeled from genome-wide frequencies of nucleotide-level conservation patterns conditional on the aligned amino acids. For each instance, the expected
conservation is calculated from all possible ways in which the motif could be conserved at that location given the amino acids in each species, using values
from Table | (typically some of these quantities, such as (H, Y),,,, will be zero). The observed and expected conservation levels are compared and

normalized to yield a conservation z-score for each motif.

red curve, mean = -12.8), while the remaining motifs have
higher conservation scores (dashed green curve, mean = 5.2),
and none of the motifs with z > 15 from the mouse-human
comparison contain a CpG. This behavior is consistent with
the known hypermutability of CpG dinucleotides in mamma-
lian genomes.

The shape of the non-CpG motif distribution suggests that
selection has increased the conservation of a number of
motifs. The non-CpG distribution has an excess of motifs with
high z-scores, as can be seen from the long rightward tail
extending out to z ~ 40. In contrast, the distribution decays to
zero on the left at z ~ -17. A simple explanation is that motifs
with very large z-scores have been influenced by selection.

COMIT motifs are robust with maximum likelihood K,
measures

To verify the robustness of motifs predicted by the z-score
method, we implemented two maximum likelihood methods

for calculating the synonymous substitution rate K from
aligned codons, based on the classic Li algorithm for calculat-
ing K, for a gene (see Materials and methods). These methods
give K, values for each motif, providing a comparison for the
z-score results.

The first is a naive codon completion method, in which we cal-
culated K, values for each motif based on the full codons that
overlap any instance of the motif. Although this method con-
tains noise due to the naive completion of codons, it has the
advantage of being easily implemented using PAML [22]. The
second is a nucleotide-by-nucleotide method that solves the
noise issues. This algorithm was implemented independently
of PAML. In comparing the K, and z-score results, we
expected that motifs with strong conservation z-scores would
have low K values.

We first compared the motif z-scores to the K values from the
naive codon completion method. Figure 3a shows the K, val-
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scores and the K values. This correlation is even sharper
when the larger human-dog-rat-mouse phylogeny is analyzed
(Figure S1 in Additional data file 1). Figure 3 also illustrates
that the nucleotide-by-nucleotide K is a better measure than
the naive codon completion method. At any given z, the dis-
tribution of K, values for the nucleotide-by-nucleotide
method is narrower than that for the naive codon completion,
and consequently the correlation with z-scores is stronger
(see also Figure S2 in Additional data file 1).

These comparisons indicate that the essential motif behaviors
predicted by COMIT are not method-dependent. However,
this does not mean the methods are interchangeable. COMIT
has two important advantages over K, methods. One is that
the z-scores compensate for copy-number stochasticity while
the K, values do not. A second is that the z-scores have a much
broader range of values than the K scores, making the z-
scores more informative for distinguishing unusual motifs
even empirically.

Comparison of COMIT z-scores to maximum likelihood K scores. There
is a clear correlation between mouse-human z-scores and mouse-human
K, based on () naive codon completion or (b) nucleotide-by-nucleotide
K. These correlations indicate that the qualitative conservation of many
motifs is not method-dependent.

Motif conservation is robust across mammalian
lineages

We next compared the behavior of motifs in separate mam-
malian lineages. Figure 4 compares the nucleotide-by-nucle-
otide K, in pairs of independent mammalian lineages (rat-
mouse, human-dog, elephant-tenrec), as well as the z-scores
in these lineages.

Motifs behave very similarly in the rat-mouse, human-dog,
and elephant-tenrec lineages. For example, the correlation in
K, values between the rat-mouse and human-dog lineages is
highly significant (Spearman p = 0.646, permutation test P-
value < 0.00001), and the correlation between the rat-mouse
and elephant-tenrec lineages is similar (p = 0.671, P-value <
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Motif conservation is robust across the rat-mouse, human-dog, and
elephant-tenrec lineages. This is visible when using nucleotide-by-
nucleotide K; values, or when using COMIT z-scores. Strong Spearman
rank correlations (p) are observed in comparisons of both (human-dog)-
(rat-mouse) and (elephant-tenrec)-(rat-mouse). Spearman correlations are
considerably stronger for the COMIT z-scores, indicating the superiority
of the method to K. For each of these comparisons the Spearman
correlation is highly significant, with permutation test P-value < 0.00001.

0.00001). These correlations are even stronger for the z-
scores: (rat-mouse versus human-dog p = 0.937, P-value <
0.00001) and (rat-mouse versus elephant-tenrec p = 0.893,
P-value < 0.00001). This suggests that motifs are under sim-
ilar pressures among different branches of the mammalian
lineage.

There is especially strong agreement in the sets of motifs with
high conservation scores, and which are hence likely to be
under selection. The numbers of motifs with z > 15 in each of
the three lineages are (rat-mouse, 306; dog-human, 363; ele-
phant-tenrec, 98). If these sets were independent, one would
expect 306 x 382 x 98/(4,0962) = 0.7 motifs to have z > 15 in
all three lineages. However, there are actually 82 such motifs,
and each of these has z > 15 in the mouse-human comparison
as well. On average, each of these motifs has approximately
2,100 more conserved instances than would be expected by
chance (each motif occurs on average 19,000 times). Such
motifs are excellent candidates for having previously unchar-
acterized functions.

COMIT explains the activity of diverse experimentally
tested motifs

Exonic splicing enhancers

To verify the efficacy of our algorithms, we examined the
sequence conservation of 20 hexamer coding motifs whose
ESE activity has been measured experimentally [4]. We

Genome Biology 2009, Volume 10, Issue | I, Article R133 Kural et al.

observed a clear correlation (p = 0.422, P-value = 0.045)
between human-mouse z-scores and the quantitative ESE
activities, as measured by the splicing inclusion rates engen-
dered by the motifs (Figure 5a). This correlation shows that
COMIT z-scores can not only identify functional motifs but
also predict their activity level. In contrast, K, values are
much less predictive of splicing inclusion rates. Figure 5b
shows the splicing inclusion rates for these motifs as a func-
tion of their K, in the mouse-human phylogeny. The correla-
tion is far weaker (p = -0.0725, P-value = 0.606). In fact, even
when the phylogeny is extended to the mouse-rat-human-dog
phylogeny, the correlation of K (as measured by the total
branch length in the phylogeny) to splicing inclusion rates is
only p = -0.246 (P-value = 0.867). This is less informative
than the z-scores from just the mouse-human comparison.

This agreement with the splice enhancer experiments was an
unexpectedly strong result, given that our conservation z-
score used no experimental information other than coding
DNA alignments. In contrast, Fairbrother et al. [4] chose
these motifs for testing based on more detailed criteria,
involving motif frequency comparisons in exons, introns,
exons with clear terminal splice signals, and exons without
clear terminal splice signals. Nevertheless, our z-score
method rated the 20 motifs similarly as the Fairbrother et al.
method. Of the 20 tested motifs, Fairbrother et al. had pre-
dicted that ten would have splice enhancer activity, and we
found that eight of ten of these had positive COMIT scores.
They had predicted that the remaining ten would not have
enhancer activity, and of these only one had a positive COMIT
score.

To further validate our predictions, we compared the mouse-
human conservation z-scores to a set of experimental splicing
inclusion rates associated with 16 octamer motifs, as meas-
ured by [23]. We observed good agreement with experimental
splicing inclusion rates, though it was necessary to consider
CpG-containing motifs separately. We initially measured the
correlation between z-score and splicing inclusion rate for
these 16 motifs, finding a small correlation (p = 0.0854, P-
value = 0.363). However, seven of the motifs contain CpG
dinucleotides. These CpG-containing motifs exhibit system-
atically lower conservation rates, with all seven having z-
scores below zero. CpG effects were not an issue for the Fair-
brother et al. [4] set because none of those hexamers contain
CpG dinucleotides. For the Zhang and Chasin dataset [23],
when we ignored the CpG-contaning motifs we recapitulated
a strong correlation between splicing inclusion rate and z-
score (p = 0.753, P-value = 0.013; see Discussion for a more
detailed consideration of CpG effects).

Exonic splicing silencers

We next analyzed experimental data on exonic splicing silenc-
ers (ESS) from Wang et al. [24]. ESSs are deleterious for
genes and are subject to negative selection. Using a green flu-
orescent protein reporter assay, they identified four hexamers
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Experimentally verified ESEs are preferentially conserved by natural selection. (a) Motif z-scores (greater z indicates greater conservation), based on
mouse-human comparisons, show a strong quantitative correlation (Spearman p = 0.422, permutation test P-value = 0.045) with splicing inclusion rates as
measured experimentally in [4]. (b) K, values, also based on mouse-human comparisons, show a far weaker correlation (p = -0.0725, P-value = 0.606).
Black lines indicate regression fits. While the two motifs with the highest splicing inclusion rates do exhibit below-average K; values, this is the only
apparent effect, indicating that COMIT scores are better for assessing functional motifs.

with ESS activity clearly greater than that of control hexamers
(Figure 4a of [24]). We found that all four of these had nega-
tive mouse-human z-scores (Figure 6: TTCGTT, -12.6;
GTAAGT, -1.5; TGGGGT, -4.1; GTAGGT, -2.4). Thus, the z-
score method is also capable of detecting motifs under nega-
tive selection. One of these motifs, TTCGTT, has a CpG, which
explains its very low z-score, though the CpG effect is proba-
bly not sufficient to explain such a low value (see Discussion).
For the non-CpG-containing ESS motifs, the magnitudes of
the z-scores are not as large as those of the ESEs (compare to
Figure 5a). This is reasonable, since extreme negative selec-
tion would tend to remove copies of the motif from each
genome, rendering the motif invisible to a sequence conserva-
tion algorithm. For this reason, one would expect motifs
under negative selection to have moderate, rather than
extreme, negative z-scores - which is what is observed. We
observed similar behavior for motifs tested in separate splic-
ing silencer experiments by Zhang and Chasin [23]. For
octamer motifs with clear splicing silencer activity (> 50%),
we observed that nine out of ten had negative z-scores. CpG
dinucleotides are not responsible for these low z-scores, as
none of the octamer motifs contain a CpG.

DNA replication origins
We next examined the conservation of a DNA-level motif
involved in yeast DNA replication known as the ACS motif.

Nieduszynski et al. [25] identified this motif based on phylo-
genetic conservation and experimentally verified it at 228 S.
cerevisiae intergenic replication origins. Nieduszynski et al.
reported being unable to phylogenetically evaluate ACS
motifs in coding regions due to interference from the amino
acid signal. Because of this it has been uncertain whether
instances of the ACS motif in coding regions are active,
though it is worth noting that protein-coding regions make up
approximately 70% of the S. cerevisiae genome [26].

COMIT gives consistently positive scores for the ACS motif in
coding regions. We tested the z-scores of all 6-mers that coin-
cide with this motif, given the degenerate consensus TKTT-
TATRTTTWGT. We found that 21 of 24 6-mers have positive
z-scores based on coding sequence alignments of S. cerevisiae
and S. bayanus (Figure 7). These results support the hypoth-
esis that ACS motifs in coding regions are functionally active
and suggest that COMIT is capable of detecting coding motifs
functional at the DNA level.

MicroRNA binding motifs

Finally, we considered whether COMIT was able to detect
microRNA binding sites in coding regions. We first examined
the Oryza sativa (rice)-Arabidopsis thaliana COMIT scores
of motifs that would complement 8-mer tilings of known
microRNAs from these species. Eight-mers complementary
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plant coding regions. We next examined microRNA binding
in animal coding regions. While animal untranslated regions
have been studied extensively for microRNA binding, animal
coding regions have only recently been recognized as poten-
tially important for microRNA targeting [27]. We found that
sites complementary to microRNA 7-mer seed sequences [28]
have significantly higher mouse-human COMIT scores than
the overall set of 7-mers (i, = 4.18, p, =-0.31; p, = p,, P=1.2e-
12). Of the 156 curated animal 7-mers, 107 have z > 0, and 12
of 156 have z > 15. These results suggest that many mamma-
lian microRNAs bind in coding regions.

Discussion

In this work we present COMIT, a novel algorithm to detect
motifs with noncoding functions in coding regions. The
COMIT z-scores provide a practical statistic for identifying
unusually conserved motifs, with the scores corrected for
copy number stochasticity and exhibiting a broad range of
values. Although K -based analyses have been useful for stud-
ies of the behavior of large groups of motifs [29,30], K is not
precise enough to analyze individual motifs. This is clear from
the much weaker correlations of K, versus splicing enhancer
activity when compared to COMIT scores versus splicing
enhancer activity. Meanwhile, the strongly conserved motifs
identified by COMIT are robust in different mammalian line-

Figure 7

Conservation of hexamer submotifs of the yeast ACS DNA replication
origin motif. Of the 24 hexamers, 2| are consistent with the ACS
consensus TKTTTATRTTTWGTT and have positive z-scores in
comparisons of S. cerevisiae and S. bayanus coding sequences. These results
support the hypothesis that ACS motifs in coding regions are functionally
active, and also indicate that COMIT is capable of detecting coding motifs
functional at the DNA level.

ages. Such motifs, for example, the 82 with z-score > 15 in
mouse-rat, human-dog, and elephant-tenrec, constitute some
of the most promising candidates for novel functions in mam-
malian coding regions. While we have focused primarily on
mammals, COMIT is applicable to arbitrary pairs of species.
COMIT scores for all hexamers in each of the mammalian,
yeast, and prokaryote comparisons described in the manu-
script are provided in Table S1in Additional data file 2. K, val-
ues for motifs (Table S2 in Additional data file 2) and a list of
the 82 highly conserved motifs described above (Table S3 in
Additional data file 2) are also provided.

Our approach to detecting motifs used no information other
than aligned coding sequences - making it remarkable that
our predictions agree so well with the broad range of experi-
mental data. One might speculate that this is because splicing
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and DNA replication are among the most important functions
in the genome. However, there are many motifs with even
larger z-scores, suggesting that COMIT can detect diverse
types of biological functions. For example, the 82 hexamers
with z > 15 in mouse-rat, human-dog, and elephant-tenrec are
disjoint from the hexamers in the ESE set, and these 82 hex-
amers have, on average, 2,100 more conserved instances than
would be expected based on the amino acid sequences alone.
Although it is not obvious what threshold z-score should be
used to classify a motif as functional (since the observed z-
score distribution of Figure 2 deviates from a normal distri-
bution and the null model is a simplification of neutral evolu-
tion), the fact that these 82 hexamers have stronger
conservation than experimentally verified ESEs provides
good evidence that they are under purifying selection.

Some of the highly conserved motifs correspond to known
microRNA binding motifs, and the extreme conservation of
known microRNA motifs suggests that other extremely con-
served motifs may have previously unknown microRNA-
binding function as well. For instance, in the mouse-human
8-mer data, the motif with the largest z-score is CTACCTCA (z
= 23.5, 553 conserved instances, 241.4 expected by chance),
which matches the let-7 microRNA binding site. Interest-
ingly, Forman et al. [17] also detected this motif in their 17-
way species comparison, but COMIT was able to find it using
only two species.

COMIT's central concept is its isolation of nucleotide-level
effects by conditioning on the amino acid sequences in each
species, an approach different from previous ESE-detection
approaches [4,23,31-34]. While not all nucleotide-level selec-
tion may be detected by COMIT, this null model is explicitly
designed so that the COMIT scores are free of influence from
amino acid effects. In contrast, Fairbrother et al. [4] identi-
fied unusual motifs by comparing motif frequencies in exons
either with or without clear terminal splice signals. That
approach gives a more ambiguous calibration for amino acid
effects, as it depends on the assumption that the two exon
groups have similar amino acid-level selection pressures.
COMIT, on the other hand, directly calibrates for the amino
acids in each species at every motif instance. This entails a dif-
ferent type of assumption, which is that COMIT's underlying
null model is homogeneously applicable (this is an assump-
tion about neutral synonymous codon usage along the
genome, as opposed to an assumption about amino acid
selection). Another contrast is provided by the algorithm of
Forman et al. [17], which uses a null model that is conditioned
on the codons overlapping a motif. Conditioning on codons
leads to difficulties in the interpretation of scores, since the
specification of a codon contains information about both the
amino acid sequence and the nucleotide sequence. Under a
codon-based null, a motif's score will be influenced by both
amino acid pressures and nucleotide pressures, the balance of
which is not a priori known.
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The closest existing algorithm to COMIT is that of Goren et al.
[18], which can be thought of as a special case of COMIT for
motif instances overlapping exactly two full codons and with
a null model conditioned on codons. Goren et al. reported
285 unusual motifs, and as expected these generally have
high COMIT scores (average z = 11.2). However, there are
some notable differences: 45 of the Goren et al. motifs have
COMIT scores < 0, suggesting that codon frame may be
important to some motifs. Also, the Goren et al. method can-
not evaluate motifs containing stop codons in the canonical
frame, such as TGATGA, because of that method's restriction
to dicodons. Interestingly, COMIT suggests that TGATGA
may be under selection when it occurs in other frames, as
TGATGA has z > 7.9 in all mammalian comparisons, includ-
ing z = 17.6 for mouse-human.

Combining COMIT with other analytical approaches should
lead to more comprehensive understanding of the functions
in coding sequences. Some motifs may be restricted to only
certain loci, and detection of these would be aided by methods
that consider motif overrepresentation. A few overrepresen-
tation approaches have been applied to coding regions
[2,4,35-39], though their agreement with experiment has
been mixed. Locus-based approaches [40-42] also comple-
ment COMIT, although resolving individual motif instances
with such approaches is still challenging.

Dinucleotide considerations

COMIT's null model is conditioned only on the amino acid
sequences, and other sequence influences such as amino acid-
changing dinucleotide biases (dinucleotide biases that main-
tain an amino acid are accounted for in our null model) could
be incorporated in a more sophisticated null model. Unfortu-
nately, because dinucleotide biases are not independent of
the amino acid sequences, it is difficult to include them with-
out recoupling coding and noncoding behaviors. Other, prob-
ably less important, effects that we have not treated in the
model include mutational heterogeneity along the genome
[43] and location-specific codon usage bias [44].

We did test a simple model taking into account the best-
known dinucleotide effect in mammals, CpG hypermutabil-
ity. We recalculated z-scores for each motif, assuming that the
CpG effect was so strong that the expected frame-specific con-
servation rate at a CpG site would be independent of the
amino acid sequence (see Materials and methods). Under this
model, one CpG-containing silencer motif was affected [24]:
TTCGTT had a z-score change from -12.7 to -4.2, maintaining
the expected negative selection. Seven CpG-containing splice
enhancer motifs from the Zhang and Chasin data [23] showed
altered (higher) z-scores. However, correcting for the CpG
effect did not lead to a strong correlation of z and enhancer
activity in the full Zhang and Chasin set (p = 0.181, P-value =
0.251). This indicates that CpG effects are subtler than this
simple model. This is a notable limitation of COMIT, as 1,185
out of the 4,096 possible hexamers contain a CpG.
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Incorporation of better parameterized (presumably neutral)
dinucleotide effects [45,46] would be a valuable future goal.
This is challenging because the strength of neutral dinucle-
otide biases has not been precisely quantified [47], and the
development of methods to accurately account for dinucle-
otide biases is an active problem, even for motifs in noncod-
ing sequences [48]. For these reasons, we have left
dinucleotide biases out of the COMIT null model, and instead
dealt with them at the stage of interpretation of scores. Nev-
ertheless, the empirical agreement of COMIT scores with the
multiple types of experimental data, especially when CpG-
containing motifs are considered separately, demonstrates
that the current implementation of COMIT is already useful
for real functional motifs.

Are noncoding pressures common in coding sequence?
The large number of motifs with strong conservation suggests
that coding sequences could contain a considerable amount
of sequence functional for noncoding reasons. Previous stud-
ies have shown that proteins can tolerate significant amino
acid changes without inactivating the protein [49], support-
ing such a view. To further investigate this, we compared our
motif scores to scores calculated without correcting for the
amino acid sequence. We found these calibrated and uncali-
brated scores to be highly correlated (p = 0.885, P-value <
0.00001, mouse-human comparisons for all hexamers). A
plot of these scores versus one another is given in Figure S3 in
Additional data file 1.

This strong correlation is consistent with the idea that a non-
trivial fraction of the conservation in coding sequences is due
to noncoding pressures, rather than amino acid pressures.
Although some of this may be due to neutral dinucleotide
biases not contained in our model, the high copy numbers of
motifs with strong conservation scores across multiple mam-
malian species, together with the experimental validations,
suggest that selection plays an important role. This supports
more specific findings that nucleotide-level selection for
splicing enhancer elements [50,51] and nucleosome position-
ing signals [52,53] are strong enough to influence protein
sequences. These results indicate that the balance of pres-
sures in coding sequence is more heavily tilted toward the
nucleotide end than has been previously assumed.

Conclusions

We have developed COMIT, a computational algorithm that
effectively detects functional noncoding motifs in coding
regions using sequence conservation. Our studies indicate
that such motifs, which play key roles in post-transcriptional
regulation or DNA-level functions, are common in mamma-
lian genomes, and may often be more important than the
amino acids with which they coincide. COMIT provides a val-
uable tool for identifying and comparing the functions in cod-
ing regions for arbitrary phylogenies.

Genome Biology 2009, Volume 10, Issue | I, Article R133

Materials and methods

Datasets

Coding sequence alignments were obtained by identifying
mutual-best-hit protein orthologs, CLUSTALW aligning the
protein orthologs, and back-translating to the DNA level. Full
details of the procedures for pairwise mammalian alignments
are given in [54]. The four-species alignments of human,
mouse, rat, and dog were obtained as described in [13]. Yeast
alignments were obtained as described in [55]. Rice and Ara-
bidopsis sequences were obtained from the The Institute for
Genomic Research (TIGR) ftp site [56]. E. coli and Y. pestis
data were obtained from the University of Wisconsin ASAP
database.

COMIT z-score for motif conservation

The COMIT z-score method detects unusually conserved
motifs of arbitrary length and codon frame, properly correct-
ing for the amino acid sequence in each species. To calibrate
for the amino acids, we first tabulate the statistics of DNA
conservation for all pairs of aligned amino acids, using all
coding sequence alignment data between the two genomes. In
particular, we use the aligned amino acid statistics to calcu-
late the frequency of each of the 23 = 8 conservation patterns
(000, 001, 010, 011, 100, 101, 110, 111, where 1 means a con-
served base and 0 means a non-conserved base) for the three
nucleotides underlying the aligned amino acids. This defines
eight functions f,,,(¢, ), fooi(et, ), -, fi(, B) for the
aligned amino acids «, 8. These functions give the calibrated
background probabilities of any bases in a codon being con-
served, given the amino acids in each species (Table 1).

To determine whether a motif is unusually conserved, we
compare the actual number of conserved instances of the
motif to the number expected based on the f functions. The
full procedure is summarized in Figure 1. The expected
number can be calculated by considering the ffunction values
in the set of instances where the motif occurs. For example,
suppose we are interested in a 6-bp motif in which one of its
instances begins at the second position of a codon (right
instance in Figure 1), overlapping amino acids o, a,a,in the
first species and 3,5, f, in the second species. Then the prob-
ability that this motif would be conserved by chance in this
instance would be [fon(ap ﬂl) + f111(a1’ ﬂ1)] x fnl(az’ ﬁz) x
[f100(a3’ ﬂ3) +f101(0t3, 133) +f110(013, ﬂg) +f111(a3’ :Bg) ]. The cal-
culated quantity covers all possible ways in which the motif
could be conserved at that location given the amino acids in
each species. In Figure 1 we have used a shorthand notation.
So, for example, (H, Y),,, in Figure 1is equivalent to £, ,,(H, Y)
in the notation here.

These background conservation probabilities at each motif
instance can be summed to give the total expected number of
conserved instances for the motif. By comparing this sum to
the observed number of conserved instances, we can identify
motifs that have unusually high levels of conservation. An
important property of the method is that it handles motifs
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Table |

Abridged table of mouse-human genome-wide codon conservation frequencies, as a function of each of the 20 x 20 pairs of aligned
amino acids

AAI AA2 # 000 ool 010 oll 100 101 110 11

F F 308,260 0.000 0.000 0.000 0.000 0.000 0.000 0.202 0.798
F S 3,951 0.028 0.042 0.000 0.000 0.337 0.593 0.000 0.000
F T 716 0.457 0.543 0.000 0.000 0.000 0.000 0.000 0.000
F N 220 0.377 0.623 0.000 0.000 0.000 0.000 0.000 0.000
F K 160 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

F 3,660 0.022 0.050 0.000 0.000 0.322 0.607 0.000 0.000

S 616,045 0.004 0.003 0.000 0.000 0.000 0.000 0.302 0.691
G R 7,924 0.000 0.000 0.393 0.607 0.000 0.000 0.000 0.000
G G 521,714 0.000 0.000 0.000 0.000 0.000 0.000 0.327 0.673

For a given pair of amino acids, there are eight possible conservation patterns for the underlying nucleotides (000, 001, 010,01 I, 100, 101, 110, I'11),

where | means a conserved base and 0 means a non-conserved base. These frequencies provide a null model for the expected conservation patterns
at the nucleotide level, given the amino acid sequence. Here '#' indicates the number of instances in which amino acid | (AAl) is aligned to AA2 in

the complete set of coding alignments between mouse and human.

occurring in any translation frame, unlike specialized meth-
ods that require motifs to exactly cover complete codons [18].
One notable benefit of this is that it allows one to evaluate
motifs that are rare in one translation frame but not in others,
by aggregating data from all translation frames together. For
example, the motif TGACGA cannot occur in the first transla-
tion frame because TGA encodes a 'stop', but the motif occurs
abundantly in the second and third translation frames.

To determine the COMIT score for a given motif, we use z-
score statistics, which we and other groups have previously
used to identify unusually conserved motifs in intergenic
regions [15,26,57]. If N is the total number of instances of a
motif, N, is the number of conserved instances, and N (exp) is
the number of expected conserved instances, then the z-score
for a motif is given by:

z = (Nc - Ne(exp)) / \/ Nc(exp) * (N — Ne(exp)) / N

The use of z-score statistics makes the method more sensitive
as Nincreases, consistent with the idea that functionally irrel-
evant stochastic effects will more easily distort the conserva-
tion rates of low copy number motifs. The P-value of a
positive z-score can be calculated from the expected normal
distribution by integrating the area under a Gaussian from z
to 8. This 'area-under-the-curve' approach is usual statistical
practice, as compared to the "height-of-the-curve' approach in
the Forman et al. [17] method.

A version of COMIT has been implemented in Python and is
available upon request.

Z-score motif conservation without correction for
amino acid sequence

For the uncalibrated z-score algorithm, z is again calculated
as:

z = (Ne— Ne(exp)) / |/ Ne(exp) * (N — Ne(exp)) / N

However, here N, (exp) is based on the fraction of all 6-mers
conserved in the coding alignments without regard to the
underlying amino acid sequences.

Maximum-likelihood K, methods for motifs

Our K, methods are modified versions of Li's method [21],
which accounts for multiple substitutions at each site. These
methods are similar to calculations in [29,30] to calculate K|
in segments of DNA, though we have adapted the procedure
to handle arbitrary motifs. Briefly, the Li method calculates
the maximum-likelihood number of synonymous substitu-
tions between two sequences, noting transitional and trans-
versional differences separately. The method is based on the
parameters: L; (i = 0, 2 and 4) - the numbers of synonymous
sites with degeneracy o0, 2, and 4, respectively, in the two
sequences being compared; S; - the numbers of synonymous
transitional differences in the two sequences being com-
pared; and V; - the numbers of synonymous transversional
differences. For cases where the two codons differ from each

Genome Biology 2009, 10:R133



http://genomebiology.com/2009/10/1 1/R133

other in multiple positions, substitution paths are
unweighted [12]. The formula for K is given by:

LA
Lo+Ly
where A;=1/2 In(a;) - 1/4 In(b;) and B;=1/2 In(b)); a;=1/(1 -
2Pi_ Ql) and bi= 1/(1 - 2Qi),' and Pi= Si/Li and Qi= ‘/I/Ll

Existing software, such as PAML [22], can calculate the Li
synonymous substitution rate from codon-by-codon align-
ments of two sequences. However, PAML is not suitable for
the calculation of K, values for motifs because different
instances of a motif occur in different codon frames and in
different amino acids. We devised two approaches to calcu-
late an analog of the Li K, rate for motifs.

Nadive codon completion

As a first approach to a motif K, value, we calculated the Li
substitution rate based on the complete codons overlapping
at least one base of any instance of the motif. For example,
suppose we have two aligned sequences containing motif
TACCTC, where sequence 1 is: aTA|CCT|Caa and sequence 2
is: cTA|CCT|Cag. Then we would calculate K, in PAML using
the complete nine bases of the three codons. This approach
modifies the data to a suitable form for analysis by PAML, at
the expense of introducing sequence noise. To make use of all
codons relevant to a motif, one calculates the L;, S;, and V;val-
ues by summing over all n codons that overlap any instance of
the motif, where these codons are indexed by the variable j,
that is:

n n 13
Li =ZL1~J-,SI- =ZSij, and Vi ZZVU
= j=1 j=1

Nucleotide-by-nucleotide method

To avoid the noise introduced by appending partial codons in
the naive codon completion method, we refined the method
to compute the synonymous substitution rate on a nucle-
otide-by-nucleotide basis. The algorithm has a close analogy
with the naive codon completion method, with the parame-
ters again given by the formulas:

n n n
Li = Z.LU,S1 = ZSU, and Vi ZZVU
Jj=t Jj=t J=t

However, here the index j is considered over all nucleotides
overlapping the motifs, and n is equal to the number of nucle-
otides overlapping the motif. PAML cannot handle this type
of sequence input due to the irregular translation frames of
the nucleotides overlapping the motif. Therefore, we imple-
mented the algorithm independently.

Genome Biology 2009, Volume 10, Issue | I, Article R133

Comparison to splicing motif experiments

ESE data for Figure 5 were obtained from Figure 4 of [4]. The
values shown are equal to the splicing inclusion rates in the
Fairbrother et al. [4] data rounded to the nearest 5%. Splicing
inclusion and silencing rates for the Zhang and Chasin exper-
iments were obtained from Figure 4 of [23].

ACS motif

We identified a degenerate consensus sequence of TKTT-
TATRTTTWGT from the ACS motif logo of Figure 1B.iv
reported in [25], where K = T/G, R = A/G, and W = T/A. We
tested the z-scores of all hexamers consistent with this degen-
erate sequence.

MicroRNA binding motifs

Rice and Arabidopisis microRNAs were obtained from miR-
Base [58]. Since not all of these have known seed sequences,
every 8-mer aligned consistently across the species within
these microRNAs was identified. The reverse complements of
these 8-mers were then used for the set of potential plant
microRNA binding sites (305 8-mers). For the animal analy-
sis, motifs in Tables S1, S2, and S3 of [28] were used as a set
of curated 7-mer microRNA seed sequences. The reverse
complements of these 156 7-mers were analyzed. Note that
the better available animal dataset is responsible for the
higher p of animal binding sites relative to plant, reported in
the main text.

CpG correction

For the CpG-modified z-scores, we assumed that the CpG
effect was so strong that the expected frame-specific conser-
vation rate at a CpG site would be independent of the amino
acid sequence. That is, we first calculated the conservation
rate of CpG dinucleotides occurring in each of the three codon
frames (1.2), (2.3), and (3.1), respectively. We then incorpo-
rated these rates into the calculations of the expected number
of conserved copies for each motif. For each instance of a
motif containing a CpG, the expected conservation rate at
those CpG positions was forced to be the frame-specific CpG
conservation rate, as opposed to the rate that would be
expected from the aligned amino acids.

Abbreviations
COMIT: Coding Motif Identification Tool; ESE: exonic splic-
ing enhancer; ESS: exonic splicing silencer.
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