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Identifying CNVs<p>A highly sensitive and configurable method for calling copy number variants from SNP array data is presented that can identify even rare CNVs</p>

Abstract

Copy number variants (CNVs) have roles in human disease, and DNA microarrays are important
tools for identifying them. In this paper, we frame CNV identification as an objective function
optimization problem. We apply our method to data from hundreds of samples, and demonstrate
its ability to detect CNVs at a high level of sensitivity without sacrificing specificity. Its performance
compares favorably with currently available methods and it reveals previously unreported gains and
losses.

Background
Identifying DNA variants that contribute to disease is a cen-
tral aim in human genetics research. Pinpointing these causal
loci requires the ability to accurately assess DNA sequence
variation on a genome-wide scale. In recent years, considera-
ble progress has been made in identifying and cataloging sin-
gle-nucleotide polymorphisms (SNPs) in many populations
[1]. Commercial SNP microarray platforms can now geno-
type, with >99% accuracy, over one million SNPs in an indi-
vidual in one assay [2,3].

The discovery of copy number variants (CNVs) as a significant
source of variation has complicated the identification of
genetic differences among humans. CNVs are defined as
chromosomal segments at least 1,000 bases (1 kb) in length
that vary in number of copies from human to human [4].
Since their discovery, several high-profile studies have been
published associating copy number variation in the genome

with a variety of common diseases. Recent examples include
Alzheimer's disease [5], Crohn's disease [6], autism [7], and
schizophrenia [8]. The significance of the gains (copy number
greater than two) and losses (copy number less than two) that
comprise these variants is increasingly evident, and cata-
loging them and assessing their frequencies has become an
important goal.

SNP arrays contain hundreds of thousands of unique nucle-
otide probe sequences, each designed to hybridize to a target
DNA sequence. When a DNA sample is properly prepared and
applied to the array, specialized equipment can produce a
measure of the intensity of hybridization between each probe
and its target in the sample. The underlying principle is that
the hybridization intensity depends upon the amount of tar-
get DNA in the sample, as well as the affinity between target
and probe. Extensive processing and analysis of these raw
intensity measures yield estimates of some characteristic of
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the target sequences in the sample - either target quantity
[9,10], base composition [11,12], or both. In copy number
inference, the objective is to identify chromosomal regions at
which the number of copies per cell deviates from two; these
include gains and losses.

There is now a large body of literature describing algorithms
to infer copy number from SNP array data. All such algo-
rithms address one or more of the three general steps: nor-
malization, raw copy extraction, and CNV calling.
Normalization is performed on the raw array intensity data in
order to be able to compare these values fairly, thereby taking
into account differences in overall array brightness and addi-
tional sources of nuisance variation. Raw copy number
extraction entails converting the multiple measurements for
each genomic site into a single raw measure of copy number.
The word 'raw' here indicates that measurements from sur-
rounding loci are not yet taken into account, and the measure
is permitted to be non-integer. Since gains and losses occur in
discrete segments often encompassing several such loci, true
copy number is locally constant. Consequently, the final CNV
calling step takes advantage of this fact, smoothing or seg-
menting the raw copy numbers into discrete segments of con-
sistent copy number.

The Affymetrix SNP array was originally designed so that
each SNP is interrogated by 24 to 40 unique probes. Of these,
half are perfectly complementary to the sequence harboring
the SNP site (perfect match probes), while half mismatch the
sequence at the probe's middle nucleotide (mismatch
probes). The mismatch probes were intended to capture
background effects such as cross-hybridization. The perfect
match/mismatch design was used for the 10,000, 100,000,
and 500,000-SNP versions of the array. Most recently,
Affymetrix has introduced the SNP Array 6.0, which interro-
gates nearly one million SNPs and differs fundamentally from
previous versions. First, each SNP on the 6.0 array is interro-
gated only by six or eight perfect match probes - three or four
replicates of the same probe sequence for each of the two alle-
les. Therefore, intensity data for each SNP consist of three or
four repeated pairs of measurements. Second, the SNP probe
sets are augmented with nearly one million CNV probes,
which are meant to interrogate regions of the genome that do
not harbor SNPs, but that may be polymorphic with regard to
copy number. Each such CNV site is interrogated by only one
probe.

For the Affymetrix platform, the community has largely set-
tled upon quantile normalization [13] as a simple but effective
normalization method. The next step, raw copy number
extraction, typically entails fitting some model to raw probe
intensity data [14-17]. Methods devoted to the final step -
making CNV calls from raw copy number data - are numer-
ous, and employ various strategies. Three commonly used
strategies are hidden Markov models (HMMs) [17,18], circu-
lar binary segmentation [19,20], and adapted weight smooth-

ing [21,22]. Although these methods appear to be quite
different from one another in terms of the computational or
statistical model they incorporate, at the core of each is an
objective function whose optimum solution yields the
method's copy number inference for a region. Each objective
function is defined by the observed data (raw copy number)
and is a function of inferred state (copy number call). The
sequence of copy number calls (states) that optimizes the
objective function gives the CNV call for each method.

In this paper, we present a general framework to call CNVs
from raw copy number using optimization, based on an objec-
tive function that is composed of several explicitly formulated
objective criteria. These criteria are carefully designed to
quantify the desirability of a CNV assignment with respect to
various biological insights and experimental considerations.
Our general approach is to first apply a signal processing
method to aggressively flag candidate gains and losses. The
objective function is then optimized on each region and flank-
ing sequence, yielding final CNV calls and boundaries. Note
that the optimization process also filters out many candidate
regions; that is, complete rejection of a candidate region is
quite possible as it is part of the solution space for the corre-
sponding optimization problem. This two-step procedure has
the advantages of drastically reducing the computational time
necessary to find the set of solutions, while identifying precise
boundaries for each putative CNV. Indeed, for N markers and
C CNV classes, the solution space of the optimal copy number
assignment problem is of size O(CN). Exhaustively searching
for the optimal solution is quite infeasible unless N becomes
very small. In our case, N ≈ 1.8 million, so we adapt a simu-
lated annealing-based algorithm that efficiently searches the
solution space at near-interactive rates.

We note here the distinction between CNVs and copy number
polymorphisms (CNPs). CNPs are defined to be CNVs that are
present and have identical boundaries (and are therefore
likely identical-by-descent) in at least 1% of the human popu-
lation [23]. Computationally, such higher-frequency poly-
morphisms present opportunities for detection that are not
otherwise possible. A recent study [17] proposes separate
methods to detect CNVs and CNPs, with the latter involving
detecting correlations in raw copy numbers across samples.
The current work is designed to address the problem of iden-
tifying rare and de novo CNVs, as it does not make use of mul-
tiple samples to convert raw copy number into CNV
inferences.

A key feature of our method is that it is highly configurable,
allowing researchers to define their own objective functions
and tune parameters to emphasize the relative importance of
different objective criteria. We demonstrate with a simple
objective function involving a linear combination of variabil-
ity, parsimony, and length, which performs surprisingly well.
We evaluate the performance of our method on Affymetrix
6.0 array data from 270 HapMap individuals [1]. These sam-
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ples are increasingly well characterized with regard to CNVs
and include 60 mother-father-child trios. Therefore, they
serve as an excellent benchmark data set. We show via sys-
tematic in silico studies that the proposed method compares
favorably with four methods that are currently publicly avail-
able. Furthermore, we experimentally validate, using labora-
tory techniques on genomic DNA, several CNVs newly
discovered by our method. These results demonstrate the
proposed method's potential to uncover human genetic vari-
ation that may be missed by other computational approaches.

The general framework described in this paper is imple-
mented and freely available in a flexible, user-friendly R pack-
age ÇOKGEN*. ÇOKGEN works from the raw binary .CEL
files produced by the Affymetrix protocol. It performs all of
the steps in Figure 1, including quantile normalization, raw
copy extraction, and CNV extraction (wherein the user may
specify the desired objective function). Its graphical tools also
allow the user to manually inspect the raw copy number data
to gauge confidence in each putative aberration.

Results and discussion
We applied our algorithm to Affymetrix 6.0 array data from
270 HapMap individuals. The HapMap samples are divided
into African (YRI), Caucasian (CEU) and Asian (CHB/JPT)
ethnicities. ÇOKGEN identified a total of 16,128 autosomal
CNVs over all the samples, for an average of 60 CNVs per
individual. Of the 16,128 CNVs, 15,369 are identified in mul-
tiple individuals. Figure 2 graphically displays all CNVs iden-
tified by our method. As expected, many common CNVs are
located near the centromeres and telomeres, which are
known to harbor variably repetitive elements.

The distribution of the CNVs among different ethnicities in
the population is presented in Table 1. It is well known that
Asian and Caucasian populations are genetically less diverse
than African populations due to population bottlenecks. This
is reflected in Figure 3, which shows a shifted frequency dis-
tribution in the YRI CNVs relative to the CEU and JPT/CHB
CNVs.

Trio discordance as a copy number variant detection 
assessment tool
Although CNVs can arise in a de novo manner, it is believed
that at least 99% of all CNVs in an individual's genome are
inherited [23]. The 60 mother-father-child trios in the Hap-
Map data set therefore provide an opportunity to assess the
accuracy of CNV detection algorithms by measuring the rate
of Mendelian concordance. A CNV in a trio child is said to be
Mendelian concordant if it appears in at least one of the par-
ents. Unless the CNV is de novo, any discordance is either the
result of a false positive call in the child or a false negative call
in one of the parents (in rare cases, discordance could also
result from a parent harboring a duplication and a deletion at
the same locus but on different chromosomal homologs). Dis-

cordance rate, while useful, is imperfect as an assessment
measure. In particular, it is possible for a CNV identification
algorithm to have artificially low discordance rates by calling
each CNV in a large number of samples. Even if the samples
in which a gain or loss is called are randomly selected, fre-
quently called CNVs will have a lower discordance rate, sim-
ply by chance. Therefore, while comparing the performance
of algorithms according to trio discordance rate, we also
account for the number of frequently called CNVs, as dis-
cussed in the next subsection.

In the current study, to decide whether two CNVs (of the same
type - loss or gain), c1 and c2, from two different samples cor-
respond to the same event, we use the concept of minimum
reciprocal overlap. We first define o(c1, c2) as the number of
markers existing in both c1 and c2 and l(c) as the number of
markers in a CNV c. Minimum reciprocal overlap (MRO(c1,
c2)) of c1 and c2 is defined as:

This measure provides a standard way of determining the
similarity in the chromosomal location of two CNVs, regard-
less of the scale of the events. For our discordance and sensi-
tivity analysis, we use the MRO measure with a threshold of
0.5 to decide whether two CNVs identified in two different
individuals correspond to the same event. That is, at least half
of c1 must be overlapping with c2 and vice versa for c1 and c2 to
be considered as the same CNV in different samples.

Performance of ÇOKGEN in comparison to existing 
software
We compared the performance of our algorithm with that of
four other software packages. The DNA-Chip Analyzer
(dChip) [24] is a Windows software package for Affymetrix
platform and high-level analysis of gene expression microar-
rays and SNP microarrays [14,25]. Birdseye [17] is a rare CNV
identification tool based on HMMs, and is part of the Bird-
suite platform [17]. QuantiSNP [26] is an analytical tool for
the analysis of copy number variation using whole genome
SNP genotyping data. It was originally developed for Illumina
arrays, but version 1.1 of this software supports Affymetrix
6.0 data files with additional data conversion steps. PennCNV
[27] is the last software tool that we use for CNV detection for
our comparative analyses. Although it is also designed to han-
dle signal intensity data from Illumina arrays, it currently
supports Affymetrix.

Comprehensive experimental results show that ÇOKGEN
outperforms all of these four CNV identification tools in
terms of general trio discordance. Overall, ÇOKGEN has a
30.8% discordance rate whereas Birdseye, dChip, QuantiSNP
and PennCNV demonstrate discordance rates of 42.6%, 94%,
74% and 32.9%, respectively, on the same array data. It is
important to note that dChip was originally optimized for
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Genome Biology 2009, 10:R119

Overview of the proposed CNV detection algorithmFigure 1
Overview of the proposed CNV detection algorithm. ÇOKGEN first extracts the intensity values from the Affymetrix .CEL files. It then obtains the raw 
copy numbers for each marker using regression with the help of the Affymetrix software's SNP genotype calls. The edge detection determines the 
candidate loss/gain regions from smoothed copy number signal, which is obtained by low-pass filtering the raw copy numbers. We determine the final class 
assignments using objective function optimization. The function is optimized using an iterative simulated annealing procedure, with initialization provided 
by the edge detection.
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CNVs identified by ÇOKGENFigure 2
CNVs identified by ÇOKGEN. For each marker position on every chromosome, the gain or loss frequencies in the HapMap samples are plotted. The 
frequencies for gains are shown on the positive y-axis with green lines; the loss frequencies are shown on the negative y-axis with blue lines.
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detecting somatic copy number aberrations in cancer cells
from earlier versions of the Affymetrix platform, and Quan-
tiSNP is designed for data obtained from the Illumina plat-
form. Therefore, Birdseye, PennCNV, and ÇOKGEN's
superior performance compared to dChip and QuantiSNP on
Affymetrix 6.0 data is not surprising. For this reason, we
restrict our assessment to ÇOKGEN, Birdseye and PennCNV
in the remainder of this section.

As discussed in the previous section, the expected discord-
ance rate of any algorithm approaches zero as it calls the CNV
in more samples. At the extreme, if the algorithm identifies a
CNV in all samples, the discordance rate will be zero. There-
fore, a more precise assessment of accuracy can be achieved
by stratifying discordance rate by call frequency. For this pur-
pose, in Figure 4, we first examine how the discordance rate
behaves across call frequency strata for ÇOKGEN, PennCNV,
and Birdseye. As a reference, we also display the expected dis-
cordance of randomly called CNVs in this figure. As expected,
the performance of all algorithms improves when more fre-
quent CNVs are considered. Although the performance of
PennCNV is similar to that of ÇOKGEN, our algorithm does
attain a modest improvement in concordance over PennCNV
at all strata. It is also clear in Figure 4 that ÇOKGEN outper-
forms Birdseye significantly at all strata. Furthermore, ÇOK-
GEN performs consistently better than random CNV

assignment at all strata, which shows its superior perform-
ance is not an artifact of the frequency of the CNVs it calls.

Another feature of Figure 4 is Birdseye's sharper decline in
discordance rate as the frequency threshold increases. This is
likely due to its higher average call frequency compared to
ÇOKGEN. Figure 5a shows the empirical density for sample
frequency of concordant CNVs. We find that 34% of the con-
cordant CNVs identified by Birdseye have frequency larger
than 60, whereas only 16% of the concordant CNVs identified
by our algorithm and 14% of the CNVs identified by PennCNV
have frequency larger than 60. Concordant CNVs with sample
frequency larger than 90 make up 3% of those called by our
algorithm and 4% of those called by PennCNV compared to
22% for Birdseye. This clearly shows that ÇOKGEN does not
achieve its high concordance rate by overcalling a CNV in
multiple samples. Figure 5b displays the density distribution
of discordant CNVs as a function sample frequency for all
algorithms. It is clear from the figure that most of the discord-
ant CNVs for Birdseye are rare, whereas more frequent CNVs
called by our algorithm turn out to be discordant. These two
observations clearly show that ÇOKGEN's performance
depends less on the sample frequency and demonstrate its
ability to accurately detect rare events.

Sensitivity comparison across methods
Trio discordance is a reasonable hybrid measure of sensitivity
(recall) and specificity (precision), but these two measures
cannot be easily decoupled based only on discordance rate. A
recent study [28] assembled a 'stringent dataset' comprising
CNVs identified by at least two independent algorithms. The
dataset contains a total of 808 autosomal CNV regions
reported by the study to be harbored in at least one of the 270
HapMap individuals. Another study [23] identified 1,292
autosomal CNP regions in 270 HapMap samples. We use
these two as 'gold standard' data sets to evaluate the sensitiv-

Frequency distribution of CNVs by ethnicityFigure 3
Frequency distribution of CNVs by ethnicity. The proportion of rarer 
CNVs (those that have a sample frequency <10) in the African (YRI) 
population is higher when compared to the other populations. CEU, 
Caucasian population.
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The distribution of identified CNVs by ethnicity

CEU YRI JPT CHB Total

Gains 1,726 2,325 856 765 5,672

Losses 3,500 3,443 1,760 1,753 10,456

Total 5,226 5,768 2,616 2,518 16,128

Discordance rate as a function of call frequency strataFigure 4
Discordance rate as a function of call frequency strata. The figure shows 
how the discordance rates behave as a function of the sample frequency 
threshold. Note that discordance rate is plotted cumulatively - that is, the 
value on the y-axis is the average discordance rate for CNVs with 
frequencies, at most, the corresponding value on the x-axis. The 
discordance value at the sample frequency threshold value t is calculated 
by finding the discordance rate across all CNVs with frequency at most t.
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ity of our method. We refer to sensitivity based on the data
presented in [28] as sensitivity-Pinto and sensitivity based on
the CNP data set presented in [23] as sensitivity-McCarroll.

In terms of sensitivity-Pinto, we observe that ÇOKGEN
detects 696 of 808 (approximately 86.1%) CNVs from the
study presented in [28]. PennCNV obtains the best result by
a narrow margin, by identifying 716 of 808 (approximately
88.6%) CNVs. Birdseye achieves an 84.7% success rate,
slightly less than that of our method. In terms of sensitivity-
McCarroll, ÇOKGEN and PennCNV detect 20.7% and 25.5%,
respectively. Birdseye detects 68.2%, which is the best sensi-
tivity rate among all the methods compared for this data set;
however, as mentioned in [23], Birdeye is one of the methods
used for identifying the CNPs in this dataset. For this reason,
this result is not surprising. PennCNV is slightly more sensi-
tive than our method on this dataset, though this seems to be
at the cost of a modest increase in trio discordance rate, as
shown above.

Run time performance
To analyze the run time performances of ÇOKGEN, Pen-
nCNV, and Birdseye, we compare ÇOKGEN with PennCNV
on a Windows system, and time both ÇOKGEN and Birdseye
on a Linux system (Birdseye is not available in a Windows
version). Performances are measured from the time at which
the CEL file is taken as an input to the time at which the list of
CNVs is output. On a Windows system that has an Intel Core
2 Quad CPU with a clock speed of 2.4 GHz and 4 gigabytes of
memory, we observe that ÇOKGEN processes 22 chromo-
somes of a single HapMap sample in an average of 343 sec-
onds compared to an average of 271 seconds for the PennCNV
package.

The Linux experiments are done on a dual Intel Xeon 3 Ghz
Centos 5 × 86 64-bit machine with 4 gigabytes of memory.
Since Birdsuite is designed to be run as a pipeline of consecu-
tive steps, we are unable to run only Birdseye in isolation.
Thus, we report the run time for the whole package rather

than single steps, which may admittedly inflate the time that
Birdseye would take to run alone. In this experiment, ÇOK-
GEN processes 22 chromosomes of a single sample in an
average of 702 seconds compared to 2,232 seconds for the
whole Birdsuite pipeline.

In addition to computational efficiency, these experiments
also highlight the user-friendliness of our package. Indeed,
ÇOKGEN is wholly contained in a single, simple (composed of
three commands) R package, making it completely platform-
independent and available to Windows, Mac, or Linux/UNIX
users. In contrast to the competing software, ÇOKGEN does
not require the installation of additional tools such as Active
Perl [29] or Affymetrix Power Tools [30].

Experimental validation of copy number variants not 
previously reported
To gauge the ability of ÇOKGEN to uncover novel gains and
losses, we compared the CNVs discovered by our method with
those in version 6 (November 2008) of the Database of
Genomic Variants [31]. We used multiplex ligation-depend-
ent probe amplification (MLPA) [32] to verify some of the
CNVs not reported in the Database of Genomic Variants but
identified by ÇOKGEN (Table 2). In Figure 6, we also present
the raw copy signal graphs generated by our software and the
corresponding MLPA profiles for the first two CNVs given in
Table 2.

The software package
Our software package, ÇOKGEN, is implemented in R and is
able to output its results in two forms: tabular and graphical.
The tabular output is a table of CNV entries with columns:
sample ID, chromosome number, CNV start base position,
CNV stop base position, and the CNV type. The graphical out-
put allows the user to visualize the results of our CNV identi-
fication algorithm. The user can inspect the raw copy signal at
any specified part of the genome along with the assigned,
color-coded class values (examples are shown in Figures 6
and 7). Another aspect of the graphical output is the visuali-

The frequency distribution of concordant and discordant CNVs for three calling algorithmsFigure 5
The frequency distribution of concordant and discordant CNVs for three calling algorithms. (a) Distribution of concordant CNVs. ÇOKGEN's 
concordant CNVs are mostly rarer. (b) Distribution of discordant CNVs. ÇOKGEN's discordant CNVs are more frequent in the population, particularly 
when compared to those of Birdseye.
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zation of the signals of a family together, in which each mem-
ber is represented by a different plotting symbol. This allows
the user to see the CNV pattern for the whole family at the
same locus of the genome and evaluate the algorithm's trio
concordance visually. Besides its configurability in terms of
tuning of parameters, ÇOKGEN also provides the user with
the ability to specify their own objective criteria. With this
functionality, users can construct their own objective func-
tions that will best suit the characteristics and needs of their
own experimental platform and application.

Conclusions
We present a method to detect germline CNVs from Affyme-
trix 6.0 SNP array data. Our approach, with its accompanying

software, will be useful for researchers querying constitu-
tional DNA for association of gains and losses with disease.
Indeed, CNVs are emerging as important factors in a growing
number of diseases, and the 6.0 array has the highest
genome-wide resolution of current commercially available
platforms. The current work shows that the problem of
detecting CNVs from raw array data may be recast as an opti-
mization problem with an explicit objective function. The
objective function chosen here is quite simple and intuitive,
but its effectiveness is clear. Our method is wholly contained
in a freely available and flexible software package that effi-
ciently processes raw probe-level .CEL files to produce lists of
inferred gains and losses. The software allows the user to tune
parameters for the desired specificity-sensitivity balance.
With detailed experimental studies on the HapMap dataset,

MLPA profiles and corresponding raw copy signals with class assignments for two CNVs not previously reportedFigure 6
MLPA profiles and corresponding raw copy signals with class assignments for two CNVs not previously reported. (a, b) Representative gain (a) and loss 
(b) with overlays of two traces from a MLPA. Red tracings represent pooled normal control sample, and blue tracings show the HapMap sample. Peaks not 
at or adjacent to the arrows represent control regions. The arrows indicate where the gain or loss occurs. (c, d) Raw copy signals and ÇOKGEN's class 
assignments for the MLPA profiles in (a, b), respectively. ÇOKGEN inferences are colored red for normal, green for gain, and blue for loss.
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we have demonstrated its sensitivity to detect both previously
reported and novel CNVs, while keeping a low false positive
rate, as demonstrated by high Mendelian consistency in trios.

The method described in this paper could also be adapted to
other SNP arrays, including earlier versions of the Affymetrix
platform, Illumina arrays, or array comparative genomic

hybridization. Any platform that produces a measure of raw
copy number at markers across the genome would be suita-
ble. As SNP arrays continue to improve with regard to
throughput and accuracy, our approach will be adaptable to
handle the data as they become available.

Table 2

MLPA results for some of the non-previously reported regions identified by ÇOKGEN

Chromosome Sample Base-pair start* Base-pair end* Length (bp) MLPA probe position Type MLPA

5 NA11830 59753489 59816458 62969 59766589 Gain 2.4

5 NA10846 101261596 101308054 46458 101261461 Loss 1.35

5 NA12144 101256012 101308054 52042 101279312 Loss 1.18

6 NA10846 99225525 99249603 24078 99237564 Loss 1.44

6 NA12144 99225007 99245596 20589 99226748 Loss 1.3

16 NA10839 77818007 77832838 14831 77819334 Loss 1.35

2 NA10854 108944933 108952869 7936 108945672 Loss 1.33

6 NA11830 97308635 97316868 8233 97311558 Loss 1.29

*As inferred by ÇOKGEN.

Raw copy numbers for sample NA12763 in a chromosome 12 regionFigure 7
Raw copy numbers for sample NA12763 in a chromosome 12 region. (a) Raw copy numbers Ri. (b) The smooth signal Ri *, obtained by applying the low 
pass filter to Ri. The green colored markers indicate a 'gain' class value assignment, whereas the red markers indicate 'normal' class assignment by the edge 
detection algorithm. Note that there are two candidate gain regions in the figure. (c) Our objective function optimization using simulated annealing makes 
the final assignments to the markers and it merges the two candidate regions in (b) into one gain region.
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The optimization-based approach is the key to our method's
flexibility. Although we have constructed our own default
function to capture the criteria that we wish to emphasize,
one may easily envision alternative criteria that other
researchers would wish to incorporate. For example, since
very long CNVs are quite rare in the human genome,
researchers might wish to include a term in the objective
function that takes into account the number of bases covered
by a putative CNV region. Another possibility would be to
incorporate allelic ratio intensity information at SNP mark-
ers, as is done in some HMM approaches [26,27]. We antici-
pate that users will design their own objective functions and
apply them, using our software, to their own specific applica-
tions and data.

It should be emphasized that previously established
approaches may actually also be considered special cases of
functional optimization. For example, HMMs often used in
the copy number setting [14,17,26] entail finding 'state paths'
(marker-by-marker sequences of copy-number calls) that
maximize a log-likelihood function. In HMM applications,
however, the model parameters are often estimated simulta-
neously with the copy number states via a Viterbi algorithm
[33], based on training samples. Precise parameter estima-
tion relies on sufficient representation from each copy
number state, which may be unrealistic for rare CNVs.
Another popular approach to inferring CNVs from raw copy
number data is circular binary segmentation [19]. Rather
than explicitly representing copy number state as a solution
to an optimization problem, circular binary segmentation
aims to find change points from one copy state to another. It
does so by maximizing functions of marker indices. The opti-
mum values of the function determine the boundaries of the
CNV regions. A third example is the GLAD (Gain and Loss
Analysis of DNA) algorithm [22], which has been adapted
extensively using methods developed to analyze tumor DNA
[15,34]. To find CNVs, GLAD explicitly models raw copy
number as a function of position. The true underlying copy
number is encoded in a position-dependent parameter. The
CNV regions are inferred by maximizing a weighted likeli-
hood function using an adaptive weights smoothing proce-
dure [21]. Note that the objective functions in HMMs, binary
segmentation and GLAD all make distributional assumptions
about the raw copy number measurements. The function that
we adopt in the current study makes no such assumptions,
but could be modified to incorporate them. Furthermore, our
CNV calling method is fully unsupervised in that it does not
require any training samples in terms of known copy num-
bers. Lastly, rather than estimating and fixing parameters
(thus fixing the performance of the algorithm), our method
presents the opportunity to tune parameters, which makes it
possible to adjust the performance of the algorithm to obtain
the best results in a semi-automatic manner.

Three other studies have utilized various smoothing and edge
detection algorithms: wavelet footprints [35], non-linear dif-

fusion filtering [36], and kernel smoothing [37]. We also
apply an edge detection scheme on low-pass filtered data to
identify regions that potentially correspond to aberrations.
Unlike other approaches, however, we apply edge detection
rather aggressively to identify all candidate regions that may
correspond to aberrations. This is because the raw copy
number signal is extremely noisy due to the artifacts of micro-
array technology, as seen in Figure 7a. Furthermore, since the
markers are distributed unevenly across the genome, the one-
dimensional signal represents a non-uniform sample of the
actual copy number signal. Consequently, it is not straightfor-
ward to choose a smoothing and edge detection scheme that
will be most appropriate for all experiments, samples, chro-
mosomes, or even chromosomal segments. For example, in
Figure 7b, the edge detection scheme identifies a single dupli-
cation as two separate duplications, since the markers at the
middle of the region exhibit relatively low raw copy numbers,
probably due to noise. This problem can be alleviated by
smoothing the signal more aggressively to eliminate such
artifacts, although this might result in falsely eliminating
many aberrations that span relatively less numbers of mark-
ers. Motivated by these considerations, we use edge detection
to identify all potential candidates and then use an optimiza-
tion scheme with adjustable parameters to eliminate false
calls among these candidates.

We also note that ÇOKGEN works on each sample individu-
ally and is therefore suited for rare CNV identification at the
expense of losing some information to detect CNPs. The
importance of rare CNVs is underscored by the recent deep
sequencing of the entire genome of a single individual [38]. In
that study, some 30% of the discovered CNVs had not been
previously reported by any other study.

In addition to presenting a new software tool, the current
work also casts Mendelian concordance, as an assessment
tool, in a new light. While concordance rate is valuable as a
metric to evaluate methods for calling germline variation, it is
best viewed as a function of overall variant call rate. As we
have shown, concordance rate can be artificially boosted sim-
ply by calling variants at a high rate. When evaluating the per-
formance of future methods on family-based data sets,
researchers may compare trio discordance results as a func-
tion of call frequency to the null expectation that we derive in
the Materials and methods section.

Materials and methods
Our method takes as input raw .CEL files and produces a table
of inferred genome-wide gains and losses. The software pack-
age, ÇOKGEN, provides a configurable platform for CNV
identification, allowing users to: adjust the parameters of our
default formulation to tune the behavior of the method to the
target application (for example, aggressive versus conserva-
tive in calling CNVs); and to specify their own target objective
functions. ÇOKGEN also produces 'zoomable' plots of raw
Genome Biology 2009, 10:R119
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copy number at the chromosome and sub-chromosome level
for manual inspection of identified copy numbers. An over-
view of the methods implemented in ÇOKGEN is given in Fig-
ure 1. Details of each step are provided in this section.

Intensity extraction and normalization of raw data
The raw probe intensities for each array are encoded in the
binary .CEL files output by the Affymetrix instrument, one
file for each array. As a first step, we use the R package affx-
parser [39] to extract the intensities for each array locus from
the .CEL files. Next, we quantile normalize [13] the intensities
across all arrays in the experiment. This enables fair compar-
ison of intensities, taking into account systematic non-biolog-
ical differences such as overall array brightness.

Raw copy number for SNP markers
The genomic loci interrogated on the Affymetrix 6.0 array fall

into two categories - SNP markers and copy number (CN)

markers. The array contains 887,876 autosomal CN and

869,224 autosomal SNP markers, for a total of 1,757,100 (we

discard the X and Y chromosomes to avoid gender complica-

tions, as well as mitochondrial markers). The markers are

ordered from i = 1 to ~1.8 million according to genomic coor-

dinates. A SNP marker is interrogated by either six or eight

probes - half for each of the A and B alleles - and hence pro-

duces six or eight normalized intensity measurements for

each array. Since the vast majority of SNP markers have six

probes, we present that case here. Let Ai1, Ai2, Ai3, Bi1, Bi2, and

Bi3 denote the three A allele and three B allele measurements

for a SNP marker i. Our aim is to produce allele-specific raw

copy numbers Ai and Bi for the two alleles such that the dis-

tance from the origin in (A, B) Cartesian coordinates pro-

duces a raw measure of the copy number at the ith marker.

Toward this end, we linearly rescale the intensities so that

 is approximately equal to 2.0, regardless of geno-

type, for markers that are already deemed to have normal

copy numbers (that is, two copies).

We fit the model:

via least-squares regression, where  is the rescaled copy

number for allele A at SNP i;  for 1 ≤ 1 ≤ 3 are model

parameters, and  is the error term. More specifically, in

the absence of copy number variation,  is 2.0 for an AA

genotype,  for an AB genotype, and 0 for a BB genotype.

The fitting procedure yields estimates

 for the model parameters.

We model B allele copy number in a similar manner, and

obtain estimates  for the

model parameters, quantifying the relationship between B

allele copy number and the six probe intensities. The objec-

tive here is to capture the individual responsiveness of each

probe to varying quantities of DNA harboring the A and B

alleles.

Note, however, that fitting the models requires a priori
knowledge of the genotypes. Affymetrix's default algorithm is
quite precise (over 99.5% accurate) for diploid genotyping.
Hence, if we were able to avoid samples with duplications and
deletions, we could use the genotypes generated by Affyme-
trix as observed values of A and B copy numbers. Obviously,
we cannot assume knowledge of which samples harbor gains
and losses. However, we can utilize basic knowledge on the
distribution of copy numbers as evidence suggests that gain
and loss events almost always appear in a small minority var-
iant in the population [23]. Therefore, if we define total probe
intensity at marker i as:

we can safely assume in general that most of the middle two
quartiles, across all samples, of PIi are from individuals with
two copies of the chromosomal segment that contains marker
i. In other words, the individuals that fall into these quartiles
for the corresponding marker are likely to carry diploid geno-
types AA, AB, or BB. Consequently, we fit the model based on
these samples' genotypes.

Given the 12 parameter estimates for a SNP marker i, we gen-
erate raw estimates of A and B copy numbers for all samples
by re-applying the model to each sample's six probe intensi-
ties. That is, for a sample with probe intensity values Ai1, Ai2,
Ai3, Bi1, Bi2, and Bi3, the raw A and B allele copy estimates are
Ai and Bi where:

Finally, using these estimates, we calculate the raw copy
number Ri at marker i as the distance from the origin in the
(A, B) plane:
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Raw copy numbers for CN markers
Approximately half of the marker loci represented on the 6.0

array do not correspond to SNPs, but rather CN markers.

Since these markers are each measured by only one probe,

they must be treated separately. As above, we consider the

samples within the middle two quartiles of (normalized) total

probe intensity for the marker to be representative of individ-

uals with copy number two. Therefore, the scaling factor 

for CN marker i is the least-squares estimate of the parameter

βi from the model:

fit to the middle two quartiles of the normalized probe inten-
sities PIi. Again, ei is the error term. The raw copy number for
a sample with CN probe intensity PIi is then calculated as:

Using these two separate procedures for SNP and CN markers
yields raw copy numbers Ri for all markers i from 1 to ~1.8
million, ordered along the genome according to hg18 (build
36 of the human genome) coordinates. All 270 HapMap sam-
ples are used to parameterize the regression model for raw
copy number estimation of both SNP and CN markers. Figure
7a gives an example of raw copy numbers for a 394-marker
region.

Algorithm for copy number variant detection
Key to our approach is the observation that CNV identifica-
tion can be formulated explicitly as an optimization problem
without any requirement of reference models or training
data. Based on general knowledge of the microarray technol-
ogy and basic biological insights on copy number variation,
we specify various quantitative measures that gauge the suit-
ability of copy number assignments based on observed array
intensities. We then formulate an objective function that cap-
tures the trade-off between these measures, so that the
minima of this function represent optimal CNV assignments.
This function is characterized by user-defined parameters,
allowing the user to tune the performance of algorithms
based on the requirements of the specific application (for
example, minimizing false positives due to the cost of experi-
mental verification versus minimizing false negatives to cap-
ture existing variation comprehensively).

Formally, the objective of CNV identification is to find a map-

ping S: {1, ..., N} → , where {1, ..., N} denotes the ordered

set of markers for the whole genome and  = {C+, C0, C-} is

the set of the gain, normal and loss classes, denoted respec-

tively as C+, C0 and C-. Thus, our objective is to assign a class

value from C to each marker on a genome based on the Ri val-

ues such that the class assignment of consecutive markers

and their raw copy number estimates are as consistent as pos-

sible.

We next introduce the objective criteria that are included in
the default objective function implemented in ÇOKGEN and
the motivation behind these criteria. Researchers may wish to
design an objective function of their choice, and indeed our
software takes the objective function as an argument pre-
cisely to accommodate this. We describe the function as
applied to a chromosome with M markers since each chromo-
some is processed separately.

Variability in raw copy numbers within each copy class should be 
minimized
The Ri for markers in each gain or loss region should be sepa-
rable from normal regions. Therefore, CNV identification
lends itself to a clustering-like problem - one of partitioning
the Ris into three classes so as to minimize the internal varia-
bility of each class. For a given CNV assignment S, we define
the set of markers assigned to class c on a chromosome with
M markers as:

and

denotes the mean raw copy number for class c. Then, the total
intra-class variability induced by this assignment is given by:

Consequently, a desirable S is expected to minimize σ(S)
(subject to other constraints). Note that this formulation does
not make any assumption about the expected raw copy num-
bers of the markers and is therefore robust to any systematic
bias that might be encountered in measurement and normal-
ization of Ri.

Parsimony principle: observed variability should be explained via 
minimum number of anomalies
In general, there are relatively few regions of gain or loss in an
individual's genome, relative to normal regions. Therefore,
the CNV calls should be as contiguous as possible. Motivated
by this observation, we formulate the parsimony principle as
a criterion that seeks to minimize the total number of copy
number state changes induced by a CNV assignment on the
chromosome. Formally, for given CNV assignment S, we
define total cut as the number of pairs of adjacent markers
that are assigned different copy numbers:
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Here I(.) denotes the indicator function (that is, it is equal to
1 if the statement being evaluated is true, and 0 otherwise).

Filtering out noise by eliminating smaller regions
Longer CNVs indicate higher confidence as it can be statisti-
cally argued that shorter sequences of markers with deviant
raw copy numbers are more likely to be observed due to noise.
Thus, we explicitly consider CNV length as an additional
objective criterion. To do so, we first define a CNV region, r,
as a maximal set of contiguous markers all assigned to the
same copy number state in {C+, C-}, and ζ(S) denotes the set
of all CNV regions. Furthermore, we denote the number of
markers in the CNV region r by l(r). We then define

as an objective criterion that penalizes shorter CNVs (e
denotes the natural logarithmic base).

Filtering out noise by eliminating possible false positives
Candidate CNVs with a median raw copy number much larger
or much smaller than two indicate higher confidence since a
CNV region with median raw copy number close to two is less
likely to be valid. For this reason, we require that the median
raw copy number of a called loss be below a certain threshold
(Tloss) and the median for a called gain be above a certain
threshold (Tgain). We define ζ+(S) and ζ-(S) as the set of all
CNV gain and loss regions, induced by assignment S, respec-
tively. Furthermore, median(r) denotes the median raw copy
number value of the markers in the region r. We now incor-
porate

into the objective function to minimize the effects of the noisy
signal. Here, Tgain and Tloss are user-defined parameters that
basically define the upper and lower limits for the raw copy
number of markers in the set Π(C0) (that is, the set of markers
assigned to the normal class). As Tgain is increased and Tloss is
decreased, candidate regions are penalized more harshly. In
our experiments, we use 2.25 and 1.75 for Tgain and Tloss,
respectively, since these values provide reasonable perform-
ance.

Putting the pieces together: a single objective function for copy 
number variant identification
We use a linear combination of the criteria above as an objec-
tive function. Namely, we define the optimal copy number
assignment as the mapping:

such that the function

is minimized at S = S*. Here the tunable coefficients kσ, kχ, kλ,
kδ adjust the relative importance of the objective criteria with
respect to each other. In our experiments, for kλ and kδ, we
choose large values such as 105 and 106, respectively, to pro-
hibitively eliminate candidate regions that are likely to be
false positive during the course of the algorithm (as opposed
to filtering them out in a post-processing phase).

The parameters kσ and kχ are used to adjust the apparent
trade-off between the 'parsimony' and the 'variability' compo-
nents of the objective function. Variability favors the genetic
diversity on the genome by permitting many CNVs. On the
other hand, according to the parsimony criterion, the varia-
bility in the raw copy estimates of markers should be
explained via as few CNVs as possible, hence minimizing the
number of evolutionary events that have had to occur. With-
out loss of generality, we require that kσ +kχ = 1 to highlight
the trade-off between these two criteria. To systematically
evaluate the effect of these two parameters on performance
and determine the best kσ and kχ values based on our bench-
marking data, we conduct a series of computational experi-
ments. The results of these experiments are presented in
Figure 8. Here, sensitivity is a measure of the performance of
the algorithm in capturing previously reported CNVs. As seen
in the figure, sensitivity-Pinto rapidly improves as more
weight is assigned to variability and nears saturation around
kσ = 0.35 and kχ = 0.65. On the other hand, sensitivity-
McCarroll keeps improving until it settles around kσ = 0.6
and kχ = 0.4. In contrast, discordance rapidly declines as we
increase the contribution of variability to the objective func-
tion, achieves a minimum around kσ = 0.35 and kχ = 0.65, and
grows until it settles around 0.8 for kσ = 0.8 and kχ = 0.2. As
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The trio discordance and sensitivity as a function of kσ. The figure shows 
how trio discordance and sensitivity are affected as we alter the relative 
weights of variability and parsimony in the objective function.
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kσ is increased, ÇOKGEN starts behaving less conservatively,
which results in a larger number of identified CNVs and
improved sensitivity. On the other hand, increased number of
CNVs comes with the expense of an increased rate of false
positives and this manifests itself as a decline in the discord-
ance rate from a certain value of kσ (in our case, kσ = 0.35).
Based on these observations, we set kσ = 0.35 and kχ = 0.65 as
our defaults.

Two phase copy number variant identification
Since the solution space of the optimal copy number assign-
ment problem is exponential, we require a good initial solu-
tion and a heuristic algorithm that iteratively improves the
solution. For this purpose, we use a two-phase algorithm: we
first determine a set of candidate gain and deletion regions
via a filtering and aggressive edge detection procedure that
we consider as an initial CNV assignment, S(0); and then we
employ an iterative improvement based algorithm to adjust
the boundaries of duplications and deletions accurately, and
eliminate false positives.

In order to identify the boundaries of CNV regions, it is nec-
essary to smooth the raw copy number signal since it is highly
noisy. We use a simple discrete low-pass filter with filter ker-
nel [1/3; 1/3; 1/3], that is, the first filtered copy number esti-
mate is given by:

Applying the filter for a second time, we obtain:

Consequently, introducing an adjustable repetition parame-

ter W, we obtain  as a smooth version of the copy

number intensity for a user defined value of W. Here, larger

W provides smoother signals, thereby eliminating false posi-

tives, at the cost of missing true CNVs that span a smaller

number of markers. For the ÇOKGEN's default value, we

chose W = 20, for which we obtain reasonable results. Figure

7b demonstrates how the raw copy number Ri in Figure 7a is

converted into a smooth signal  using the low pass filter.

Identification of candidate copy number variation 
regions via edge detection
Based on the observation that gains and losses manifest

themselves as (respectively up or down) concavities in raw

copy number of the low-pass filtered data, an edge detection

scheme, which we describe below, is a useful tool for the iden-

tification of initial CNV assignment S(0). Thus, after low-pass

filtering, we apply our edge detection algorithm on the

smoothed signal, first identifying high gradient markers that

may correspond to transitions between regions with different

copy numbers. For this purpose, we interpolate the discrete

signal to obtain a real-valued function on the continuous

interval . This task is performed using the

built-in splinefun function of the R language, which performs

cubic spline interpolation of given data points. Next, we gen-

erate two sets of high-gradient markers, denoted Dmax and

Dmin, for which the function  attains maximum increase

and maximum decrease, respectively. Specifically, we define:

where  denotes the derivative of  at marker i. These

markers are the approximate inflection points of the signal

.

Now let Qij denote the indices corresponding to the set of con-

tiguous markers on the genome starting from marker i and

ending at marker j, where i ≤ j. Given the user defined thresh-

olding parameter Tgain (see above), we designate Qij as a can-

didate gain region (that is, ∀ k ∈ Qij, S(0)(k) = C+) if it satisfies

the following conditions: i ∈ Dmax and j ∈ Dmin; there exists at

least one marker p, i ≤ p ≤ j, such that ; max(Qij

∩ Dmax) < min(Qij ∩ Dmin); and Qij is a maximal set of contig-

uous markers satisfying the first three conditions.

The first condition ensures that the region starts with a
marker with locally maximal positive gradient and ends with
a marker with locally maximal negative gradient in terms of
the raw copy number values. The second condition guaran-
tees that the region contains markers with copy number esti-
mates that might indeed correspond to a gain. The third
condition specifies that the region does not contain any inte-
rior concavities, that is, all maximum positive gradient mark-
ers in Qij appear before any maximum negative gradient
marker in the region. Finally, the fourth condition ensures
that Qij can be enlarged at neither the right nor the left bor-
ders. Examples of regions that violate each of the conditions
are shown in Figure 9. The designation of Qij as a candidate
loss region is done in a completely analogous manner.

All markers m that are not included in a candidate loss or gain
region are preliminarily designated as 'normal', that is,
S(0)(m) is set to C0. As a special case, if a candidate gain/loss
region identified by edge detection is very close to another
candidate region of its type, then we merge these two candi-
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date regions into a single region, since they are likely to cor-
respond to the same aberration.

This procedure gives us an initial CNV identification assign-
ment S(0). This solution is quite aggressive in the sense that
many truly normal (copy number two) markers are likely to
be placed in the gain or loss classes. To eliminate these false
positives and obtain S*, we use an optimization-based algo-
rithm to tune the boundaries of candidate gain and deletion
regions as discussed in the next section.

Fine tuning of the region boundaries using 
optimization with simulated annealing
This phase of the algorithm begins with initial class assign-
ments, S(0), and iteratively improves them with regard to the
value of the objective function f by making moves in a way to
quickly reach an optimum and avoid being trapped into unde-
sirable local optima. For a given copy number assignment S,
we define a 'move' as the extension or contraction of a CNV
region's boundaries by changing the copy number states
assigned to a contiguous group of markers (either inside or
outside the region) bordering the region. In short, at each

iteration of the algorithm, a random number of contiguous
markers is selected from the right or left boundary of a candi-
date region Qij ∈ ζ(S) and the corresponding move is defined
as the assignment of these markers to either the class of
neighboring markers (if the selected markers belong to Qij) or
to Qij's class (if the selected markers are outside of Qij). The
concept of a move is illustrated in Figure 10. As seen in the fig-
ure, we restrict possible moves to those that can enlarge or
shrink a candidate aberrant region, but can never create a
candidate region from scratch or divide a candidate region
into two candidate regions. The size of the valid moves set
that can shrink a candidate region Qij of size n is 2n - 1. This
set contains all moves that change the class value of contigu-
ous markers in either the left or right boundary of Qij to the
class of neighboring markers outside Qij. The size of the valid
moves that can enlarge a candidate region Qij is limited to 2ψ
(that is, at most, ψ markers from the left and ψ from the right
are converted to the class of region Qij) where ψ is a user-
defined parameter that determines how aggressively a candi-
date region is to be enlarged. In our experiments, we set ψ =
5, which limits the permissible expansion of a CNV region.
We set such a threshold since we want our algorithm to

Illustration of criteria for selection of candidate CNV regionsFigure 9
Illustration of criteria for selection of candidate CNV regions. In this figure, the red lines tangent to the signal curve  indicate the marker points that are 
elements of the sets Dmax and Dmin. (a) Qij violates the first condition, which requires that the start and end markers be elements of Dmax and Dmin, 
respectively. (b) Qij violates the second condition, which dictates that at least one marker must exceed the Tgain threshold value. (c) Qij does not satisfy the 
third condition since three markers of Dmin appear before two markers of Dmax in region Qij. (d) Qij violates the fourth condition, which requires that Qij is 
a maximal set satisfying all the first three conditions.
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expand the candidate region gradually. Thus, the total
number of valid moves at each stage of our algorithm for a
candidate region of size n is 2n + 9.

We quantify the quality of such a potential move in terms of
the difference between the value of the objective function
before and after the move, commonly referred to as the 'gain'
of a move. In the context of the optimal copy number assign-
ment problem, the gain associated with move ν is defined as:

where S(t+1) denotes the copy number assignment if move ν is
made and S(t) is the current copy number assignment. We use
a stochastic algorithm based on simulated annealing [40] to

determine the move. Simulated annealing is an iterative
improvement heuristic that proceeds by repeated moves to
improve the quality of the solution. Key to its efficiency is the
stochastic nature of the selection of moves. At each step, the
algorithm first randomly chooses a candidate gain or loss
region, Qij, from the set ζ(S) and then chooses a move v from
the set of all moves that are validly defined on Qij. If the gain
γ(v) associated with the candidate move is positive, then the
move is made. If the gain is not positive, the move is still made
with a certain probability, which is proportional to the gain
and declines as a function of time in the course of the algo-
rithm. Therefore, simulated annealing starts its course with
aggressive moves to jump out of undesirable local optima,
and becomes more conservative as the algorithm proceeds,
smoothly converging to a locally optimum solution. The pro-
cedure is repeated until either there is no valid positive gain
move left to be done on the current solution or a user-defined
number of negative gain moves, τ, have already been done
consecutively (we use τ = 5 as our default). The mapping
obtained at the end of the procedure is reported as S*.

We note that our algorithm allows us to consider the candi-
date regions in ζ(S) independently (as opposed to the entire
chromosome) because the candidate regions with potential
aberrations are sparse, and we therefore work on local sub-
problems associated with each candidate region separately.
This results in significant improvements in computational
efficiency. Since the distribution of raw copy numbers in the
neighborhood of Qij ∈ ζ(S) provides a good sampling of raw
copy numbers in the entire chromosome, the quality of the
solution to this local problem does not deviate significantly
from the global problem. Indeed, in our experimental evalua-
tions, we observe that there is no significant difference
between solving the class assignment globally (applying the
above algorithm to a whole chromosome) or locally (as we
describe above) in terms of their specificity and sensitivity in
predicting copy number variations.

Data
For the application of our method, we used Affymetrix 6.0
array data from a total of 270 HapMap individuals. In the
data set, there are 30 mother-father-child trios from the
Yoruba people of Ibadan, Nigeria, 45 unrelated individuals
from Tokyo, Japan, 45 unrelated individuals from Beijing,
China and 30 Caucasian trios that were collected in 1980
from US residents with northern and western European
ancestry by the Centre d'Etude du Polymorphisme Humain
(CEPH).

Multiplex ligation-dependent probe amplification 
method
Each MLPA probe was designed synthetically to match
sequences within the region of interest avoiding all SNPs in
the area. Control probes were used from previously published
work [41]. Oligonucleotides were synthesized by IDT (Cor-
alville, IA, USA) with 5'-phosphorylation of each downstream

γ ν( ) ( ) ( )( ) ( )= − +f S f St t 1

Illustration of moves in the proposed iterative-improvement based optimization algorithmFigure 10
Illustration of moves in the proposed iterative-improvement based 
optimization algorithm. The CNV assignment for a hypothetical region 
after t iterations is shown in the initial figure. Suppose Qij is selected for the 
(t+1)st iteration. (a) All the markers in Qij are assigned to C0, which 
completely eliminates Qij as a gain region. This is a valid move. (b) Some 
markers that initially have a C0 class on the right border of Qij are assigned 
to the C+ class which merges them with Qij by a valid move. (c) Some 
markers that initially exist in Qij are assigned to the C0 class, which 
contracts Qij. This also represents a valid move. (d) An invalid move that 
divides the Qij into two sub-gain regions. (e) Another invalid move that 
introduces a completely new gain region that is not identified in the 
previous solution.
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probe and tagged with common PCR primer sequences [32].
Probes were hybridized with 100 ng of DNA sample using
MLPA reagents (part number EK1, MRC-Holland BV,
Amsterdam, The Netherlands) in accordance with the recom-
mended protocol. Samples were diluted 20-fold and analyzed
on a 3130xl Genetic Analyzer from Applied Biosystems (Fos-
ter City, CA, USA) with GeneMapper software. Control DNA
used were male and female genomics DNA pools (Promega,
Madison, WI, USA). Peak height ratios were normalized to
the mean of the entire data set, with subsequent elimination
of outlier samples from the calculation of the mean.

Other methods
For analysis using dChip [24], we downloaded the version
with a build date of 21 August 2008. We used the HMM as the
Inferred copy method option with 50% of the samples
trimmed. For Birdseye [17], we used version 1.5.1 of the Bird-
suite package, which can be downloaded from [42]. The
default parameters for that package were used. The latest ver-
sion of PennCNV software, available as of 18 November 2008,
was downloaded from [43] for analysis using PennCNV. We
followed the steps described at [44] for the PennCNV-Affy
protocol and used the default parameters for analysis. For
QuantiSNP, we downloaded version 1.1 from [45], followed
the steps described at QuantiSNP in the Affymetrix tutorial
document located at [46] and used the default parameters.

We also note that we combined copy number 0 and 1 into one
category - loss - and copy number greater than 2 into one cat-
egory - gain - for the results obtained by all packages, in order
to compare their results with ÇOKGEN's results fairly.

Computation of expected discordance rate
Suppose that CNV calls are random in Φ parent-child trios.
When randomly assigning a CNV to n of the 3Φ individuals,
the expected discordance, denoted by ED(n), can be calcu-
lated as:

where ED(n | k) denotes the expected discordance rate when
k of the n CNVs are assigned to children and P(k) denotes the
probability of assigning the CNV to k children. We calculate
P(k) as:

ED(n | k) is equivalent to the probability of having a child
assigned a CNV being discordant given that k children have
the CNV. This probability can be calculated by dividing the
number of ways to assign this CNV to parents other than the

discordant child's parents by the number of all possible ways
to assign this CNV to parents. Thus, ED(n | k) is:

Consequently:
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