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Mining SNP arrays<p>GAP, a method for analyzing complex cancer genome profiles from SNP arrays, performs well even with poor quality data and rear-ranged genomes</p>

Abstract

We describe a method for automatic detection of absolute segmental copy numbers and genotype
status in complex cancer genome profiles measured with single-nucleotide polymorphism (SNP)
arrays. The method is based on pattern recognition of segmented and smoothed copy number and
allelic imbalance profiles. Assignments were verified by DNA indexes of primary tumors and
karyotypes of cell lines. The method performs well even for poor-quality data, low tumor content,
and highly rearranged tumor genomes.

Background
Alterations of genomic DNA are hallmarks of cancer [1].
These genetic alterations include point mutations and small
insertion/deletion events, translocations, copy-number
changes, amplifications, and losses of heterozygosity. Chro-
mosome copy-number alterations and homozygosities (uni-
parental disomies) acquired during cancer evolution are
believed to be selected as the result of the loss of function of
tumor-suppressor genes and the gain of function of onco-
genes. Recurrent copy-number variations (CNVs) or loss of
heterozygosity (LOH) are therefore critical indicators of pos-
sible localization of cancer-related genes [1]. Both recurrent
regions of alteration and patterns of genomic instability con-
tribute to tumor classification [2]. Single-nucleotide poly-
morphism (SNP) arrays are presently one of the most
efficient technologies for the identification of such alterations
[3,4]. SNP arrays simultaneously define copy-number

changes and allelic imbalances (including LOH) occurring in
a tumor, at high resolution and throughout the whole genome
[5].

Genome-wide SNP arrays are available mainly for Affymetrix
[6] and Illumina [7] platforms. On both platforms, SNP gen-
otypes are extracted from allele-specific signal intensities
after array hybridization. Arbitrarily, the two alleles are des-
ignated as A and B, and the ratio of allele-specific signal
intensities (A/B, A/(A+B), and so on, depending on the
method used) provides an allelic-imbalance value. Chromo-
somal aberrations are identified by (a) relative copy-number
changes and (b) allelic imbalances. Both platforms were orig-
inally designed for high-throughput genotyping of normal
genomes, and they require specific normalization and data-
mining strategies to study alterations in cancer genomes [8].
Two characteristics of genetic alterations are essential to
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extract from SNP data: (a) breakpoints corresponding to the
boundaries of the altered regions of genomic DNA, and (b)
copy number and genotype status of each such alteration.

Accurate determination of breakpoints has been addressed
from many aspects, starting from reduction of nonrelevant
variation to optimal breakpoint counts and positioning [9-
14]. As compromises between sensitivity and specificity, these
methods will perform variably, depending on the specific set-
ting used, the quality of the primary data set, and the com-
plexity of the tumor genomes.

Determination of copy numbers and genotype status of each
alteration is more complicated, and no general solution has
yet been proposed. Attempts to address this question include
a manual interpretation of Affymetrix 500K SNP-array
results for glioblastomas presented in [15] and an automatic
copy-number recognition method based on allelic imbalances
for the Illumina platform, proposed in [16]. Other methods
attribute relative gain, loss, or allelic-imbalance status with-
out addressing the determination of absolute copy number
and genotype (cnvPartition from Illumina, [17-23]).

Three major sources of problems complicate the estimation of
genome-wide copy number in cancer cells with SNP-array
technology. The first concerns the determination of the refer-
ence point for copy-number variation (the level correspond-
ing to the unaltered status of the tumor genome), which is not
trivial for aneuploid cancer genomes with unknown underly-
ing ploidies (diploid, tetraploid, and so on). Eventually, the
reference point for a near-diploid cancer genome should cor-
respond to normal genome status: a balanced genotype (AB
status) and two copies. In the case of near-tetraploid tumors,
a balanced genotype (AABB) and four copies could be pro-
posed as the reference point. Setting the correct reference
point thus depends on recognition of the underlying ploidy.
This issue is considered in Attiyeh and colleagues [16], in
which an aneuploidy correction factor was determined based
on intensity-distribution modes in regions with balanced gen-
otypes. Gardina and co-workers [15] directly estimated the
chromosome copy-number status by using theoretic allelic
ratios indicative of higher ploidy levels and then inferred
tumor ploidy.

The second problem arises from the frequent contamination
of cancer samples by normal stromal cells. The presence of a
significant proportion of normal DNA in a sample diminishes
the amplitude of measured signal changes reflecting rear-
rangements in the tumor DNA. Any fixed threshold-based
method of copy-number variation recognition may fail to dis-
tinguish the proper regions. A number of publications have
addressed this issue [17,18,24]. Staaf and colleagues [17] pro-
posed a strategy for copy-number and LOH recognition based
on adjusted thresholds, inferred from their study of dilution
series. A model for estimation of normal DNA inclusion on
the basis of measured allelic imbalances is considered in [18].

These authors also mentioned that, in addition to negative
effects, a small degree of contamination could help in distin-
guishing somatically acquired homozygosity from germline
homozygous regions.

The third problem in mining cancer SNP-array profiles is
coming from intratumoral heterogeneity [25]. Although gen-
erally arising from a single cell (monoclonal proliferation),
cancer progression leads to subpopulations bearing different
genomic alterations (subclones) coexisting in most tumor
samples. The tumor genomic profile is thus due to (a)
genomic alterations shared by all tumor cells and producing
few discrete steps of gains and losses, and (b) subclonal
events shared by only certain subpopulations of tumor cells
and producing a number of intermediate steps in the "main"
copy-number profile. CNV and LOH status of an alteration
specific for subclones is generally indefinable, as the meas-
ured signal reflects the sum of unknown subclonal signals in
unknown proportions. An algorithm estimating the propor-
tion of cancer cells harboring the particular alteration event
was proposed in [18] and confirmed on known genetic events
from a serial dilution of cancer cells with normal matched
cells.

In this article, we propose a method for segmental copy-
number and genotype detection from SNP arrays that takes
advantage of previous findings and addresses the aforemen-
tioned issues. This method is based on SNP-array data for-
malization that we have called the Genome Alteration Print
(GAP). The GAP of a tumor sample summarizes segmented
CNV and allelic imbalance profiles into a list of segments,
characterized by two corresponding averages. GAP visualiza-
tion reveals the overall genomic ploidy of tumors, pinpoints
the possible normal status (reference point for gain and loss),
shows the level of contamination, indicates subclones, and
generally characterizes the tumor genome. The model GAP
built on theoretic distribution of CNV and allelic imbalances
provides interpretation for a tumor GAP and serves as a basis
for automatic recognition of the copy number and genotype of
each segment.

Results and discussion
Generation of complex cancer genome data sets
The 300K Illumina SNP-arrays (Human Hap300-Duo) were
used to study breast cancer genomes in a series of primary
breast carcinomas (40 cases) and two cell lines. This series
includes basal-like carcinomas (BLCs) arising in the general
population (sporadic BLCs) and in BRCA1 mutation carriers,
who are especially predisposed to BLCs [26]. Both hereditary
(in BRCA1 carriers) and sporadic BLCs are associated with
inactivation of BRCA1 [27], a key protein for DNA repair [28].
Analysis of breast carcinomas by SNP-arrays is complicated
by the numerous genomic rearrangements associated with
these tumors [29], their high stromal cell content [30], and
intratumoral heterogeneity [31].
Genome Biology 2009, 10:R128
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Figure 1a and 1b shows the whole genome profiles of the
BLC_B1_T45 sample measured on a 300K Illumina SNP-
array. The copy-number variation (CNV) profile is repre-
sented by the Log R ratios (LRRs), which are the log-trans-
formed ratios of experimental and normal reference SNP
intensities, centered at zero for each sample. Allelic imbal-
ances are represented by the B-allele frequencies (BAFs),
which are the normalized proportions of the B alleles in two
allele mixtures. Complexity of the profile is characterized by
(a) the number of breakpoints in both profiles, and (b) the
number of levels in smoothed LRRs and BAFs corresponding
to the alteration states in the genomic DNA. The amplitude of
both LRR and BAF changes depends on the purity of the
tumor sample [17,18,24]. The main challenge is to interpret
both segmental LRR and BAF values correctly in terms of

absolute DNA copy number and LOH status, provided vari-
ous amplitudes of changes, unknown underlying tumor
genome ploidy, and disturbing subclonal intermediates. Spe-
cifically, DNA segments including at least 10 SNPs (~40 kb on
average) were analyzed, which decreased resolution but min-
imized the effects of both experimental variations and short
CNVs observed in population studies [32,33].

Genome alteration print (GAP)
The method for segmental copy-number and genotypes attri-
bution presented here is based on the structure denoted by
GAP. To build the GAP, breakpoints in LRR and BAF profiles
are determined separately by the circular binary segmenta-
tion (CBS) algorithm (see Materials and methods for details)
[12]. Any contiguous region in both LRR and BAF profiles

The whole-genome single-nucleotide polymorphism (SNP) array profile and genome alteration print (GAP)Figure 1
The whole-genome single-nucleotide polymorphism (SNP) array profile and genome alteration print (GAP). The whole-genome profile of genomic 
rearrangements in the BLC_B1_T45 sample measured by 300K Illumina SNP-array and corresponding GAP. (a) Allelic imbalances are represented by B-
allele frequency (BAF). (b) Copy-number variation profile is represented by log R ratio (LRR), centered at zero. (c) The GAP of the sample is a combined 
sideview projection of segmented LRR and BAF. Each region of the genome is represented by two symmetric circles in the case of allelic imbalance and by 
one circle centered at BAF = 0.5 in the case of a balanced genotype. Attribution of copy numbers and genotypes corresponds to a near-diploid model of 
rearrangements. (d) "Reading" GAP pattern: the degree of stromal contamination, acquired and germline homozygosities, and subclones are indicated. (e) 
The best-fitting model GAP allows interpretation of the cluster structure and estimates contamination by normal DNA and contraction of the pattern on 
the LRR scale. Clusters are designated by the ratio of copy number to B (or major allele) counts.
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(region between two consecutive breakpoints from LRR and
BAF breakpoints mixture) is considered to be an alteration
unit (possibly unaltered) and characterized by (a) the median
of LRR, (b) the modes of BAF distribution, and (c) the length
of the corresponding region (in SNP counts). The list and two-
dimensional visualization of all alteration units of a measured
sample is denoted the GAP.

The GAP of the BLC_B1_T45 sample is shown in Figure 1c.
Each alteration unit is represented by a circle, with the center
coordinates equal to its BAF (x-axis) and LRR (y-axis)
smoothed values. The circle radius is scaled to the relative size
of the corresponding chromosome region. In other words, the
structure in Figure 1c represents a combined side-view pro-
jection of segmented and smoothed profiles of LRR and BAF
shown earlier in Figure 1ab. The pattern in Figure 1c has a reg-
ular structure: circles corresponding to genomic regions with
similar alteration status are assembled in clusters, forming
discrete steps in their projection on the LRR scale, and sym-
metrically disposed on the BAF scale. As "A" and "B" allele
names are set arbitrarily, the BAF profile is symmetric rela-
tive to 0.5 axis, and one alteration unit is represented by two
symmetric circles away from the 0.5 axis on the BAF scale.
Clusters centered at BAF = 0.5 present the genome regions
with balanced (heterozygous) genotype; that is, an equal rep-
resentation of both (maternal and paternal) alleles.

According to standard mining of SNP-array results, the GAP
pattern shows (a) normal regions, which correspond to the
balanced cluster; (b) losses, which are below the level of the
balanced cluster; (c) gains, which are above this level; and (d)
loss of heterozygosity without copy-number change (unipa-
rental disomy), which are the side clusters of the reference
balanced cluster (Figure 1d). The overall pattern of GAP cor-
responds to rearrangements in a near-diploid tumor.

The balanced cluster representing the normal status is gener-
ally not centered at zero on the LRR scale, which is set by nor-
malization. For example, in Figure 1, the functional center
(the diploid balanced cluster that represents unaltered
regions) is shifted up from the formal center of the LRR pro-
file (zero on LRR scale) because of the prevailing losses versus
gains observed in the tumor.

Small germline homozygous regions, detected when more
than 50 successive SNPs have a homozygous call (the 50-SNP
length was set arbitrarily), form side clusters at the 0 and 1
boundaries of BAF scale. These germline homozygous regions
can be easily distinguished from acquired LOH (see Figure
1d). Distances between germline and acquired homozygous
clusters reflect the degree of tumor-sample purity [17].
Acquired and germline homozygosities cannot be distin-
guished in the case of pure tumor sample or (more often) cell
line.

It is worth mentioning that (a) allelic imbalance is often
treated as LOH, whereas here only single allelic genotypes (A,
AA, AAA...) were considered to have an LOH status; (b)
although mirrored BAF (see Materials and methods) is used
for all computational evaluations, the GAP structure is shown
in a complete (symmetric) view for easier association with the
initial SNP-array measurement (with symmetric BAF bands).

Influence of tumor dilution and heterogeneity on GAP 
pattern
Breast carcinomas frequently show a high degree of stromal
contamination and heterogeneity seen on the GAP pattern
(Figure 1d). The triangle-like figure formed by homozygous
clusters has the following interpretation. P% of normal DNA
adds some proportion of normal (AA, AB, or BB) signal to any
measured value. However, (a) this proportion depends on the
corresponding copy-number status of a region and, (b) germ-
line homozygous regions would show a pure homozygous sig-
nal, whereas cancer homozygous regions (LOH) would show
a shift caused by normal heterozygous signal addition. Cancer
BAF is modeled depending on the proportion of normal DNA
inclusion (p) as the weighted sum of B-allele counts in cancer
and normal genotypes related to maximal possible B allele
counts at current copy-number level (see Materials and meth-
ods). For example, the calculated level of normal stromal
DNA in the BLC_B1_T45 sample is approximately 30%. Such
BAF dynamics also were illustrated by Nancarrow and col-
leagues [24] by using computer simulations. The clear linear
relation between the measured mirrored BAF (mBAF) and
the level of contamination by normal tissue of the tumor sam-
ple was demonstrated in [17] in dilution series.

The few isolated circles situated between one- and two-copy
levels in Figure 1d could be attributed to losses occurring only
in a fraction of the tumor cells (subclones). Following the
logic of [18] and using our model of BAF, the proportion of
cancer cells harboring this event is approximately 26%. More
complicated subclonal mixtures could produce various inter-
mediates in LRR and BAF scales.

The dynamics of change in LRR scale depend on numerous
uncontrolled factors and show a high degree of variation from
sample to sample. The significant dilution of a cancer sample
by normal DNA clearly decreases the contrast (the amplitude
of change in LRR corresponding to a copy-number change)
[17]. However, universal linear dependence between LRR and
contamination, similar to that for BAF, has not yet been
described. The observed amplitude of LRR changes is usually
smaller than expected by the initial model (log2(CN/2)), but
the proportion between copy-number steps seems to be pre-
served for well-represented copy-number layers around the
mean. LRR is therefore modeled by applying a simple coeffi-
cient of contraction q to the standard log ratio, which pro-
duces the sequence of LRR values: -q, 0, 0.58q, q, 1.32q, 2q,...
for corresponding copy-number levels: 1, 2, 3, 4, 5,...
Genome Biology 2009, 10:R128
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Model GAP that follows theoretic values for BAF and LRR
with estimated contamination p = 0.3 and coefficient of con-
traction q = 0.3 is superimposed onto the experimental GAP
of BLC_B1_T45 sample in Figure 1e.

Diploid and tetraploid GAP patterns
The 40 SNP-array profiles of breast carcinomas and cell lines
presented two main types of GAP pattern named "near-dip-
loid" and "near-tetraploid" patterns (Figure 2a and 2b; for
more examples, see Additional data file 1). The near-diploid
pattern is characterized by a single balanced cluster with one
layer of losses (Figures 1 and 2a). The typical near-tetraploid
pattern shown in Figure 2b has (a) two balanced modes rep-
resenting a balanced heterozygous genotype on two- and
four-copy levels (AB and AABB); (b) three-copy level
(between balanced modes) with the full spectrum of allelic
imbalances, including LOH (AAA, AAB, ABB, BBB); (c) few
levels higher than four copies accounting for possible five, six,
seven... copies.

The near-diploid pattern has genomic DNA mainly presented
in one, two, and three copies, whereas the near-tetraploid
pattern has the well-represented two-, three-, four-, and five-
copy layers. These patterns appeared to be easily distin-
guished in the case of the high density of alteration events
observed in the current series of the breast carcinomas. A
unique type of GAP pattern in the series was observed in
BLC_T10 (Figure 2c). This pattern is characterized by sparse
balanced cluster (due to a single chromosome with balanced
genotype) and very strong homozygous clusters on the 3-copy
level. This may be interpreted as an almost pure triplication

of a haploid genome, possibly similar to the triploid glioblas-
toma cases described in [15].

DNA index and karyotype were used to verify correspondence
between the interpretation of GAP pattern and the actual
tumor genomic status. In silico DNA indexes inferred from
SNP arrays were very close to actual tumor DNA indexes
measured with flow cytometry (FCM) analysis for 16 of the 18
breast carcinoma samples tested (Table 1, Additional data file
1). The DNA index provided by FCM characterizes DNA con-
tent of tumor genome relative to normal diploid genome,
which has a DNA index defined as 1. In silico DNA indexes
were estimated by averaging segmental copy numbers
(divided by 2), inferred from the GAP pattern. For 11 cases,
the difference between actual and in silico DNA index was less
than 0.1; for five cases, it was less than 0.3. With the exception
of two outliers, this difference was always less than 0.5, which
is the minimal absolute error in the case of wrong assignment
of the overall copy-number scale (pattern shift on +1 or -1
copy). For the two outliers (BLC_B1_T22 and BLC_T34),
GAP patterns were perfectly near-diploid with a clear con-
trast, making cluster misattribution unlikely. The discrep-
ancy in DNA index estimation requires further biologic
verification (for example, in the case of BLC_B1_T22, there
might be a pure and possibly recent duplication of the diploid
tumor cells as the in silico DNA index was equal to half of the
experimental index).

Breast cancer cell lines with known karyotypes were used for
another validation of GAP interpretation. The tetraploid
breast cancer cell line MDA-MB-175-VII (MDA_175; [34])
has a clear near-tetraploid pattern of GAP (Figure 3a). The

Characteristic genome alteration print (GAP) patternsFigure 2
Characteristic genome alteration print (GAP) patterns. Two characteristic (a, b) and one unique (c) GAP patterns obtained in the analysis of a breast 
carcinoma series: (a) near-diploid pattern, sample BLC_ T34; (b) near-tetraploid pattern, sample BLC_T09; and (c) possible near-triploid pattern, sample 
BLC_T10. Attribution of genotypes is based on the type of pattern; best-fitting models are shown.
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unique balanced cluster must be attributed to a four-copy
level because two levels of losses visible below it could not
account for 1 and 0 copies, but rather for 3 and 2 copies
because of their positions and the absence of a normal contin-
gent in the cell line. Circles on each side of the balanced clus-
ter fit with AAAA and AAAB, and ABBB and BBBB genotypes,
respectively, also implying a two-copy level. It is noteworthy
that two-copy regions are represented exclusively by
homozygous genotypes.

A near-tetraploid genome implies the number of chromo-
somes to be close to 92 (88 autosomes = two sets of diploid
genomes). Copy-number summary for centromeric regions
was considered a surrogate measure of chromosome number.
As no SNP measurements can be performed at centromeres
because of their highly repetitive DNA structure, pericentric
regions were used to estimate the copy-number status of the
chromosomes. The status of 39 pericentric regions (two for
each of the 17 metacentric autosomes and one for each of the
five acrocentric autosomes) was determined according to
GAP. The number of autosomes in MDA_175 was estimated
to be 86.5, which is close to the description in [34] (model
number was 84 chromosomes; range, 82 to 89; verified on the
cell line used for the SNP-array). Table 2 shows the frequency
of occurrence of the inferred copy number of pericentric
regions (also for other tumor samples considered in this
study, with more-detailed information presented in Addi-
tional data file 2). A similar analysis was performed with the
MDA-MB-468 (MDA_468) cell line; this hypotetraploid
breast cancer cell line (modal number, 64; range, 60 to 67)

[34] showed a typical tetraploid GAP pattern (Figure 3b).
Estimated autosome number (71.5) matched the description,
and the slight overestimation was likely due to segmental
amplification in one pericentric region (Table 2 and Addi-
tional data file 2). Taken together, these results indicate cor-
rect local assignment with our approach.

It should be noted that determination of the reference point
for gain and loss attribution for complex highly rearranged
cancer genomes is not always obvious, even with known pat-
terns of rearrangements and absolute copy numbers. Samples
displaying a near-diploid GAP pattern (as in Figure 2a) repre-
sent a simple situation, as their unique balanced cluster cor-
responding to 2-copy indicates the reference point. Near-
tetraploid patterns with a unique balanced cluster at four cop-
ies (such as that of the cell line in Figure 3a) and inferred
autosome numbers close to 88 indicate underlying tetra-
ploidy, and it is logical to set the reference point to four copies
in these cases. Underlying ploidy is less clear for intermediate
DNA index or autosome number (between one and two, or 44
and 88, respectively), and the GAP shows a tetraploid pattern
with two balanced clusters (as for BLC_B1_T19 and
BLC_B1_T20 samples). Correct interpretation of gains and
losses in such cases requires further biologic validation.

Automatic recognition of segmental copy numbers and 
genotypes
The GAP pattern can be easily mined by automatic proce-
dures. This procedure includes (a) recognition of a GAP pat-
tern and (b) assignment of segmental copy numbers and

Table 1

Experimental and in silico DNA indexes and parameters of GAP model

Sample ID DNA index FCM DNA index GAP DNA index OverUnder Tumor content 1-pBAF Contraction qLRR

BLC_B1_T14 1.14 0.85 0.98 0.85 0.37

BLC_B1_T17 0.84 0.82 0.97 0.77 0.17

BLC_B1_T19 1.6 1.63 2.93 0.4 0.27

BLC_B1_T20 1.41 1.48 3.06 0.4 0.2

BLC_B1_T22a 1.98 0.94 1.02 0.87 0.44

BLC_T07 1.68 1.49 3.12 0.44 0.28

BLC_T09 2.02 1.85 1.89 0.92 0.47

BLC_T10 1.88 1.9 1.07 0.95 0.47

BLC_T12 1.51 1.54 2.56 0.65 0.35

BLC_T15 1.11 0.89 0.99 0.74 0.27

BLC_T23 1.32 1.39 2.72 0.41 0.21

BLC_T31 1.91 1.84 1.48 0.84 0.45

BLC_T34a 1.55 0.99 1.04 0.87 0.42

BLC_T37 1.51 1.53 1.44 0.89 0.44

L_B1_T24B 1.84 1.64 2.61 0.59 0.29

L_B1_T25A 1.00 1.04 3.03 0.39 0.17

L_B1_T30 1.84 1.83 1.53 0.78 0.42

L_B1_T47 1.00 1.03 1.47 0.45 0.17

aTwo samples with clear near-diploid pattern of GAP and discordant experimental DNA indexes.
Genome Biology 2009, 10:R128
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genotypes to a corresponding tumor genome based on this
pattern. As described earlier, the GAP is characterized by two
parameters: p, which is the proportion of tumor contamina-
tion by normal DNA affecting BAF values, and q, which is a
coefficient of contraction of LRR values. The automatic recog-
nition procedure searches for parameters and position of a
model GAP that best fits to the experimental GAP. Quality of
fitness is assessed by genome coverage in terms of number of
SNPs that are explained by the model (see Material and meth-
ods for details). In other words, the model GAP template that
most closely corresponds to the experimental GAP is selected.
In the second round, the model GAP is used as the basis for
interpretation of the experimental GAP, and segmental copy
numbers and genotypes are assigned accordingly.

The quality of pattern recognition was tested on 42 in-house
samples, including the samples validated by DNA index. The
procedure performed 41 correct and one erroneous recogni-
tions, as compared with manual assessment. The problematic
sample presented a high variance and low contrast, and the
correct solution had a high but not the highest score. In gen-
eral, the method tolerates contamination of tumor samples by
normal DNA and experimental variations, as shown by cor-
rect recognition of our validated series with up to 60% of nor-

mal contamination and up to 0.17 contraction of LRR scale
(see Table 1).

We considered subclones as segments located essentially
between designated clusters. They could be artefacts from
incorrect segmentation, or true tumor heterogeneity. An
interesting case is represented by sample BLC_T31. Its first
interpretation was that of a near-tetraploid pattern, but its
second interpretation with a very similar score was that of a
near-diploid pattern because of poor representation of the
three-copy level interpreted as subclones in the latter case.
The DNA index determined by FCM indicated near-tetra-
ploidy, supporting the first interpretation (see Additional
data file 1).

It should be stressed that (a) correct recognition requires
good contrast between clusters and multiplicity of genetic
events (for example, patterns consisting of AB and A∅ geno-
types versus AABB and AA cannot be distinguished when no
other evidence of a four-copy pattern exists); (b) the robust-
ness of the quality criterion used in our method is not always
satisfactory: the correct solution often differs from incorrect
solutions by less than 1%; (c) the linear models used in the
method diverge from experimental data in both the LRR and
BAF scales when copy numbers were higher than 6-copy.

Genome alteration prints (GAPs) for breast cancer cell linesFigure 3
Genome alteration prints (GAPs) for breast cancer cell lines. GAPs for breast cancer cell lines: (a) MDA_175; and (b) MDA_468. Both GAPs show a 
near-tetraploid pattern, and genotypes were assigned accordingly.
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However, no universal rule to correct this effect was identified
on the basis of the 41 tumors examined.

Comparative testing of GAP recognition
When characterizing rearrangements in tumor genome
measured by SNP array, it is essential to extract from data (a)
the degree of genomic instability displayed by the number
and distribution of breakpoints, and (b) the type of each alter-
ation. The GAP method is based on both LRR and BAF break-
points and is therefore not directly suitable for breakpoint
counting. To minimize double counting of a single break-
point, LRR and BAF breakpoints separated by a small region
(arbitrary defined as 10 SNPs) were simply merged. More
complicated pooling of LRR and BAF breakpoints could allow
more accurate breakpoint counting, and this would not be
expected to influence the performance of the GAP method.
Another way to address breakpoint detection in highly rear-
ranged cancer genomes with possible low tumor content and
noisy profiles is to use the GAP pattern as a source for second-
ary optimization.

The GAP method is elaborated for determination of alteration
events in complex, highly rearranged cancer genomes (in con-
trast, it would be of little help for interpretation of a stable
genome with few amplifications). The methods specifically

developed for analysis of cancer genomes include SOMATICS
[18] and BAFsegmentation [17], which reveal segments with
allelic imbalances based on various models but do not pro-
duce copy numbers and genotypes. The OverUnder algorithm
presented by Attiyeh and associates [16] estimates ploidy, as
well as copy numbers and genotypes, and has been shown to
outperform PennCNV, IlluminaCN Estimate, and CBS for the
analysis of cancer genomes. We compared our automatic GAP
fitting method with the OverUnder algorithm in terms of
quality and consistency of recognition.

The OverUnder algorithm (available as Illumina Beadstudio
plug-in) was initially applied to our validated series of breast
carcinomas to estimate the DNA indexes (Table 1). Over-
Under results for seven samples clearly deviate from experi-
mental data (Figure 4). These samples are characterized by
high levels of normal DNA contamination, as estimated by the
GAP model. The GAP method tolerated normal contamina-
tion, demonstrating better overall performance.

The self-consistency of the methods was tested on the basis of
dilution series available in the GEO database
(GEO:GSE11976) [17]. The HCC1395/CRL2324 cell line [34]
measured in this series is genetically complex and poorly
defined. However, estimated copy numbers and LOH regions

Table 2

Frequency of inferred copy numbers at pericentric regions and deduced autosome numbers

Copy numbera

Sample ID 1 2 3 4 5 6 7 8 Autosome number Patternb

MDA_175 5 9 16 4 4 1 86.5 2

MDA_468c 17 8 8 3 2 1 71.5 2

BLC_B1_T14 12 25 2 38 1

BLC_B1_T17 14 21 3 1 38.5 1

BLC_B1_T19 7 10 16 4 2 76.5 2

BLC_B1_T20 1 16 9 8 3 1 1 66.5 2

BLC_B1_T22 12 24 3 37.5 1

BLC_T07 15 13 8 1 1 1 70 2

BLC_T09 3 16 13 3 2 2 85.5 2

BLC_T10 21 9 2 3 3 1 87 1.5

BLC_T12 11 10 12 4 1 1 73.5 2

BLC_T15 10 27 2 40 1

BLC_T23 3 13 11 6 2 4 68.5 2

BLC_T31 5 4 25 1 2 1 1 84.5 2

BLC_T34 3 36 42 1

BLC_T37 1 16 9 6 1 4 2 70.5 2

L_B1_T24B 1 11 12 7 6 2 72 2

L_B1_T25A 37 2 46 1

L_B1_T30 3 11 23 1 1 79 2

L_B1_T47 1 34 2 1 1 47 1

aFrequency of inferred copy numbers (1 to 8 are indicated) at pericentric regions. b1, 2, 1.5 indicates a near-diploid, near-tetraploid, and near-triploid 
patterns of Genome Alteration Print (GAP), respectively (Figure 2, Additional data file 1). cEstimated high chromosome copy number (= 8) is likely 
to result from a segmental amplification in one pericentric region, leading to overestimation of the autosome number in MDA_468.
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must be consistent for all CRL2324 samples with various pro-
portions of tumor DNA. The results of the self-consistency
test are presented in Table 3 (more details in Additional data
file 3). The better self-consistency of the GAP method is obvi-
ous in terms of copy numbers and LOH. Structural reproduc-
ibility of tumor GAP pattern with various proportions of
normal DNA is illustrated in Additional data file 4.

GAP for Affymetrix SNP platform
Affymetrix GeneChip SNP 6.0 array was used to generate SNP
profiles of the BLC_B1_T45 sample. The GAP was obtained
according to the same strategy as for Illumina SNP data but
by using the profile-recognition method described in [14].

Comparison of the data generated on these two platforms is
shown in Figure 5. Affymetrix SNP measurements are repre-
sented by Log Copy Number Ratio and Allelic Differences as
compared with Illumina LRR and BAF, respectively. Germ-
line homozygous SNPs were omitted if fewer than 50 in a row,
and are therefore represented by small clusters along two par-
allel lines at 0 and 1 limits of the BAF scale in an Illumina plot.
Homozygous SNPs were always included in Affymetrix GAP
and therefore formed large clusters represented along diver-
gent diagonal lines (as allelic differences are dependent on
copy-number levels) in the Affymetrix plot. Genome regions
localized and attributed to a specific copy number in an Illu-

Comparison of genome alteration print (GAP) and OverUnder-based in silico DNA indexes with experimental DNA indexesFigure 4
Comparison of genome alteration print (GAP) and OverUnder-based in 
silico DNA indexes with experimental DNA indexes. GAP indexes (blue 
circles) show excellent correspondence with experimental DNA indexes. 
OverUnder indexes (red triangles) show more outliers with 
overestimation of the DNA index. Both methods show consistent results, 
but not corresponding to the experimental DNA indexes (1.98 and 1.5) 
for two samples, designated by enlarged markers.
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Table 3

Self-consistency of copy numbers and LOH in dilution series by using GAP and OverUnder analyses

GAP CN LOH DNA index Tumor DNA 1-p BAF q LRR

CRL2324 1 1 1.45 1 1 0.45

CRL2324_79 0.93 0.98 1.46 0.79 0.8 0.35

CRL2324_50 0.9 0.97 1.44 0.5 0.42 0.22

CRL2324_47 0.78 0.96 1.49 0.47 0.42 0.24

CRL2324_45 0.81 0.96 1.5 0.45 0.35 0.18

CRL2324_34 0.69 0.93 1.53 0.34 0.27 0.16

CRL2324_30 0.73 0.93 1.52 0.3 0.25 0.12

CRL2324_23 0.72 0.93 1.59 0.23 0.26 0.14

CRL2324_21 0.7 0.92 1.64 0.21 0.14 0.12

OverUnder CN LOH CN ± 1 CN CBS DNA index Tumor DNA

CRL2324 1 1 1 1 2.48 1

CRL2324_79 0.36 0.94 0.74 0.46 2.16 0.79

CRL2324_50 0.21 0.45 0.65 0.1 2.64 0.5

CRL2324_47 0.22 0.45 0.68 0.1 2.5 0.47

CRL2324_45 0.34 0.45 0.71 0.11 2.85 0.45

CRL2324_34 0.24 0.44 0.56 0.19 2.57 0.34

CRL2324_30 0.14 0.45 0.48 0.23 2.54 0.3

CRL2324_23 0.31 0.45 0.68 0.23 2.51 0.23

CRL2324_21 0.07 0.47 0.12 0.05 1.11 0.21

CN = copy number; LOH = loss of heterozygosity; tumor DNA = proportion of tumor DNA in the dilution; DNA index = in silico DNA index with 
each algorithm; 1-p BAF and q LRR are parameters of the model GAP; CN ± 1, copy numbers are considered to be consistent when the difference 
is less than or equal to 1; CN CBS, consistency is calculated on averaged (by median) and rounded copy-number assignments in CBS determined 
segments.
Genome Biology 2009, 10:R128
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mina-profiled genome were used to color code the regions in
the Affymetrix SNP profile. Excellent concordance was
observed between Affymetrix and Illumina patterns, as
shown by relevant Illumina-derived color gradation on
Affymetrix GAP. Visible differences in relative cluster sizes
are due to different distributions of measured SNPs along the
genome in Illumina and Affymetrix chips. The main conclu-
sions from this comparison are (a) excellent correspondence
between the two technologies in terms of copy-number varia-
tion; and (b) GAP can be used for analysis of complex cancer
genomes on Affymetrix platforms.

Conclusions
We present a method to mine complex genome alteration
profiles measured with SNP-arrays. We introduce genome
alteration print (GAP), a combined side-view projection of
LRR and BAF segmented and smoothed profiles. The
method, based on GAP pattern recognition, is fully automatic
and provides segmental copy numbers and genotypes. It also
estimates tumor-sample contamination by normal DNA. The

method performs well, even for poor-quality data, low tumor
content, and highly rearranged tumor genomes. Visualization
of the GAP recognition pattern characterizes overall rear-
rangements in a tumor sample and can be used to verify the
results. The GAP method is designed for Illumina SNP-array,
but can be easily applied to Affymetrix SNP-arrays. This
method could be a valuable tool to identify recurrent altera-
tions in complex tumor-genome profiles.

Materials and methods
Illumina arrays
A series of 40 breast carcinomas, including cases described in
[35], was analyzed, as well as the breast cancer cell lines
MDA-MB-175-VII (MDA_175) and MDA-MB-468
(MDA_468) [34]. DNA was extracted from samples, and
genomic profiling of the tumor samples was performed at
Integragen [36] on 300K Illumina SNP-arrays (Human
Hap300-Duo). SNP-array data are available through Gene
Expression Omnibus [37] [GEO:GSE18799].

Genome alteration print (GAP) for Affymetrix single-nucleotide polymorphism (SNP) GeneChip SNP 6.0 arrayFigure 5
Genome alteration print (GAP) for Affymetrix single-nucleotide polymorphism (SNP) GeneChip SNP 6.0 array. BLC_B1_T45 tumor sample measured on 
two SNP-array platforms, analyzed by using GAP, and superimposed by color code: (a) GAP for Affymetrix; and (b) GAP for Illumina. Copy numbers 
obtained from the Illumina GAP were coded by colors indicated at the bottom of the Figure. Concordance between Affymetrix and Illumina patterns is 
illustrated by the relevant Illumina-derived color gradation on Affymetrix GAP. Germline homozygous regions are boxed. The main cluster patterns are 
indicated by hexagonal frames. The differences in relative cluster sizes are due to different distributions of SNPs measured along the genome in Illumina 
and Affymetrix chips.
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Data processing
Normalization of raw data was performed with Illumina
Beadstudio software version 3.3 by using standard settings
(all supporting files are provided by Illumina [7]). The nor-
malization procedure tQN proposed in [9] also was used to
make BAF symmetric.

LRR and BAF segmentation and construction of the 
GAP
The circular binary segmentation (CBS) algorithm (DNAcopy
package, Bioconductor) [12,38] was applied to LRR and fil-
tered BAF data separately to define breakpoints (the minimal
level of significance was defined as 10-2 for LRR and 10-3 for
BAF profiles). Smoothing of outliers was performed in both
cases. LRR was smoothed by the median between break-
points. To obtain one banded BAF profile, (a) non-informa-
tive homozygous SNPs were filtered out, based on the
threshold (mBAF > 0.97), as suggested in [17]; (b) tQN nor-
malized and reflected relative to the 0.5 axis version of BAF,
named mirrored BAF (mBAF) [17], was segmented. In addi-
tion, the boundaries of germline homozygous regions,
detected when more than 50 successive SNPs had a
homozygous call (the number of SNPs was set arbitrarily),
were included into the set of breakpoints. The mode estima-
tion (dip-test package, [38]) was used for smoothing of the
mBAF profile to maintain the contrast between balanced and
slightly shifted imbalances.

Any region between two consecutive breakpoints from the
LRR and BAF breakpoint mixture was considered to be an
alteration unit (possibly unaltered) and characterized by (a)
the averaged LRR, (b) the mode of mBAF distribution, and (c)
the length of the corresponding region (in SNP counts). The
list and the two-dimensional visualization of all alteration
units of a measured sample were denoted the genome altera-
tion print (GAP). For GAP visualization, each alteration unit
was represented by a circle centered on BAF (x-axis) and LRR
(y-axis) smoothed values, and the radius was scaled to the rel-
ative size of the corresponding chromosome region.

Comments on stability of GAP
The CBS algorithm was used to favor sensitivity over specifi-
city in the breakpoint-detection process, as "false" break-
points do not significantly change the overall GAP pattern.
False alteration units often appeared as artefacts at joining
LRR and BAF breakpoints, but were not visible, provided the
true alteration units were significantly longer. More problems
were observed when the robust profile estimators were
applied to poor-quality data: the absence of true breakpoints
could significantly alter the GAP pattern.

Model GAP
The model GAP was determined by the independent combi-
nation of BAF and LRR models. The BAF model was used to
determine the position of clusters on the horizontal scale, and

the LRR model was used to determine the relative position of
clusters on the vertical scale.

The cancer BAF was modeled as the weighted sum of B-allele
counts in cancer and normal genotypes, as a ratio of the max-
imal possible B allele counts at the current copy-number
level:

where p is normal DNA proportion (and hence (1 - p) is tumor

DNA proportion);  and  are the B and A allele counts

in the tumor genotype; (  + ) is considered to be the

copy-number level; and  is the B allele count in normal

genome (  = 0, 1, 2). A similar model was described in

[17,24]; a model proposed in [18] could also be used for GAP-

method settings.

To estimate normal DNA contamination in a measured tumor
sample, at least one cluster annotation (copy number and
genotype) and its position on the BAF scale must be known.
For example, projections of cluster centers in the experimen-
tal GAP pattern (Figure 1e) were assessed to be as follows:
BAFM = 0.765 for the B cluster, BAFM = 0.845 for the BB clus-
ter, BAFM = 0.885 for the BBB cluster, and BAFM = 0.628 for
the ABB cluster. Substitution of BAFM, B allele counts, and
copy numbers in the model provides an estimation of the con-
tamination coefficient p = 0.307, 0.31, 0.309, and 0.312,
respectively. As expected, inferred coefficients were very
close to each other and estimated the normal DNA contami-
nation around 30% for this sample.

The same method was used to estimate the proportion of

tumor cells bearing a given rearrangement (subclone); in the

case shown in Figure 1d: BAFM = 0.575,  = 1, +  = 1,

 = 1 gave the normal content estimation p ≈ 0.74 and

hence the tumor content was 1 - p ≈ 0.26.

LRR was modeled by applying a simple coefficient of contrac-

tion q to the standard log ratio: ; n is the

copy number, which produces the sequence of LRR values: -

q, 0, 0.58q, q, 1.32q, 2q,... for corresponding copy number

levels: 1, 2, 3, 4, 5... The LRR of zero copy (homozygous dele-

tion) was arbitrarily set at -3q (log20 = - ∞, variation in real

LRR is usually very large and not followed by the model).
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Fitting model GAP and copy number and genotype 
recognition
Automatic recognition of the tumor GAP pattern consisted of
an exhaustive search for (a) the best centering of the model
GAP on the LRR scale for each pair of contamination propor-
tion (p) and coefficient of contraction (q), and (b) the best (p,
q) couple satisfying a few necessary conditions. The genome
coverage in terms of the number of SNPs explained by the
model was used as the quality criterion. The necessary condi-
tions were used to filter unusual interpretations.

GAP pattern-recognition algorithm: 1) Initiation of a grid

with 0.005 cell dimension on the BAF × LRR plane and defi-

nition of the densities of alteration units in SNP counts on the

grid; 2) Smoothing of the densities by averaging adjacent cells

and filtering of low densities to enhance the contrast (densi-

ties were set to 0 in 95 to 98% of cells in the grid); 3) Choosing

model parameters (p, p ∈ {0,0.02, 0.04, ...,

0.86};q, ) and setting of the GAP template

with one to five copies by determining the centers and sizes of

model clusters on the grid; 4) For a given pair (p, q), search-

ing for the best centering of the GAP template on the grid in

terms of maximal density falling into designated clusters; 5)

Checking all possible combinations of p and q and ranking

templates; 6) Filtering of templates according to necessary

conditions. This removes from further consideration redun-

dant interpretations with many empty clusters; 7) Choosing

the best interpretation, superimposing the model GAP to the

experimental one, and ascribing copy number and genotype

to each alteration unit after the annotation of its closest clus-

ter on the template.

In the case of low contrast between clusters, additional
adjustments of recognition are necessary to attribute cor-
rectly the alteration units located between designated clus-
ters. A confidence score is attributed to all alteration units
(depending on the distance to the nearest model cluster(s)),
and the linear copy number and genotype profiles are
adjusted by keeping confident assignments and correcting
less-confident assignments.

Experimental estimation of ploidy and karyotyping
The DNA content of tumor samples was obtained with flow
cytometry (FCM) analysis after propidium iodine staining, as
described in [39]. The DNA index is equal to 1 for normal dip-
loid cells. A karyotype of MDA_175 was obtained by a routine
procedure [40].

Estimation of DNA content and chromosome number 
based on SNP data
The inferred copy-number profile was averaged along the
genome, providing the DNA content of the corresponding
cancer sample.

Chromosome copy numbers were characterized by the status
of pericentric regions, defined as the alteration units directly
before or after the centromeric part of the chromosome
(which has no SNP measurement per se). The definition of
pericentric region therefore depends on the SNP chip used for
genotyping. Regions less than 10 SNPs were ignored. If the
pericentric alteration unit is a small region (less than 100
SNPs), setting the chromosome copy number on the basis of
this alteration unit could be erroneous and could therefore
interfere with karyotype assessment.

Dilution series
The dilution series described in [17], measured by Illumina
370 K array and available in the GEO database [37]
[GEO:GSE11976], were processed in a similar way to in-house
tumor samples: (a) normalization by the method proposed in
[9]; (b) segmentation of LRR and BAF profiles by CBS, in the
same way as described in subsection 3 of the Materials and
Methods; (c) construction of GAP, GAP pattern recognition,
and copy-number assignment.

Results of the OverUnder [16] algorithm
The OverUnder plug-in was applied to the data normalized in
BeadStudio 3.3, with window length equal to 51. OverUnder
produces continuous copy-number values, which were
rounded to discrete values and then summarized in compari-
son tables. As rounding can introduce artificial discrepancies,
the procedure was slightly modified so that copy numbers
were considered to be equal when they differed by no more
than 1 unit (column CN ± 1, Table 3). CBS sections also were
used to average (by median) and to round copy-number
assignments (column CN CBS, Table 3).

Affymetrix SNP data
One BLC sample also was analyzed on the Genome-Wide
Human SNP-array 6.0, according to the manufacturer's
instructions (Affymetrix Inc., Santa Clara, CA). Normaliza-
tion was performed by using the Genotyping Console™
(Affymetrix), and profile recognition was performed by using
the method described in [14].

Availability
An implementation of the proposed GAP pattern recognition
and detection of copy numbers and genotypes based on seg-
mented profiles is available, together with the supporting
data [41]. SNP array data for the 19 primary tumors and the
two cell lines shown here are available through Gene Expres-
sion Omnibus [37] [GEO:GSE18799].

Abbreviations
BAF: B allele frequency; BLC: basal-like breast carcinoma;
CBS: circular binary segmentation; CN: copy number; CNV:
copy-number variation; FCM: flow cytometry; LOH: loss of
heterozygosity; LRR: Log R ratios; mBAF: mirrored BAF;
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MDA_175: MDA-MB-175-VII breast cancer cell line;
MDA_468: MDA-MB-468 breast cancer cell line; SNP: sin-
gle-nucleotide polymorphism.

Additional data files
The following additional data are included with the online
version of this article.

A table of images of GAP patterns and copy-number recogni-
tion templates for a series of breast carcinomas with available
DNA indexes (Additional data file 1), a table listing copy-
number status of pericentric regions inferred on the basis of
GAP pattern for a series of breast carcinomas and cell lines
(Additional data file 2), two tables indicating self-consistency
in copy-number attribution in dilution series calculated for
two methods of recognition: GAP method and OverUnder
algorithm (Additional data file 3), and GAP patterns and
copy-number recognition templates for the dilution series of
cell line CRL2324 (Additional data file 4).

Additional data file 1GAP patterns and copy-number recognition templatesA table of images of GAP patterns and copy-number recognition templates for a series of breast carcinomas with available DNA indexesClick here for fileAdditional data file 2Copy-number status of pericentric regionsA table listing copy-number status of pericentric regions inferred on the basis of GAP pattern for a series of breast carcinomas and cell linesClick here for fileAdditional data file 3Self-consistency in copy-number attribution in dilution seriestwo tables indicating self-consistency in copy-number attribution in dilution series calculated for two methods of recognition: GAP method and OverUnder algorithmClick here for fileAdditional data file 4Cell line CRL2324GAP patterns and copy-number recognition templates for the dilu-tion series of cell line CRL2324Click here for file
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