
Open Access2008Rinaldiet al.Volume 9, Suppl 2, Article S13Research
OntoGene in BioCreative II
Fabio Rinaldi1, Thomas Kappeler1, Kaarel Kaljurand1, Gerold Schneider1, 
Manfred Klenner1, Simon Clematide1, Michael Hess1, Jean-Marc von 
Allmen2, Pierre Parisot2, Martin Romacker2 and Therese Vachon2

Addresses: 1Institute of Computational Linguistics, University of Zurich, Binzmühlestrasse, CH-8050 Zurich, Switzerland. 2Novartis Pharma 
AG, NITAS, Text Mining Services, CH-4002, Basel, Switzerland. 

Correspondence: Fabio Rinaldi. Email: rinaldi@cl.uzh.ch

© 2008 Rinaldi et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Research scientists and companies working in the domains of biomedicine and
genomics are increasingly faced with the problem of efficiently locating, within the vast body of
published scientific findings, the critical pieces of information that are needed to direct current and
future research investment.

Results: In this report we describe approaches taken within the scope of the second BioCreative
competition in order to solve two aspects of this problem: detection of novel protein interactions
reported in scientific articles, and detection of the experimental method that was used to confirm
the interaction. Our approach to the former problem is based on a high-recall protein annotation
step, followed by two strict disambiguation steps. The remaining proteins are then combined
according to a number of lexico-syntactic filters, which deliver high-precision results while
maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern
matching approach, which has delivered the best results in the official BioCreative evaluation.

Conclusion: Although the results of BioCreative clearly show that no tool is sufficiently reliable
for fully automated annotations, a few of the proposed approaches (including our own) already
perform at a competitive level. This makes them interesting either as standalone tools for
preliminary document inspection, or as modules within an environment aimed at supporting the
process of curation of biomedical literature.

Background
The growing body of published scientific findings within the
domains of biomedicine and genomics poses, to research sci-
entists and companies alike, the problem of efficiently locat-
ing the most relevant pieces of information. The research
community is therefore keen to adopt novel text mining solu-
tions, which have the potential of supporting such a discovery

process [1]. Although there is a broad consensus regarding
the need for text mining, there remains much ongoing debate
on which of the many possible approaches are best suited for
each specific goal.

Since its pioneering origins [2], the field of text mining in bio-
medical literature has seen steady growth, as indicated by a
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number of recent surveys [3-6]. In this research effort, an
increasing role is being played by techniques originating in
the field of computational linguistics [7-14].

In this report we describe experiments performed within the
scope of the most recent BioCreative http://biocrea
tive.sourceforge.net/ competition (Critical Assessment of
Information Extraction systems in Biology), using tools
developed within the scope of the OntoGene project http://
www.ontogene.org/. BioCreative is ideally suited to create the
conditions necessary for significant scientific advancement in
the area of text mining, by providing a framework for testing
and evaluation of research tools over shared tasks. In partic-
ular, three main tasks were defined by the BioCreative organ-
izers: gene mention (GM), gene normalization (GN), and
protein-protein interaction (PPI).

While GM focuses on detecting mentions of gene names in
biomedical text [15], GN provides a more challenging sce-
nario by requiring unambiguous gene identifiers rather than
only mentions of gene names [16]. The PPI task was com-
posed of four subtasks [17]: PPI-IAS (interaction article sub-
task; identification of abstracts that contains curatable
protein-protein interactions), PPI-IPS (interaction pair sub-
task; identification of protein-protein interactions in
abstracts), PPI-ISS (interaction sentence subtask; identifica-
tion of sentences that provide evidence for protein-protein
interactions), PPI-IMS (interaction method subtask; identifi-
cation of the experimental method by means of which the
interaction was verified).

The OntoGene project aims to develop and refine (semi-)
automatic methods for the discovery of interactions between
biological entities from the scientific literature. The
OntoGene approach is based on dependency-based linguistic
analysis of scientific articles [18]. As indicated by a number of
recent publications [19-21], there is growing interest in
dependency-based representations for the purpose of bio-
medical text mining. One of the advantages of a dependency-
based syntactic representation is that it can be mapped easily
into a semantic representation or, by application of simple
transformations, can be used directly to match candidate
answers with given queries, allowing easy identification of the
arguments of complex relations [22].

The original goal of our participation was to test, in a stand-
ardized environment, the ability of our system to detect rela-
tions among biological entities, for example protein-protein
interactions. Although our core target was the PPI-IPS task,
we initially assumed that the interaction method would nor-
mally be mentioned close to the mention of the interaction
itself, and therefore we decided to consider additionally the
PPI-IMS task. Although our assumption soon proved to be
invalid, in the meantime we did develop an alternative
approach to the identification of experimental methods that

proved to be very successful (best results in the official run of
BioCreative).

The PPI-IPS can be decomposed into two major subprob-
lems: identification of the protein in text and their normaliza-
tion to UniProt identifiers (problem A), and selection of the
valid interactions among the proteins identified in problem A
(problem B). Problem A is functionally equivalent to various
tasks of identification and normalization of biological entities
(including the GN task of BioCreative). A number of tools
have been developed [23-26], and some of them are freely
available and can be used as components in more complex
systems. Similar problems have been extensively tackled by
the community in recent years. The identification of entries in
text, before their normalization, can be seen as specific type of
'named entity recognition', as practiced since the MUC (Mes-
sage Understanding Conference) competitions [27], or as a
form of term identification. According to [28], the problem of
term identification can be subdivided into three stages: term
recognition (stage 1), term classification (stage 2), and term
mapping (stage 3). In BioCreative stage 2 can be ignored
because only one class of terms is of relevance (genes for the
GN task, and proteins for the PPI tasks).

In the Biocreative GN task, participants have experimented
various approaches to tackle this problem, which can basi-
cally be classified into two groups. The first type of approach
is based on identifying all potential entity names in text (sim-
ilar to the GM task), based on lexical, morphological and
structural properties of the words, and later trying to match,
disambiguate and filter those candidates against a shared
resource such as UniProt [29,30]. This is equivalent to saying
that stages 1 and 3 of term identification (as described above)
are applied sequentially. The second type of approach is
based on dictionaries or databases that include lists of poten-
tial entity names (and their corresponding identifiers)
[31,32]. A dictionary look-up process, which automatically
delivers also identifiers, is used to annotate candidates. This
amounts to performing stages 1 and 3 of term identification in
parallel. However, a disambiguation phase (based on local
context) might still be necessary because many names will be
ambiguous across multiple identifiers.

The identification of interactions (problem B, described
above) is a less explored problem. One way to classify differ-
ent approaches is to consider the amount of linguistic pre-
processing that they apply to the input text. For example,
systems like those described in [33-36] tend to ignore the syn-
tactic structure of the sentences, which are treated just as
word sequences. The identification of relations rests upon the
frequent occurrence of given patterns (word sequences)
between the two candidate proteins, possibly generalized by
using part-of-speech tags, or some level of semantic tagging
(for example, 'interaction verbs' are frequently used as indica-
tors for a potential interaction) [37]. The patterns can be
Genome Biology 2008, 9(Suppl 2):S13
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either automatically learned from annotated resources or
manually constructed.

An alternative approach is to use a generic parser to build a
syntactic structure for the sentences to be analyzed, which is
then used to extract or confirm candidate interactions. Exam-
ples include use of the Link Grammar parser [11,38], an LFG
(Lexical Functional Grammar) parser specifically adapted to
Medline [14], use of an HPSG (Head-Driven Phrase Structure
Grammar) parser [9,39], and use of the Stanford dependency
parser [40]. Similar approaches were also used by [7,41,42].

Finally, there are some systems that are based on machine
learning, using a number of linguistic features [43,44] and
typically focusing on shallow syntactic parsing.

Results and discussion
Identification and selection of interactors
It is well known that protein names are highly ambiguous
[45,46]. Researchers working in specific subcommunities
tend to develop their own nomenclature, resulting in multiple
names for the same protein. Acronyms and abbreviations fur-
ther complicate the picture. Simply being able to recognize a
protein name as such is just a starting point. The name needs
then to be unambiguously qualified, by referring to an entry
in a standard protein database, such as UniProt http://
www.expasy.org/sprot/[47].

In order for that to happen, the disambiguation must occur at
two levels: interspecies (to which specific organisms does the
protein mention refer?) and intraspecies (within a given
organism, which specific protein is meant?). For example, a
protein mentioned in text as eIF4E could refer to a large
number of different proteins. A search in the Swiss-Prot sec-
tion of UniProt (the manually curated section) delivers 46
possible matches. However, if the term appears contextually
with the mention of a specific organism, like in the sentence
'The Cap-binding protein eIF4E promotes folding of a func-
tional domain of yeast translation initiation factor eIF4G1'
(PubMed: 10409688), then it is reasonable to assume that the
name refers to a specific organism (yeast), thus restricting the
possible matches in UniProt to the following two:
EAP1_YEAST (eIF4E-associated protein 1) and IF4E_YEAST
(eukaryotic translation initiation factor 4E). For the task of
protein annotation, we have adopted a high-recall, low-preci-
sion term annotation approach, followed by very strict disam-
biguation steps, which gradually increase precision (at some
expense for recall).

UniProt contains for each protein a list of frequently used
synonyms, as well as the name and synonyms of its encoding
gene. We have built a database that maps the synonyms to the
protein identifier. We have further enriched such a list using
morpho-syntactic rules that generate variants of the syno-
nyms. Starting from the subset of UniProt delivered by the

BioCreative organizers (which contained 228,670 protein
identifiers), we extracted a list of 203,061 unique protein
names (there are fewer names than IDs, because many names
are ambiguous across species, especially due to orthologs),
and - after generation of the variants - we obtained a database
of 698,365 terms. Those terms are by necessity highly ambig-
uous; on average each term refers to three proteins, but there
are also some terms that refer to hundreds of proteins.

The BioCreative organizers provided two text versions of each
article, obtained by means of an automatic conversion from
either the HTML or the PDF version of the article. Both of
these conversions were found to be unsuitable for text
processing, and therefore we decided early on to use only the
abstracts, which we automatically downloaded, in plain text
format, from PubMed (additional statistical information
derived from the full articles was used only for the organism-
based disambiguation). This strategy is based on the assump-
tion that the authors will mention in the abstract the most rel-
evant interactions that they discover (although this is by no
means true in all cases). The input abstracts are tokenized
using a custom tokenizer. The details of the tokenization are
not important, but care must be taken that the same tokeni-
zation is used in processing the documents and the terminol-
ogy list. The stream of tokens is then passed through a
database look-up procedure, which tries to determine the
longest possible match. As a result of the process, tokens
forming terms are grouped together, and their multiple pos-
sible values as proteins are associated with them. As an exam-
ple, the term eIF4E gets 46 different values, such as the
following: IF4E_ASHGO, IF4E_RAT, IF4E1_SCHPO ...
4EBP2_HUMAN, 4ET_HUMAN.

Although in a few cases the results described in the articles
apply to multiple species, in the majority of cases the article
focuses on one (or in some cases two or three) organisms. In
the training data, there were 449 articles with interactions
involving only 1 organism, 142 articles with 2, 26 articles with
3, 6 articles with 4, 3 articles with 5, 1 article with 6, and 1 arti-
cle with 9 different organisms (only 628 articles, among those
distributed as training data, contained curatable interac-
tions). Being able to determine with precision which is the
organism used in the study leads therefore to a huge disam-
biguation effect.

The interactions normally involve two proteins from the same
organism, but there can be cases of cross-species interactions
that involve two proteins from different organisms. In the
training dataset, out of 3,189 interactions, 396 (12%) are
cross-species interactions. These cases are particularly prob-
lematic because they require local disambiguation of the
protein.

The interactions between proteins belonging to different spe-
cies can be classified in several categories.
Genome Biology 2008, 9(Suppl 2):S13
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The first category is linked to the medical field of infectious
diseases, in particular disease-host interactions. Examples
include interactions between viral and human proteins (such
as between P53_HUMAN [human cellular tumor antigen
p53] and VE6_HPV16 [protein E6 of the human papillomavi-
rus variant 16; PubMed: 15175323]) and interactions between
bacterial and human proteins (such as between
CALM_HUMAN [human calmodulin] and CYAA_BACAN
[calmodulin-sensitive adenylate cyclase of Bacillus
anthracis; PubMed: 11807546]).

The second category is created by cloning and expressing one
gene of species A in species B, for example interactions due to
'heterologous expression', such as between ISCS_ECOLI
(cysteine desulfurase of Escherichia coli) and THTR_AZOVI
(thiosulfate sulfur transferase of Azotobacter vinelandii; syn-
onym: rhodanese-like protein; gene name: rhdA; PubMed:
16310786): 'The cysteine-desulfurase IscS promotes the pro-
duction of the rhodanese RhdA in the persulfurated form.
After heterologous expression in Escherichia coli, the Azoto-
bacter vinelandii rhodanese RhdA is purified in a persulfu-
rated form (RhdA-SSH). [...]'

The third category contains interactions experimentally cre-
ated to define the structure and the activity of some protein
domains common to several species. For example, the 'motif-
based search method to identify putative effector proteins'
(PubMed: 7493928), determination of a new protein family
(PubMed: 9115257), comparison of the activity of homolo-
gous proteins (PubMed: 7890767), study of 'a pathway that
is conserved from nematode to mammals' (PubMed:
7657591), or an experiment designed to test the presence of
'homodimers' (PubMed: 15131699).

For our experiments we have adopted a statistical approach
based on the occurrences of mentions of organisms in the var-
ious sections of the paper. Just like for proteins, we have
stored in our database a number of well-known synonyms for
the organism (for example, 'murine' is an adjective referring
to MOUSE). Names and synonyms for organisms were auto-
matically downloaded from NEWT http://www.ebi.ac.uk/
newt/. The relative frequency of species in the sections of the
papers are combined linearly, with weights assigned through
a learning procedure over a training corpus, and balanced by
the known absolute frequency of species in biological
research articles, which are derived from the training data.
Interactions involving human proteins are more than 56.3%
of the total, followed by mouse (9.3%), yeast (6.5%), C. ele-
gans (6%), with each of the other organism represented in
less than 5% of the interactions. Mentions in the abstract tend
to have a predominant role in the balanced statistics.

The algorithm delivers a ranked list of species for each article.
Such a list is then used to reduce drastically the number of
possible interpretations for each term. The first step of disam-
biguation (organism-based) will simply go through all values

for a term, and select those that match the best-ranked organ-
ism. If that fails to deliver any result, then it will proceed with
the next organism, according to the ranking, until an assign-
ment is found or a given threshold is reached.

Over the BioCreative training data (740 abstracts), the initial
annotation step delivers 283,556 distinct protein values (pre-
cision = 0.0072, recall = 0.7469). (All P/R/F figures reported
in this paper, unless explicitly noted, refer to the training
data.) After the species-based disambiguation step, this
number is reduced to 45,012 (precision = 0.0308, recall =
0.5763). The remaining ambiguity (intraspecies) must be
resolved by other means.

With the collaboration of a domain expert, a small set of rules
has been developed that reflects the typical naming conven-
tions made by the authors. For example, the term MRGX,
even if we know that it refers to a human protein, is still
ambiguous among the following: MRGX1_HUMAN,
MRGX2_HUMAN, MRGX3_HUMAN, and
MRGX4_HUMAN. However, it is a typical convention that, if
no further qualifiers are adopted, the term will refer to the
first case (MRGX1_HUMAN). Alternatively, where there is a
group of proteins characterized by Greek letter suffixes ('-
alpha', '-beta', and so on), the convention is that the unquali-
fied name usually refers to the '-alpha' variant (although
exceptions are possible).

By sequentially applying the variant rules suggested by the
domain expert, the second disambiguation step typically
selects one value for each term. Over our collection of 740
abstracts, this reduces the number of protein candidates to
6,351 (precision = 0.1311, recall = 0.4974). As the figures
reveal, one must accept a significant loss of recall at each dis-
ambiguation step in order to reach a minimally satisfactory
precision.

The annotations of proteins and organisms obtained as
described above were further augmented using the ALEx
(Advanced Lexical Extractor) tool, developed in Research
(NIBR) at Novartis, Basel, Switzerland. In ALEx the process
of lexical extraction is mainly dictionary based. All terms that
are recognized are semantically typed. Currently, ALEx cov-
ers concepts such as disease, company, product, gene, target,
mode of action, and some more. The entire terminology for
lexical extraction sums up to almost 1.7 million terms. The
gene dictionary that we used consists of more that 150,000
normalized terms and nearly 0.5 million entries.

For the purposes of BioCreative, these additional entities do
not need to be distinguished (they are all typed as 'OTHER'),
but they are extremely helpful in the process of syntactic anal-
ysis of the sentences, as described in the next section. For an
example of annotated abstract, see Figure 1.
Genome Biology 2008, 9(Suppl 2):S13
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At Novartis, the lexical extraction capabilities of ALEx are
used for various application areas such as text mining, com-
petitive intelligence, and data analysis for disease area,
including the Ultralink system [48]. Figure 2 provides a
screenshot of the entity recognition for Ultralink using the
entry page for AKT in Wikipedia. Whenever a web page is
loaded into a browser, its content is sent to the ALEx web
service. The web service creates annotations by identifying
terms and assigning a concept type to them. An additional
display layer is added to the objects in the web page by high-
lighting the corresponding terms with a color code. Note that,
internally, all terms in the texts are tagged with the normal
form.

Identification and selection of interactions
The BioCreative training set contains 740 articles obtained
from either the IntACT [49] or MINT [50] databases, together
with the 'gold standard' (the set of interactions that the cura-
tors have identified in each article as novel and relevant
[3,189 interactions in total]). The average number of interac-
tions per article is 4.31, but there are a few articles that con-
tain unusually large number of interactions (the biggest
number being 170). According to recommendations by the
organizers, we dropped from the training set all articles con-
taining more than 20 interactions. This left 719 articles, of
which actually only 628 do contain interactions (for a total of
1,900 interactions, average 3.07 interactions per article).

Once reasonable values have been reached in the task of
detecting proteins, the next problem to be tackled is that of
identifying their possible interactions. A naïve approach
would simply consist of generating all possible pairs of pro-
teins mentioned in each single abstract. This results in a recall
of almost 35%, but at the cost of an abysmal precision.
Another simple approach consists in enforcing a maximal dis-

tance (in number of tokens) between any two mentions of the
proteins. We have experimented with varying distances from
1 to 50 (without taking into account sentence boundaries),
and found the best F measure value at the distance of 9 (pre-
cision = 0.0460, recall = 0.1765, F = 0.0729). The conceptu-
ally simpler (and more intuitive) approach of restricting the
possible combinations to proteins within the same sentence,
without requiring any maximal distance, delivers better
results (precision = 0.0494, recall = 0.2077, F = 0.0798).

Still, although recall is relatively good (considering the limita-
tions of the protein detection phase), precision appears to be
too low for a practical application of the approach proposed.
Therefore, a further filtering phase is required to select from
among the proposed interactions only the relevant ones. In
this respect, two kinds of false positives must be distin-
guished. On the one hand, there are pairs that correspond to
interactions mentioned by the authors but that are not rele-
vant to the curation task, either because they are well known
interactions or because they play a secondary role with
respect to the main interactions described. On the other hand,
there are genuinely spurious protein pairs, which are not
described by the authors as interacting but are simply a prod-
uct of the simplistic way in which the pairs are generated. The
strategies to filter out the false positives must therefore
address both problems.

In the first case, the approach that we have followed is to try
to identify in each abstract the sentences that describe the
most relevant results according to the authors, and to distin-
guish them from the sentences that describe background
results. An example of this could be the following: 'Previous
studies have revealed a genetic interaction between DLG
and another PDZ scaffolding protein, SCRIBBLE (SCRIB),
during the establishment of cell polarity in developing

Example of an annotated abstractFigure 1
Example of an annotated abstract. The terms marked in violet are those identified by the system as protein names, the terms marked in blue are those 
identified as organism names, whereas those marked in orange are other classes of terms. Words marked in yellow are indicators for a relation, and words 
marked in green might suggest the presence of a curatable relation. The green dot on the left of a sentence indicates that the system considers that 
sentence as potentially containing a 'curatable' relation.
Genome Biology 2008, 9(Suppl 2):S13
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epithelia.' (PubMed: 11937021). An example of a sentence
that reports 'curatable' results is the following: 'Here we
report the isolation of a new DLG-interacting protein, GUK-
holder, that interacts with the GUK domain of DLG and
which is dynamically expressed during synaptic bouton
budding.' (PubMed: 11937021).

In order to distinguish between background and novel infor-
mation, we adopted a machine learning approach based on a

classifier, which takes as training data the lemmatized version
of sentences whose status has been determined on the basis of
the gold standard. A sentence is considered positive if it con-
tains at least one pair of proteins belonging to one of the gold
standard interactions for the abstract to which the sentence
belongs (see Figure 1). After application of the 'novelty' filter,
the results that we obtained on the training data are as fol-
lows: precision = 0.0945, recall = 0.1992, and F = 0.1282.

Annotation of a Wikipedia page by UltralinkFigure 2
Annotation of a Wikipedia page by Ultralink. All genes are highlighted in yellow, diseases are depicted in green, products in light blue, companies in rose, 
and so on. Searching for all occurrences of AKT1 marks up all terms that refer to the corresponding normal form (for example, AKT1 but also 'v-akt 
murine thymoma viral oncogene homolog 1').
Genome Biology 2008, 9(Suppl 2):S13
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The second problem can be dealt with by taking into account
the exact syntactic configuration in which the two proteins
appear; does the context form a meaningful interaction? For
example, in the sentence 'Daxx simultaneously binds to
Mdm2 and the deubiquitinase Hausp.' (PubMed: 16845383),
three possible interactions can be considered (in the context
of the BioCreAtIvE competition, the direction of the interac-
tion is ignored): Daxx-Mdm2, Daxx-Hausp, and Mdm2-
Hausp. However, on syntactic grounds (see Figure 3), only
the first two interactions are licensed, whereas the third is not
justified. We have developed a series of lexico-syntactic fil-
ters, which are applied in a cascade to each proposed interac-
tion. The filters make use of lexical, morphological, and
syntactic information delivered by a pipeline of NLP tools
[51], including a novel dependency parser (for more details
see [22]). For example, filters capturing the interactions
shown in Figure 3 are (using a simplified notation):

int(X, Y):- dep(subj, H, X), dep(pobj, H, Y), prot(X), prot(Y).

int(X, Z):- dep(subj, H, X), dep(pobj, H, Y), dep(conj, Y, Z),
prot(X), prot(Z).

Only if at least one of such filters applies to the specific case is
the interaction considered further. The results that we obtain
on the training data are as follows: precision = 0.5437, recall
= 0.1839, and F = 0.2749. In order to enhance the usefulness
and maintainability of the lexico-syntactic filters, a special
type of visualization has been created (see Figure 4) showing,
for each sentence and each interaction potentially contained
therein, which of the filters captures the given interaction,
including false positives and false negatives.

Dependency treeFigure 3
Dependency tree. Presented is an example of dependency tree (simplified internal representation on the left, graphical visualization on the right).

The predicate dep(TYPE,HEAD,DEPENDENT)
represents syntactic relations among
the constituents of the sentence, the
predicate prot(PROT) identifies a protein.

dep(subj,bind,Daxx),
dep(pobj,bind,Mdm2),
dep(conj,Mdm2,Hausp),
dep(prep,Mdm2,to),
dep(conj,Hausp,and),
prot(Daxx),
prot(Mdm2),
prot(Hausp).

Support tools for the validation of filtersFigure 4
Support tools for the validation of filters. To the left of each sentence is shown the target interaction (either from gold standard or derived by the system). 
Green means that the interaction detected by the system matches an interaction in the gold standard. Gold marks an interaction in the gold standard not 
detected by the system. Red denotes an interaction detected by the system, but not contained in the gold standard. In other words, true positives are in 
green, false positives are in red, and false negatives are in gold.
Genome Biology 2008, 9(Suppl 2):S13
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Our official results in the BioCreative challenge show that the
approach is competitive, and can quite reliably extract inter-
actions from PubMed abstracts. Although some of systems
that process the full article do inevitably obtain better results
(because not all the relevant interactions are necessarily men-
tioned in the abstract), our system achieved the fourth best
results in the official BioCreative evaluation. Although the
exact results vary slightly according to the type of evaluation
performed (SwissProt only or full set of proteins, macro-aver-
age, or micro-average [17]), they consistently show that only
systems that process the full text of the articles do better. For
example, the evaluation based on all proteins, with results
computed for each article and then averaged (macro-aver-
age), gives us the following results on the test corpus: preci-
sion = 0.2632, recall = 0.2484, and F = 0.2171.

The main reason why we focused only on abstracts is their
ready availability in a standardized text format. It is concep-
tually simple (although time consuming) to create converters
from the HTML version of the articles to a suitable text for-
mat. The main problem lies in the different structuring con-
ventions of each journal, thus requiring a different converter
for each format. Once the full articles have been converted in
plain text, we could easily apply our tools, opening up the
prospect of much higher recall.

Identification of the interaction detection method
The original idea for this subtask was to compare two meth-
odologies: pattern matching (supplemented by simple statis-
tics) and machine learning. Because the resources for this
subtask were extremely limited and time was running short,
this comparison had to be postponed, and so only the results
of the pattern matching approach were submitted. Pattern
matching was conducted on a full-text version of the articles,
because many abstracts do not mention all methods or any
hints about them. These are normally mentioned in the
'Materials and methods' section. Therefore we converted the
full HTML source version of the papers to text using the com-
mand "html2text -nobs". The quality of the result is not suffi-
cient for syntactic parsing, as required by our approach to the
PPI-IPS task, but sufficient for the pattern matching
approach adopted for the PPI-IMS task.

The first important decision for this pattern matching
approach was that, considering the limited resources and
time budget, patterns for most methods could not be written
by hand. So, we started with the method part of the PSI-MI
(Proteomics Standard Initiative - Molecular Interactions)
ontology [52] and took the official names, synonyms, and
exact synonyms of the methods given there as baseline. These
patterns were then supplemented by patterns automatically
derived from the baseline patterns by considering several well
known variations, such as insertion of spaces and hyphens
(everywhere), deletion of spaces or hyphens (between words),
interpolation of words (between words), truncation of heads,

and so on. In this phase, just as in the next one, recall
improvement was the primary goal.

The selection of methods for which patterns should be written
by hand was based on the frequency of the methods in the
training data and the recall and precision of the automatically
derived patterns. Because just five methods account for two-
thirds of all file-method pairs in the training data, these were
carefully looked at by our team's biologist, who tried to find
additional hints in some of the papers where the methods
were not found using the automatically derived patterns. The
method 'coimmunoprecipitation' (MI: 0019) and its hypo-
nyms 'anti tag coimmunoprecipitation' (MI:0007) and 'anti
bait coimmunoprecipitation' (MI:0006) were most success-
fully treated in that way, because they are extremely frequent
in the training data and at the same time seldom recognized
by the automatically derived patterns. After identifying files
as containing one of the coimmunoprecipitation methods, the
most important problem was the very low precision for most
hints with good recall (for example, 'antibod' predicts 'anti
bait coimmunoprecipitation' [MI: 0006] with recall 0.985
and precision 0.299) and the low recall for most hints with
good precision (for example, 'flag-tagged' in combination
with 'precipitat' predicts 'anti tag coimmunoprecipitation'
[MI: 0007] with recall 0.434 and precision 0.543).

This could be overcome by a back-off algorithm, starting with
the patterns with best precision (assigning their methods and
excluding other coimmunoprecipitation methods), continu-
ing with patterns with a lower precision (assigning their
methods non-exclusively), and ending with a default (MI:
0019).

Similar approaches for 'pull down' (MI: 0096) led to much
less improvement because the results for the automatically
derived patterns were already rather good. This was even
more so for the fifth method, 'two hybrid' (MI: 0018), and so
the handcrafted patterns for this method were abandoned.

'Imaging techniques' (MI: 0428) was selected for a hand-
crafted pattern because recall was very bad. It was improved
significantly by deriving the new pattern from obsolete
method names, which must be mapped to MI: 0428 because
they do not figure in PSI-MI 2.5 any more. An improvement
in precision for 'biochemical' (MI: 0401) could be made by
coupling the very imprecise pattern with other, more precise
hints.

The pattern matching at this stage resulted in about 6.8 can-
didates per file with good recall (0.734) but bad precision
(0.243). Obviously, the number of candidates had to be
reduced to a degree comparable to the training data. For this,
every candidate (method) was given a weight influenced by its
frequency in the training data and the precision and recall of
the patterns used to detect it.
Genome Biology 2008, 9(Suppl 2):S13
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The BioCreative evaluation framework allowed up to three
runs to be submitted for each task. We decided on the follow-
ing degrees of reduction: run 1, giving only the best candidate
(and so the highest precision), was coupled with the results of
the highest-precision run for subtask 3.2; run 2, giving the
three best candidates (for best recall) was coupled with the
results of the highest-recall run for subtask 3.2; and run 3,
giving the best F measure by selecting up to three best
candidates (additional condition was that candidates 2 and 3
reached a minimum in frequency and precision) was coupled
again with the results of the highest-recall run for subtask 3.2.
Because the interactants were identified in the abstracts only,
whereas the methods were identified in the full text, no direct
allocation of methods to specific interactant pairs could be
achieved. Hence, we allocated every method for a file to all its
interactant pairs.

Pattern matching just on the isolated 'Materials and methods'
sections of the articles without candidate reduction yielded
much higher precision than did the unreduced pattern
matching of the full text, but after candidate reduction the
results for the full-text pattern matching were slightly better.

The approach described has the advantage of being relatively
efficient and self-contained, not requiring additional external
tools for preprocessing the documents (save for the conver-
sion into plain text). However, it might be effective only on
articles that are thematically similar to those contained in the
BioCreative training set. Moreover, experimental methods
naturally evolve over time, as new methods are developed and
older methods possibly disused, therefore limiting the appli-
cation range of the tool. An extension to new methods,
although relatively easy, requires the concomitant expertise
of both a computational linguist and a biologist.

Nevertheless, in the official BioCreative evaluation, the tool
achieved the best results (best precision = 0.6679, best recall
= 0.5548, best F measure = 0.4836). Using the parent-node
association evaluation measure, which includes the parent
node of the expected method as correct answer (and therefore
does away with some of the really complex disambiguation
cases described above), the results jump to the following: pre-
cision = 0.6794, recall = 0.8548, and F = 0.6375.

As a service to the community, we intend to make this func-
tionality available through a web server (integrated into the
meta-server described in [53]). Given a PubMed identifier as
input, the server will return a list of candidate methods iden-
tified in the article, ranked according to confidence.

Conclusion
This paper presents an approach, directed at the extraction of
protein-protein interactions from biomedical literature,
based on sequential filtering of candidate interactions (pairs
of proteins in sentences). The filters make use of linguistic

information derived from a pipeline of NLP tools, in particu-
lar including a dependency parser. Furthermore, a pattern-
based approach can recognize the most frequently used
experimental methods with high reliability. The official
results in the BioCreative competition show that the proposed
approach is competitive.
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