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Abstract

Background: Learning the function of genes is a major goal of computational genomics. Methods
for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which
exploits correlation between function and other gene characteristics; and 'guilt-by-association',
which transfers function from one gene to another via biological relationships.

Results: We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-
by-association and combines the results. Using a benchmark set of functional categories and input
data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a
previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms.
In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics
and 12 functional linkage graphs based on 23 biological relationships.

Conclusion: Funckenstein outperforms a previous combined strategy using a common benchmark
dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant
improvement over the component classifiers, showing the greatest synergy for the most specific
functions. Performance was evaluated by cross-validation and by literature examination of the top-
scoring novel predictions. These quantitative predictions should help prioritize experimental study
of yeast gene functions.

Introduction
The rapid development of high-throughput technologies has
made it possible to study the properties and relationships of

thousands of genes in parallel [1-6]. A current challenge in
genomic analysis is to combine this increasingly rich trove of
evidence to infer biological function. The sheer volume of
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information makes manual human evaluation impracticable.
Therefore, it is urgently necessary to develop improved auto-
mated algorithms to assist and accelerate the process of func-
tional annotation.

The transfer of function annotation from one gene to another
via biological relationships ('guilt-by-association') has been
widely used, especially on the basis of homology relation-
ships. However, accurate functional annotation via homology
often requires high sequence similarity between homologous
proteins [7], and many proteins do not have homologs with
known function. Function may also be assigned to a gene
based on a profile of its characteristics ('guilt-by-profiling').
Sequence-based guilt-by-profiling methods, for example,
assign functions based on matches to motifs derived from
multiple sequence alignments [8-11].

Sequence-based relationships and characteristics are better
suited to predict catalytic activity or structural role rather
than involvement in a biological process, for example,
osmotic stress response. Biological relationships other than
homology have proven useful in guilt-by-association studies,
including protein-protein physical interactions [12], genetic
interactions derived from examination of double-perturba-
tion and phenotyping experiments [13], correlated gene
expression [14], or correlated phylogenetic profiles [15]. Algo-
rithms to predict function from interactions have evolved
from simple inspection of neighborhood interactions [12,16]
to consider the global structure of the interaction network
[17,18].

Beyond sequence patterns, a wide variety of biological char-
acteristics has proven useful in guilt-by-profiling function
prediction, including phenotype [19,20], subcellular localiza-
tion [21], gene chromosome neighborhood [22], previously
known functional annotations [23], and membership within
gene expression clusters [24,25] or protein complexes [5].

Many guilt-by-profiling and guilt-by-association efforts have
been reported. Some guilt-by-profiling studies have exploited
gene-gene relationships by transforming them into gene
characteristics [14], and some guilt-by-association studies
have exploited gene characteristics by treating shared anno-
tation with a gene characteristic as a gene-gene relationship.
Only a few attempts have been made to integrate both types
of inference. In particular, Deng and coworkers [26] inferred
gene function by exploiting both gene-gene relationships and
gene characteristics. This approach, discussed further below,
used protein pattern annotation and protein complex infor-
mation as gene characteristics, and also exploited protein
interaction, genetic interaction, and expression correlation
relationships.

Here, we introduce Funckenstein, a new method combining
both guilt-by-profiling and guilt-by-association approaches
to predict protein function. Initially, Funckenstein uses sepa-

rate classifiers for guilt-by-profiling and guilt-by-association.
It can integrate a very large number of gene characteristics
and gene-gene relationships to infer functions, thanks to the
scalability of its component classifiers. Funckenstein then
combines prediction results using logistic regression opti-
mized for precision versus recall performance, achieving a
better performance than either approach alone.

Here we apply Funckenstein to a benchmark of integrated
Saccharomyces cerevisiae genomic data used previously to
predict broad gene functions, and show that Funckenstein
achieves higher precision at all levels of recall. Because pre-
dictions of more specific gene functions are generally more
useful to experimental biologists, we also apply Funckenstein
to score 2,455 Gene Ontology (GO) terms for all protein-cod-
ing genes in S. cerevisiae. The results are assessed by cross-
validation and by evaluation of top predictions by an expert
curator from the Saccharomyces Genome Database (SGD).
Together, the results show that Funckenstein achieves high
precision in cross-validation and in the prediction of novel
functions.

Results
A method combining guilt-by-profiling with guilt-by-
association
We have developed an algorithm (Funckenstein) that com-
bines both guilt-by-profiling and guilt-by-association to make
gene function predictions. Guilt-by-profiling was performed
using the random forest (RF) method [27]. However, for com-
parison we also performed guilt-by-profiling using a probabi-
listic decision tree (PDT) method [28] with an early-stopping
criterion to limit over-fitting. Guilt-by-association was per-
formed in two steps: first, generate a functional linkage (FL)
graph [29], that is, a graph with edge weights reflecting the
probability that two genes share a sufficiently specific GO
term; and second, use the FL graph to assign a score to each
(candidate gene, GO term) combination based on the weight
of links between the candidate gene and genes currently
assigned to that GO term. The RF and FL predictions were
then combined via a logistic regression model that optimizes
precision versus recall performance. A full description of the
algorithm and optimization of its parameters may be found in
Materials and methods.

Performance evaluation using a previous benchmark
A combined approach was applied previously to predict S.
cerevisiae gene functions. Specifically, a Markov random
field (MRF) guilt-by-association approach integrated infor-
mation from protein interactions, genetic interactions, and
gene expression correlation [26]. This approach also
employed guilt-by-profiling, in that a gene-specific prior was
calculated from Pfam protein sequence patterns [8] and pro-
tein complex membership using a naïve Bayes (NB) method
[30]. We will refer to this combined approach as 'MRF-NB'.
Genome Biology 2008, 9:S7
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MRF-NB was applied previously to protein-coding S. cerevi-
siae genes to predict a small set of functional categories
derived from literature annotation by the Munich Informa-
tion Center for Protein Sequences (MIPS) [31]. MIPS func-
tional categories are hierarchical, with top-level functions
describing very general protein functions (for example,
'metabolism') and lower levels describing more specific func-
tions (for example, 'proton driven symporter'). The MRF-NB
approach was applied to 13 top-level MIPS functional catego-
ries and trained on the 3,588 yeast genes that had been
assigned at least one of these categories (see Table 1 for
details). For the purposes of comparison, we trained Funck-
enstein on the same data sets used for the MRF analysis and
compared our cross-validation performance with the cross-
validation performance reported previously [26].

To train Funckenstein's guilt-by-profiling classifiers, we used
protein sequence pattern and complex membership data. For
guilt-by-association analysis, we used four types of pairwise
biological relationships: pairwise physical and genetic inter-
actions, correlated gene expression (with a correlation coeffi-
cient greater than 0.9), and interaction according to a large-
scale affinity purification dataset [5]. When using affinity
purification-derived interactions for predictions, we consid-
ered both the 'spoke' model (interactions defined to exist
between bait and prey proteins) and the 'matrix' model (inter-
action defined not only between bait and prey protein, but
also between prey proteins purified with the same bait) [32].
Because the 'matrix' model gave a slightly worse prediction
performance (Table 2), we used the 'spoke' model for affinity
purification-derived interactions.

Receiver operating characteristic (ROC) curves reflect the
tradeoff between recall and false positive rate that can be
achieved by tuning a given method. Here, false positive rate is
defined as the fraction of (gene, MIPS category) pairs that
were predicted to be positive, among all pairs that are incor-
rect annotations according to the MIPS annotation. The ROC
curves for Funckenstein and MRF-NB (Figure 1a) reflect a
similar trend to that observed in the precision versus recall
curves, with Funckenstein yielding an area under the ROC
curve (AUC) of 0.88, compared with an AUC of 0.75 for MRF-
NB. An AUC of 50% would indicate performance equal to that
of random guessing and an AUC of 100% would indicate per-
fect performance. Although AUC is a measure of overall per-
formance that is used for many applications, it is less
appropriate here. Because the total number of unannotated
gene/MIPS functional category pairs far exceeds the number
of annotations, only performance at extremely low false-pos-
itive rates will be relevant to most users. Furthermore, most
biologists are more interested in precision (fraction of predic-
tions that are correct) than in false positive rate as defined
above. Therefore, we used the precision-recall curve to evalu-
ate prediction performance in all subsequent analyses.

The precision that a given user requires depends on their
application. Since each of our predictions is accompanied by
a quantitative measure of confidence, users may consider
only the highest-precision predictions. Alternatively, users
wishing to select candidate genes for further study - for exam-
ple, for medium-scale genomic experiments - may wish to
include a greater number of 'trues' at the expense of precision.
Predictions offer a principled form of triage to reduce the

Table 1

MIPS functional classes used to compare with MRF -NB approach

Functional categories No. of genes annotated

Cell cycle and DNA processing 600

Cell fate 411

Cell rescue, defense and virulence 264

Cellular transport and transport mechanisms 479

Control of cellular organization 192

Energy 242

Metabolism 1,048

Protein fate (folding, modification, destination) 578

Protein synthesis 335

Regulation of/interaction with cellular environment 193

Transcription 753

Transport facilitation 306

Others (cellular communication/signal transduction mechanism, or protein activity regulation, or protein with 
binding function or cofactor requirement (structural or catalytic), or transposable elements, viral and plasmid 
proteins)

81

Total 3,588

MIPS, Munich Information Center for Protein Sequences; MRF, Markov random field; NB, naive bayes
Genome Biology 2008, 9:S7



http://genomebiology.com/2008/9/S1/S7 Genome Biology 2008,     Volume 9, Suppl 1, Article S7       Tian et al. S7.4
search space and reduce the experimental resources required
for follow-up study.

Figure 1b, which describes the tradeoff between precision and
recall for various score thresholds, shows that Funckenstein
outperforms MRF-NB in predicting MIPS functional catego-
ries. Funckenstein yields a higher precision than MRF-NB
across the full range of recall values obtained in the MRF-NB
study. For example, with a recall of 50% (that is, when 50% of
all MIPS annotations are predicted), a precision of 75% is
achieved, compared with 67% by MRF-NB. For approxi-

mately 44% of the (gene, MIPS category) pairs, MRF-NB did
not make a prediction, giving these pairs a score of 0.0. As a
result, the precision-recall curve of MRF-NB is truncated at a
recall of 56%. With a recall of 55%, Funckenstein achieves a
precision of 71%, compared with 51% by MRF-NB. Of partic-
ular interest to users choosing candidate genes for disease
association or for medium-scale screens, Funckenstein
achieves a higher recall than MRF-NB at every level of preci-
sion. As a single overall measure of performance, we com-
puted the area under the precision-recall curve. (In truncated
regions of the MRF-NB curve, we modeled recall values as

Table 2

Area under the precision versus recall curve for MIPS function prediction

Individual classifier Funckenstein MRF-NB

FL RF + FL

PDT RF Spoke model Spoke model 
+ Pfam

Matrix 
Model

Matrix 
model + 

Pfam

FL spoke 
model

FL spoke 
model + 

Pfam

FL matrix 
model

FL matrix 
model + 

Pfam

0.504 0.621 0.364 0.451 0.355 0.451 0.651 0.637 0.644 0.635 0.522

FL, functional linkage; MIPS, Munich Information Center for Protein Sequences; MRF, Markov random field; NB, naïve Bayes; PDT, probabilistic 
decision tree; RF, random forest.

Performance of MIPS function prediction using a previously established benchmark datasetFigure 1
Performance of MIPS function prediction using a previously established benchmark dataset. Results are shown for five different methods: Funckenstein (light 
red); MRF-NB [26] (black); guilt-by-profiling by the RF method alone (dark red); guilt-by-profiling by the PDT method alone (violet); guilt-by-association by 
the FL method alone (blue). (a) True positive rate versus false positive rate at different score thresholds. (b) Precision versus recall at prediction score 
thresholds. MIPS, Munich Information Center for Protein Sequences; MRF, Markov random field; NB, naïve Bayes; PDT, probabilistic decision tree; RF, 
random forest.
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having precision corresponding to that of the nearest
observed recall value.) The area under the precision-recall
curve of Funckenstein was 0.651, greater than the 0.522
observed for the MRF-NB approach.

We also investigated the individual contributions of Funcken-
stein classifiers of each type (guilt-by-profiling or guilt-by-
association) in predicting MIPS functional categories. The
guilt-by-profiling classifier outperforms the guilt-by-associa-
tion classifier (Figure 1b) with precision-recall curve areas of
0.621 and 0.364, respectively. In fact, the guilt-by-profiling
classifier alone already outperforms MRF-NB (area 0.522).
Figure 1 also shows the performance of an alternative PDT
guilt-by-profiling method in predicting MIPS functional cate-
gories. The RF method is undoubtedly an improvement over
the PDT method (area 0.621 versus 0.504). This supports our
choice to use the RF method for all other guilt-by-profiling
predictions described here.

Combining the two component classifiers led to better per-
formance than was achieved with either alone. However, the
improvement of Funckenstein over the guilt-by-profiling
classifier was modest for the MIPS benchmark (area of 0.651
compared with 0.621 under that of guilt-by-profiling classi-
fier). This could be because of the very limited number of
available interactions in this dataset. More substantial
improvement would be expected as more relationships are
included.

Note that differences in component classifier performance
may be due either to algorithmic differences or to the value of
the features used for prediction, and the comparison above
does not separate these effects. Therefore, we also investi-
gated the effect of transforming gene features into gene-gene
relationships for use by the FL classifier. Specifically, we
treated shared annotation with a Pfam domain as a gene-gene
relationship (information found in expression cluster mem-
bership features was already available to the FL classifier as
protein interactions). This substantially improved the per-
formance of the FL classifier to an area under the precision-
recall curve of 0.451 (versus the previous 0.364 area). How-
ever, use of the improved FL guilt-by-association classifier
within Funckenstein actually reduced its overall performance
(area 0.651 versus 0.637). One explanation is that the inclu-
sion of the same evidence type in both component classifiers
may lead to 'over-counting' of evidence and, thus, a slightly
weaker Funckenstein. Thus, it may be important to include
component classifiers using relatively independent input fea-
tures for the success of Funckenstein.

Application to Gene Ontology terms using an 
expanded integrated dataset
Although it enabled us to compare Funckenstein and MRF-
NB methods directly, the previously defined set of functional
categories has the drawback of being somewhat non-specific.
(For example, it is not immediately clear what specific follow-

up experiment would test the hypothesis that a gene is
involved in 'metabolism'.) Therefore, we sought to apply
Funckenstein to predict more specific GO functional terms.
We also expanded the scope of the data used to make predic-
tions. We assembled data for 21 gene characteristic types and
23 experimentally determined gene-gene relationship types
(shown in Tables 3 and 4, respectively).

Terms in the GO vocabulary are organized within a rooted
directed acyclic graph with three branches that describe bio-
logical process (BP), molecular function (MF), and cellular
component (CC), respectively. Within each GO branch, a
child GO term may descend from multiple parental GO terms.
The vocabulary is structured such that annotation with a
given GO term implies 'propagation' of this annotation to all
ancestral terms. We obtained GO annotation for all protein-
coding S. cerevisiae genes from SGD and, for each gene, we
assigned ancestral GO terms implied by annotated descend-
ent terms.

For GO term prediction, we selected yeast protein-coding
genes annotated by at least one of the attribute types listed in
Tables 3 and 4. Out of these 6,368 genes, the numbers of 'ver-
ified', 'uncharacterized', and 'dubious' open reading frames
were 4,476, 1,312, and 580, respectively, when we initiated
the work. In total, 5,790 genes were assigned to at least one
GO term, including all 'verified' and 'uncharacterized' open
reading frames.

Some GO terms describe extremely general functions; for
example, 'catalytic activity' (GO:0003824) had 1,885 associ-
ated genes. To focus on specific GO terms with the greatest
potential to guide future experimentation, we considered only
GO terms assigned to 300 or fewer genes. We excluded GO
terms assigned to fewer than three genes, because of the
extreme difficulty in developing a classifier with such a lim-
ited number of positive training examples. After this filtering,
2,455 GO terms remained. For convenience, we separated GO
terms into 12 categories corresponding to all combinations of
three GO branches (BP, MF, and CC) and four specificity lev-
els (Table 5). Specificity levels are defined according to the
number of annotated genes: 3 to 10, 11 to 30, 31 to 100, and
101 to 300 genes. To avoid circularity due to logical depend-
ency between GO terms, we have not allowed classifiers to
predict GO terms using other GO terms. The functional link-
age graphs used in guilt-by-association analysis were trained
separately for each of the 12 GO categories, and the logistic
regression parameter for combining guilt-by-association and
guilt-by-profiling predictions was optimized separately for
each GO category by maximizing the area under the corre-
sponding precision versus recall curve.

GO term predictions using both guilt-by-profiling and guilt-
by-association classifiers were made for the 6,368 S. cerevi-
siae protein-coding genes that are either annotated with a GO
term or have at least one gene characteristic or interaction.
Genome Biology 2008, 9:S7
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This resulted in a score for each of 6,368 S. cerevisiae genes
for each of 2,455 GO terms for a total of 15,633,440 quantita-
tive annotation scores.

We also assessed variants of the FL classifier using relation-
ships defined by shared annotation (as discussed above for
MIPS function predictions). Results from the variant FL com-
ponent classifier were combined with the RF predictions to
yield variants of Funckenstein. As described above for MIPS
function predictions, we evaluated prediction performance by
calculating precision and recall at different quantitative score
thresholds and by calculating total area under the precision-
recall curve within each of the 12 GO categories. Performance
was calculated for individual component classifiers, and for
variants of Funckenstein, the combined classifier (Figures 2
and 3, respectively, with underlying values shown in Table 6).

The addition of relationships based on shared annotation
improved predictions for MF attributes, but not BP and CC
attributes (Figure 2 and Table 6). For example, the area under
the precision-recall curve for MF attributes with 101 to 300
genes was 0.55 for the FL guilt-by-association classifier using
shared annotation relationships alone, in contrast to 0.24
using only direct gene-gene relationships. By contrast, the FL

classifiers for BP and CC attributes with 101 to 300 genes
yielded precision-recall areas of 0.169 and 0.271, respectively,
using only shared annotation relationships - compared with
0.373 and 0.391, respectively, for the FL classifiers using only
direct relationships. It is intuitively reasonable that shared
annotation with protein motifs would be most useful for
inferring similar molecular function rather than similar BP
and CC attributes, and that direct relationships such as pro-
tein interaction would be more useful for inferring similar BP
and CC annotation. The FL classifier variant that used both
shared annotation and direct relationships outperformed
variants using either type of relationship alone, especially for
predicting MF attributes.

The RF guilt-by-profiling classifier substantially outper-
formed the best FL guilt-by-association classifier in predict-
ing MF attributes. For example, the precision-recall area of
the RF classifier for MF attributes with specificity of 11 to 30
genes was 0.557, in contrast to 0.383 for the best FL classifier,
suggesting that the presence of particular sequence motifs (or
combinations of sequence motifs) is more helpful in inferring
molecular function than are gene-gene relationships. In pre-
dicting BP and CC attributes, the opposite was true. The FL
classifier outperformed the RF classifier in predicting BP and

Table 3

Gene attributes used in guilt-by-profiling GO term predictions

Gene characteristic type No. of characteristics Source

Phenotype 27 Giaever et al. [44]

Phenotype 12 Parsons et al. [45]

Phenotype 78 Lum et al. [19]

Phenotype 1 Baetz et al. [46]

Phenotype 4 Tucker et al. [47]

Phenotype 22 Dudley et al. [48]

Protein complex 232 Gavin et al. [5]

Protein complex 493 Ho et al. [6]

Protein complex and cellular localization 8 Ng et al. [49]

Protein complex and cellular localization 10 Robert et al. [50]

Protein cellular localization 23 Huh et al. [21]

Protein cellular localization 26 Kumar et al. [38]

Transcriptional regulator 352 Harbison et al. [51]

Transcriptional regulator 106 Lee et al. [52]

Protein sequence pattern 283 ProDom [53]

Protein sequence pattern 1,930 Pfam [8]

Protein sequence pattern 515 TIGRFAM [54]

Protein sequence pattern 928 PROSITE [11]

Protein sequence pattern 378 PANTHER [55]

Protein sequence pattern 328 PRINTs [10]

Protein sequence pattern 3,092 InterPro [9]

Total 8,848

GO, Gene Ontology.
Genome Biology 2008, 9:S7
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particularly in predicting CC attributes. For example, for CC
attributes with 11 to 30 genes, the precision-recall area of the
best FL classifier was 0.465, in contrast to 0.377 by the RF
classifier. For BP attributes with 11 to 30 genes, the area for
the best FL classifier was 0.359, compared with 0.306 by the
RF classifier.

By combining the guilt-by-profiling and guilt-by-association
classifiers, Funckenstein generally outperforms either classi-
fier alone in all three GO branches (Figure 3 and Table 6), and
the combination shows particular synergy for BP and CC
attributes. For example, for BP attributes with 31 to 100
genes, the precision-recall area of the best Funckenstein clas-
sifier is 0.454, compared with 0.349 by the best individual
classifier, a 30% improvement. For CC attributes with 31 to
100 genes, the precision-recall area increases by 18% from
0.496 for the best individual classifier to 0.586 by the best
Funckenstein classifier. The improvement for MF attributes
is not substantial, with the best performance coming from the
RF classifier, which relies on the presence or absence of pro-
tein motif patterns.

Interestingly, the best Funckenstein classifier is not based on
the best guilt-by-association component classifier. The
Funckenstein variant based on the FL classifier using only
direct relationships excels in most GO categories, and is par-
ticularly superior for MF attributes. Consequently, we chose
the Funckenstein with guilt-by-association classifier using
only direct relationships as our final predictor. As discussed

Table 4

Biological relationships used in guilt-by-association GO term predictions

Relationship evidence type No. of gene pairs with evidence Sourcea

Affinity capture-MS 19,115 Gavin et al. [56]

Two-hybrid 9,598 Ito et al. [4]

Synthetic lethality 9,067 Tong et al. [57]

Synthetic growth defect 5,131 Pan et al. [58]

Biochemical activity 4,822 Ptacek et al. [59]

Affinity capture-western 3,584 Kang et al. [60]

Epistatic miniarray profile 3,416 Schuldiner et al. [61]

Dosage rescue 2,493 Gandhi et al. [62]

Synthetic rescue 1,667 Valachovic et al. [63]

Phenotypic enhancement 1,468 Myung et al. [64]

Reconstituted complex 1,345 Kus et al. [65]

Co-purification 898 Stevens et al. [66]

Phenotypic suppression 589 Mosch et al. [67]

Dosage lethality 373 Branzei et al. [68]

Co-fractionation 319 Xu et al. [69]

Co-localization 208 Shen et al. [70]

Co-crystal structure 72 Cramer et al. [71]

Protein-peptide 63 Mariño-Ramirez et al. [72]

Affinity capture-RNA 52 Tharun et al. [73]

Far western 36 Tsai et al. [74]

Dosage growth defect 33 Pan et al. [75]

FRET 32 Damelin et al. [76]

Protein-RNA 6 Gonsalvez et al. [77]

Total 55,039

aFor each evidence type, a representative reference (the one contributing the most interactions) is shown. GO, Gene Ontology.

Table 5

Distribution of the GO functional terms predicted

GO term GO term branch

specificity BP MF CC Total

3 to 10 612 415 223 1,250

11 to 30 355 156 109 620

31 to 100 218 87 87 392

101 to 300 126 23 44 193

Total 1,311 681 463 2,455

BP, biological process; CC, cellular component; GO, Gene Ontology; 
MF, molecular function.
Genome Biology 2008, 9:S7
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above for MIPS function predictions, it appears that comple-
mentarity of individual classifiers is more important than use
of individually optimized component classifiers.

The final version of Funckenstein achieves high prediction
precision in predicting GO terms. For example, at a recall rate
at 50%, Funckenstein achieves a prediction precision for GO
terms with 101 to 300 genes of 48%, 89% and 64% for BP, MF
and CC branches, respectively. In all three branches, it is clear
that these precision levels could greatly facilitate the choice of
candidate genes for follow-up experiments - precision levels
of only approximately 3% would be expected from unguided
'brute force' experimentation. For the most specific GO terms
annotated with only 3 to 10 genes, Funckenstein still achieves
(at 50% recall) precision rates of 14%, 59%, and 73% for BP,
MF, and CC branches, respectively, which may be compared
with a corresponding unguided precision of approximately
0.09%.

Because there were no experimentally determined gene-gene
relationships for any dubious genes in our data set, perform-
ance of the above-mentioned classifiers was based on verified
and uncharacterized protein-coding genes (5,790 genes in
total). To generate scores for dubious genes, we used scores
obtained by the guilt-by-profiling classifier alone. This
resulted in a total of 15,569,760 quantitative prediction scores
(2,455 GO terms × 6,368 genes).

To investigate trends associated with verified, uncharacter-
ized, or dubious genes, we counted the number of predictions
for genes of each type that fell into each of ten prediction
score intervals. Based on the correspondence of prediction
score to observed precision, these intervals were chosen to
have an expected precision of 0 to 0.1, 0.1 to 0.2, and so on.
Within each interval, we compared the number of predictions
for verified or uncharacterized genes with that of dubious
genes (Figure 4). As expected, uncharacterized and verified
genes tended to have higher precision scores than dubious
genes, with verified genes tending to have the best scores.

We show in Figure 5 the impact of different evidence types on
prediction performance of the guilt-by-profiling classifier. In
Figure 6, we show an example decision tree of the guilt-by-
association classifier. Detailed discussion of these two figures
can be found in the Discussion section.

Literature-based evaluation of novel GO function 
predictions
In calculating precision and recall by cross-validation, only
predictions corresponding to currently known GO annota-
tions were counted as 'true'. This is conservative in that our
current knowledge of gene function in S. cerevisiae is far from
complete, and some predictions considered to be 'false' may
actually be true. A high-scoring prediction that is 'false' is
most appropriately viewed as a novel prediction. Indeed,

novel predictions are the most interesting product of a quan-
titative gene annotation system.

To assess the best-scoring novel predictions according to cur-
rent literature, we selected 120 high-scoring novel predic-
tions (the top 10 from each of the 12 GO categories). Within
each GO category, we selected predictions in order of score.
To avoid over-weighting particular genes or GO terms in our
evaluation, we excluded predictions involving a gene or GO
term already associated with a higher-scoring prediction
within the same category of GO terms. Each novel prediction
was assessed by an expert curator within the SGD group (JP,
with guidance from JMC).

Each prediction was assigned with one of the following labels:
A, 'known correct', that is, having strong supporting evidence
in the literature that was not yet captured by a GO annotation
in SGD; B, 'likely true', that is, having supporting evidence
that is inconclusive; C, 'unclear'; D, 'unlikely to be true', that
is, having evidence which either mitigates against the predic-
tion or which suggests an incompatible annotation; or E,
'highly unlikely', that is, having strong evidence that contra-
dicts the association or supports a clearly incompatible anno-
tation (see Table 7 for more detail). We consider predictions
labeled 'A' as known correct predictions, and predictions with
either 'A' or 'B' as supported.

Results of the assessment, summarized in Figure 7a, show the
proportion of novel predictions that are known correct in dif-
ferent GO branches. The fractions of top-scoring predictions
that are supported were comparable in each of the three
branches - 63%, 60% and 48% for BP, MF and CC GO terms,
respectively. The fractions of top-scoring predictions that are
known correct were 63%, 35% and 45% for BP, MF and CC
attributes, respectively. We note that the top-scoring novel
BP predictions were confirmed more frequently than MF and
CC predictions (the reverse of performance order observed in
cross-validation assessment).

The number of 'known correct' predictions is a conservative
estimate of the actual number of correct predictions, since
supporting evidence may not be available in the literature.
Therefore, the number of predictions that are actually correct
is estimated to be between the number of predictions labeled
'A' and the number labeled either 'A', 'B', or 'C'. Thus, our esti-
mates for the true rates of success among top novel predic-
tions were 63%, 35% to 65%, and 45% to 50% for BP, MF and
CC GO terms, respectively.

We also examined the success rate of novel predictions as a
function of the specificity of the GO terms predicted (Figure
7b). The success rates were 33% to 43% and 20% to 27% for
GO terms with specificity 11 to 30 and 3 to 10, respectively. As
one might expect, Funckenstein's precision for novel predic-
tions rose substantially for more general GO terms: 73% to
Genome Biology 2008, 9:S7
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86% and 63% to 71% for GO terms with specificity 101 to 300
and 31 to 100, respectively.

Top novel predictions and their evaluations are listed in Addi-
tional data file 1. Only 2 out of these 120 predictions were
made for 'uncharacterized' genes, and none were made for
dubious genes. Among these 120 predictions, 103 are refine-
ments of original annotations, that is, the target gene has
already been annotated with an ancestor GO term of the pre-
dicted GO. For example, the correct novel prediction of 'DNA
bending activity' (GO:0008301) for ARG80 was a refinement,
in that ARG80 was previously annotated with 'DNA binding'
(GO:0003677), the direct parent term of 'DNA bending activ-
ity'. The remaining 17 predictions in Additional data file 1
have no annotated ancestor GO terms assigned to the target
gene except the root GO term, and are, therefore, particularly
interesting novel predictions. For example, BPT1 was cor-
rectly predicted to have 'ATPase activity, coupled to trans-
membrane movement of substances' (GO:0042626), and had
not previously been annotated with any ancestor of this GO
term. Interestingly, out of these 17 particularly interesting
novel predictions, 13 were ranked by a SGD expert as 'known
true' or 'likely to be true'.

A resource for browsing predictions and underlying 
evidence
So that researchers may browse predictions and gain intui-
tion about the evidence underlying specific predictions, we
developed an online resource allowing browsing by GO term
or gene. This is publicly available at [33].

Discussion
Validation of a method combining guilt-by-profiling 
and guilt-by-association
The Funckenstein method yielded substantial improvement
over MRF-NB, a previous method combining guilt-by-profil-
ing with guilt-by-association. Indeed, Funckenstein achieved
a higher prediction precision across all ranges of recall when
applied to the same benchmark data (Figure 1b).

Here we generated a more up-to-date collection of integrated
data, and applied Funckenstein to predict more specific func-
tional terms from the GO vocabulary. The precision versus
recall performance of these predictions was assessed by
cross-validation and (for top novel predictions) by a follow-
up analysis of the literature.

The results suggest that these predictions could be very useful
in guiding experimentalists to promising candidate genes.
Even the most challenging GO category, highly specific BP
terms, yielded a precision of 14% at 50% recall in cross-vali-
dation assessment. Importantly, even predictions with 14%
(or lower) precision can be extremely useful. To put 14% pre-
cision into perspective, if predictions were made at random
for a GO term with approximately 6 genes left to be identified,
we would expect a precision at 50% recall of approximately
0.1%. Thus, predictions with 14% precision at 50% recall rep-
resent a 140-fold increase in the 'hit rate' compared with ran-
dom testing (which is the rate that would be achieved by an
experimentalist using the 'brute force' approach of testing all
genes).

In Funckenstein, both guilt-by-profiling and guilt-by-associa-
tion classifiers were based on a decision tree model. Decision-
tree based classifiers offer some advantages over other

Table 6

The area under the precision versus recall curve for different classifiers

GO branch GO specificity RF FL1* FL2* FL3* Funckenstein (RF + FL1) Funckenstein (RF + FL2) Funckenstein (RF + FL3)

BP 3 to 10 0.215 0.111 0.173 0.245 0.225 0.286 0.286

11 to 30 0.306 0.197 0.296 0.359 0.331 0.422 0.441

31 to 100 0.349 0.117 0.329 0.33 0.36 0.454 0.441

101 to 300 0.394 0.169 0.373 0.394 0.405 0.492 0.491

MF 3 to 10 0.44 0.188 0.134 0.309 0.445 0.489 0.463

11 to 30 0.557 0.296 0.216 0.383 0.558 0.599 0.565

31 to 100 0.596 0.29 0.232 0.393 0.597 0.632 0.61

101 to 300 0.75 0.55 0.24 0.595 0.753 0.77 0.762

CC 3 to 10 0.368 0.242 0.546 0.571 0.413 0.597 0.596

11 to 30 0.377 0.261 0.441 0.465 0.417 0.523 0.524

31 to 100 0.489 0.249 0.44 0.496 0.508 0.578 0.586

101 to 300 0.524 0.271 0.391 0.468 0.537 0.591 0.595

*FL1, FL classifier based on shared gene characteristics in Table 3; FL2, FL classifier based on direct gene-gene relationships in Table 4; FL3, FL 
classifier based on both relationship types. Entries in bold are the best Funckenstein classifier; entries in italics are the best individual classifier. BP, 
biological process; CC, cellular component; FL, functional linkage; GO, Gene Ontology; MF, molecular function; RF, random forest.
Genome Biology 2008, 9:S7
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machine learning algorithms. For example, unlike NB [34],
decision trees do not assume conditional independence
between different data types. Decision trees can also provide
intuition for the reasoning behind predictions more readily
than support vector machine approaches [35]. In addition,

decision trees have good scaling properties in terms of run-
ning time and memory usage, which is an important issue
when considering thousands of gene characteristics for thou-
sands of genes, and multiple biological relationships among
millions of gene pairs.

Performance of GO term prediction using either the RF guilt-by-profiling (RF; brown) or FL guilt-by-association classifiers (FL)Figure 2
Performance of GO term prediction using either the RF guilt-by-profiling (RF; brown) or FL guilt-by-association classifiers (FL). Three types of FL classifiers 
were compared: FL1 (green), which used only gene characteristics used in the RF classifier that have been recoded as gene pair characteristics; FL2 (red), 
which used only 'intrinsic' gene-gene relationships; and FL3 (blue), which used both intrinsic and recoded gene-gene characteristics. (a-l) Plots are 
organized according to GO branch and GO term specificity. FL, functional linkage; GO, Gene Ontology; RF, random forest.
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Much of the success of Funckenstein can be attributed to the
RF classifier in the guilt-by-profiling classification. The RF
classifier is an ensemble of decision trees [27], which has
proven to be superior to regular decision trees in many cases,
for example, in predicting protein interactions [36]. As we

can see from Figure 1, if we had used the simpler PDT rather
than the RF classifier, we would not have gained much
improvement over MRF-NB. The fact that the guilt-by-asso-
ciation classifier was based on a PDT suggests that further
improvements could be obtained using the RF method to

Cross-validation results for Funckenstein and the RF guilt-by-profiling component classifier (RF) alone (brown)Figure 3
Cross-validation results for Funckenstein and the RF guilt-by-profiling component classifier (RF) alone (brown). Three versions of Funckenstein were 
compared, each integrating RF with one of three variants of the FL guilt-by-association classifier (FL): FL1, FL using only relationships derived from shared 
gene characteristics (green); FL2, FL using only direct gene-gene relationships (red); and FL3, FL using all types of relationship (blue). (a-l) Plots are 
organized according to GO branch and GO term specificity. FL, functional linkage; GO, Gene Ontology; RF, random forest.
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obtain the functional linkage graph used in guilt-by-associa-
tion.

The guilt-by-association classifier was important to Funcken-
stein's success, especially in predicting BP and CC attributes.
While performance of the guilt-by-association component
classifier can be improved by transforming gene characteris-
tics into gene-gene relationships, this does not necessarily
lead to better performance in the follow-up integration by
Funckenstein. Indeed, as shown in Figure 3, Funckenstein
with the FL classifier that used only experimentally deter-
mined gene-gene relationships achieved better performance
than Funckenstein using the version of FL that performed
best by itself. Thus, to achieve the best overall performance, it
may be important to integrate component classifiers using
complementary input features rather than using the input
features that optimize performance of each component clas-
sifier alone.

The use of a FL graph significantly improves the 
performance of guilt-by-association in predicting 
specific GO functions
In our benchmark study predicting MIPS functions, the guilt-
by-profiling classifier played a more dominant role than guilt-
by-association. In predicting GO terms, however, the contri-
bution of guilt-by-association was more substantial. This
improvement can be attributed both to the increased number

of interactions and inclusion of additional relationship types
in the GO term prediction effort, and to the fact that the GO
terms were generally more specific. When the benchmark
data set for MRF-NB was established, the total number of
relationships, including gene expression correlation and co-
membership within a protein complex, was only 9,976. By
contrast, our GO predictions used 55,039 interactions
reported by BioGRID [37]. The number of relationship types
also increases from 4 when predicting MIPS functions to 23
when predicting GO terms.

We also found that the relative contribution of guilt-by-asso-
ciation in GO term predictions increases as GO terms become
more specific. This coincides with the decreased performance
of the guilt-by-profiling RF classifier for more specific GO
terms, for which fewer positive training examples (that is,
genes previously annotated with the GO term) are available.
By contrast, guilt-by-association has the potential to be suc-
cessful given only a single positive training example gene with
a given GO term, since the 'transfer rules' are learned from the
many GO terms within each GO category.

The guilt-by-association classifier performs well for both CC
and BP GO terms, and even outperforms the RF classifiers in
some of the CC and BP subcategories; however, its perform-
ance is much poorer in the MF categories than that of the RF
classifier. This may be explained by the fact that CC and BP
GO terms more often have corresponding relationships with
other genes in the genome, while the MF GO terms focus on
describing the catalytic activity or structural role of an indi-
vidual protein.

Assessing the value of different evidence types in 
predicting function
The RF classifier is not only useful in prediction, but can also
be used to assess the value of particular variables in inferring
a given function [27] (see Materials and methods). By ranking
gene characteristics according to their importance score, we
gain intuition about the gene characteristics that were most
useful for inferring a particular function.

For each GO term, we identified the five variables that were
most useful in the corresponding RF classifier (see Materials
and methods for details). Within each of the 12 GO categories,
we then calculated the frequency with which each gene char-
acteristic type was observed among the set of most useful var-
iables (Figure 5). For GO terms assigned to 31 or more genes,
we find the protein subcellular localization study by Huh and
coworkers [21] and a phenotyping study by Lum and col-
leagues [19] to be the most useful sources of gene characteris-
tics. In addition, the Huh et al. study was the most useful type
of gene characteristic in predicting CC GO terms, while the
Lum et al. study was the most useful gene characteristic type
in prediction of BP and MF GO terms. It is intuitively reason-
able that the Huh et al. study of subcellular localization
should be useful in predicting CC GO terms, since CC GO

Prediction scores for 'verified', 'uncharacterized', and 'dubious' genesFigure 4
Prediction scores for 'verified', 'uncharacterized', and 'dubious' genes. For 
'verified' (red) or 'uncharacterized' (blue) genes, the log ratio of the 
number of predictions within each score interval (relative to the number 
for 'dubious' genes) is shown.
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terms often correspond directly to subcellular localizations
measured within Huh et al.

It is easy to rationalize the value of the Lum et al. phenotyping
study in predicting BP GO terms, since genes within the same

biological pathway or process are known to often exhibit sim-
ilar phenotypes. However, it was surprising to find that a phe-
notyping study was dominant in predicting general molecular
functions. Phenotypes in Lum et al. often correspond to the
many genes, so these phenotypes may be useful in combina-

The average frequency of each type of gene characteristic among the five most important variables (see Materials and methods for the variable performance measure): phenotype (brown); protein complex and/or cellular localization (blue); transcription regulation (green); and protein sequence pattern (red)Figure 5
The average frequency of each type of gene characteristic among the five most important variables (see Materials and methods for the variable 
performance measure): phenotype (brown); protein complex and/or cellular localization (blue); transcription regulation (green); and protein sequence 
pattern (red). The gene characteristic types are organized according to their order in Table 3. (a-l) Plots are organized according to GO branch and GO 
term specificity. GO, Gene Ontology.
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An example of a PDT used to generate a FL graphFigure 6
An example of a PDT used to generate a FL graph. This example was trained based on annotations of those BP GO terms that are currently annotated to 
3 to 10 genes. BP, biological process; FL, functional linkage; PDT, probabilistic decision tree.
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tion with other terms, even if the Lum phenotypes alone are
not sufficient to predict the target GO term accurately.

Some gene characteristics may also be negative predictors of
molecular function. For example, 124 S. cerevisiae genes are
annotated with 'RNA polymerase II transcription factor activ-
ity' (GO:0003702). Among 1,453 genes with the gene charac-
teristic 'Huh:nucleus', 106 are annotated with the target GO
term; by contrast, among the remaining genes without this
characteristic, only 18 are annotated with the target GO term,
so that not having 'Huh:nucleus' is particularly valuable as a
'negative predictor' of GO:0003702.

For predicting specific GO terms assigned to 30 or fewer
genes, we find no gene characteristic type dominates in terms
of variable importance; almost all gene characteristic types
are represented among the most useful variables of at least
one GO category. Yet there is a tendency for protein sequence
patterns to become more useful as GO terms become more
specific, within each of the three GO branches. For example,
the MF term 'aldehyde reductase activity' (GO:0004032) is
annotated to only four S. cerevisiae genes, each sharing a
Prosite sequence motif 'PS00063' that is unique to these four
genes, making it the best predictor of this function. In another
example, the BF term 'negative regulation of microtubule
polymerization or depolymerization' (GO:0031111) is
assigned to eight genes, six with a conserved DH domain
(Interpro 'IPR000219') involved in Rho GTPase interaction

and activation that has been assigned to only seven S. cerevi-
siae genes. A third example is the CC term 'proteasome core
complex, alpha-subunit complex (sensu Eukaryota)'
(GO:0019773) that has been assigned to seven S. cerevisiae
genes. Each shares a protease alpha unit domain, Interpro
'IPR000426', that has been assigned only to these same seven
S. cerevisiae genes. Although protein sequence information is
valuable in all GO branches and is increasingly useful for
more specific GO terms, it is far from dominant in terms of
variable importance. Thus, it is necessary to integrate multi-
ple sources of experimental evidence.

The prediction importance of gene characteristics within the
same class (each indicated by color in Figure 5) can be very
different. For example, data from Lum et al., Huh et al., Rob-
erts et al., and Interpro are, respectively, the best characteris-
tic types within each of the five characteristic classes. Within
the same characteristic class, we can assess value of variables
in predicting gene function as one surrogate measure of the
corresponding quality of each experiment. It must be noted
that this analysis does not reveal the reasons for improved
value in predicting function, which may result from differ-
ences in sensitivity, specificity or coverage of the correspond-
ing experiments. Furthermore, a data set that is least useful
for predicting function may be ideal for other purposes. With
these caveats, we note one example from the comparison of
characteristic types: among protein subcellular localization
studies, gene characteristics derived from the study by Huh
Genome Biology 2008, 9:S7
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and coworkers study were substantially more useful than
those of Kumar and colleagues [38] in all 12 GO categories
(Figure 5).

It is less clear how one should establish the importance of par-
ticular variables in generating the FL graph used in guilt-by-
association. However, we can still obtain some intuition by
examining the PDT classifier used to generate the FL graph.
For example, in the PDT classifier developed for the most spe-
cific BP GO category, we can see (Figure 6) that a protein pair
with 'Affinity capture-MS', 'Affinity capture-western', and
'two-hybrid' evidence is more likely to share a specific BP
function than another pair with 'Affinity capture-MS' and
only one of 'Affinity capture-western' or 'two-hybrid' evi-
dence. The corresponding number of functionally linked ('+')
and non-functionally linked ('-') gene pairs within the train-
ing set were (138+, 580-) for pairs with all three supporting
evidence types. The decision tree structure is slightly different
in different GO categories, with more general GO categories
having more complex structures. However, the 'Affinity cap-
ture-MS' tends to be a top choice within decision trees used to
generate the FL graph.

Directions for further improvement
Novel predictions made by Funckenstein were sufficiently
accurate to be useful in guiding experimental research
according to current literature. However, we would like to
understand why some top Funckenstein predictions were
ranked as 'highly unlikely' by the SGD expert. Because highly
specific terms are expected to be most useful to experimental-
ists, we focused on predictions for the most specific GO cate-
gories (assigned to 3 to 10 genes). Among the 30 such novel
predictions of the most specific GO categories, 10 were con-
sidered 'highly unlikely' in light of current literature. These
ten fell within each of the GO branches (three, five, and two
predictions corresponding to MF, CC, and BP branches,
respectively; see Additional data file 1). According to the con-
tribution of the RF and guilt-by-association classifier to the
final prediction scores of these ten predictions, we can divide
them into two classes: predictions with low RF but high guilt-

by-association scores (corresponding to the genes VPH1,
SUI2, SPT7, and TIF5); and predictions with high RF but low
guilt-by-association scores (corresponding to the genes SFH1,
MSH3, TPS2, LSM1, MSH6, and MLH2). Predictions in the
former class all corresponded to CC GO terms. In each of
these four cases, genes were known to encode members of a
protein complex, and membership in a different subunit of
the same complex was predicted (Additional data file 1). For
example, VPH1 was predicted to have function 'hydrogen-
transporting ATPase V1 domain' (GO:0000221), while
according to SGD it is a 'subunit of vacuolar-ATPase V0
domain' (a different subunit of the same complex). Thus, it is
no surprise that VPH1 was found in multiple high-throughput
experiments to interact with all eight S. cerevisiae genes in
the V1 subunit, leading to a high guilt-by-association score
and a mistaken prediction. This mistake might have been
avoided, given the knowledge that VPH1 is annotated to the
ATPase V0 domain. However, we had avoided using GO
terms to predict other GO terms, to avoid complications aris-
ing from strong dependencies between GO terms [23]. This
example suggests, however, that we might gain by using GO
terms that are strongly anti-correlated with the target GO
term as a predictor.

We also examined six top-scoring predictions with high RF
but low guilt-by-association scores. All six can be attributed to
conserved protein domains. For example, SFH1 was pre-
dicted to have 'phosphatidylinositol transporter activity'
(GO:0008526), while SGD annotation describes SFH1 as a
'putative homolog of Sec14p, which is a phosphatidylinositol/
phosphatidylcholine transfer protein involved in lipid metab-
olism'. All five S. cerevisiae genes currently annotated with
'phosphatidylinositol transporter activity' share the Pfam pat-
terns 'PF00650 (CRAL/TRIO domain)' and 'PF03765
(CRAL/TRIO N-term domain)', as well as the Prosite pattern
'PS50191 (CRAL-TRIO lipid binding domain profile)'.
Because SFH1 is the only S. cerevisiae gene other than these
five genes to have these domains and sequence patterns,
Funckenstein assigned the target function with very high con-
fidence. However, a previous study was unable to record any

Table 7

Categories for expert classification of novel predictions

Category Brief description

A Known true There is experimental evidence for this annotation, but it is not yet captured by SGD (all supporting literature pre-dates the 
analysis)

B Likely true No experimental evidence exists in the literature, but there is author speculation or sequence similarity support for this 
annotation

C Unclear Experimental evidence is either unavailable or conflicting.

D Unlikely The gene product is known to have a related but different function/process and no experimental support was found for the 
prediction

E Highly unlikely Direct experimental evidence against this association, or all other experimental evidence supports an unrelated function/
process, or the gene product is part of a well-characterized complex and the predicted component term was to a different 
well-characterized complex

SGD, Saccharomyces Genome Database.
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detectable phosphatidylinositol/phosphatidylcholine trans-
fer activity for Sfh1p in cytosolic extracts, even when recom-
binant Sfh1p was added as a supplement at micromolar
concentrations [39], although they could not exclude the pos-

sibility that the activity might exist under some other condi-
tion. Assuming that this was a mis-prediction, it is not clear
how such a mis-prediction might be avoided in future.

Assessment of 120 novel predictions by an expert curatorFigure 7
Assessment of 120 novel predictions by an expert curator. Assessments were either 'known correct', 'likely true', 'unclear', 'unlikely to be true' or 'highly 
unlikely'. (a) For each of the three GO branches, the proportion of novel predictions given each assessment. (b) For each specificity level, the proportion 
of novel predictions given each assessment. GO, Gene Ontology.
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Conclusion
We have developed a combined algorithm named 'Funcken-
stein' that combines both gene characteristics and gene-gene
relationships to predict functions. Funckenstein shows sub-
stantial improvement over a promising previous method in
predicting MIPS functions of S. cerevisiae genes. We have
therefore applied Funckenstein to systematically predict
2,455 more specific GO terms for S. cerevisiae genes. In
cross-validation Funckenstein achieves high precision within
all three GO branches, even for the most specific GO terms.
Funckenstein has generated a large number of novel predic-
tions that can be readily explored by experimentalists. The
assessment of the top 120 novel predictions by an SGD expert
suggests that the resulting novel predictions have the poten-
tial to be extremely useful to experimentalists.

Materials and methods
Prediction methods
The probabilistic decision tree classifier
The PDT is a simple and effective tool for modeling the prob-
ability of one variable describing an object conditioned on
other known characteristics of that object [40]. The decision
tree is a graph describing the recursive division of a set of
objects into successively smaller partitions. For a detailed
description, see [28,40]. In short, all objects in the training
set are initially assigned to the root node. Objects are recur-
sively split into smaller partitions on the basis of the value of
a particular predictive variable. The predictive variable used
to split objects at each node was chosen based on the Gini
impurity measure [28], a measure of uniformity of objects
with respect to a given variable of interest. To avoid overfit-
ting, we implemented an 'early stopping' criterion to decide
whether the next proposed split provides sufficient informa-
tion to justify the accompanying increase in model complex-
ity. For the predictive variable offering the largest reduction
in Gini impurity, we compute the corresponding hypergeo-
metric distribution probability:

where N is the total number of genes in the parent node, and
NT and NF are the total number of genes in the parent node
annotated with and without the target GO term, respectively,
while NTL and NFL, NTR and NFR are the corresponding num-
bers at the left and right daughter node given the split, respec-
tively. We reject the split and determine the node to be a 'leaf
node' if the hypergeometric distribution probability P > α
(with α = 0.01 except where otherwise specified). We com-
pute the probability of a given gene i to be annotated with the
target GO term j as:

where NT and NF are as defined above, PT is the overall frac-
tion of genes annotated with the target GO term and Ψ is the
number of pseudocounts used to correct for small sample
sizes (Ψ = 1 for all results described).

Random forest classifier
Whereas the PDT classifier produces only one tree as a pre-
dictive model for a given GO term, a RF classifier is composed
of an ensemble of many decision trees. Each decision tree in
the 'forest' differs from the PDT in that: training genes at the
root node are selected by bootstrap resampling (sampling
with replacement) from the full training set; at every node,
only a fraction of available object characteristics are assessed
as candidates for splitting the next node; and there is no
early-stopping criterion (since the process of averaging over
diverse trees is an intrinsic safeguard against overfitting
[27]). The score for a given candidate gene and GO term is
then the fraction of trees trained on that GO term that classify
that gene as positive. More details on the RF classifier can be
found in [27].

Because the extremely large number of predictive variables
available in our data set (8.848 for the GO term prediction
study) impacts the memory and time efficiency of the RF
method, we introduced modifications to the RF method. We
performed feature selection to eliminate variables that were
marginally uninformative. For feature selection we examined
the set of unique genes at the root node and computed the
hypergeometric distribution probability P (as defined in the
PDT description above), retaining only those characteristics
with P < α. Because of the bootstrap resampling in selecting
training genes, the selected features may vary between trees.
We also imposed the same early stopping criterion and
method for calculating a probability score at each leaf node
that were described for PDTs above. The final RF score for a
given gene and GO term was then the average of the probabil-
ity scores at leaf nodes corresponding to that gene across all
trees in the forest trained on that GO term.

There are three free parameters of the RF classifier: the
number of random variables at each split, the threshold for
feature selection, and the threshold for early stopping. Opti-
mization of these parameters is described below in the 'Train-
ing and cross-validation' section.

We also estimated the importance of each variable in predict-
ing each given GO term. Variable importance was computed
using Gini impurity (also used above in the context of PDTs).
Specifically, importance of a given variable is the sum of the
reduction in Gini impurity over all appearances of that varia-
ble over all decision trees in the forest [27].

Guilt-by-association classifier
Guilt-by-association was performed using a FL graph, in
which each edge in the graph is assigned a weight related to
the probability that two genes share a common GO term

P
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whose specificity (number of genes) is within the specificity
range of a given GO category [29]. The FL graph is then used
to assign scores to particular gene and GO term combina-
tions. We produced a separate FL graph for each of 12 GO cat-
egories, corresponding to each combination of three GO
branches (BP, MF, and CC) and four specificity levels (3 to 10,
11 to 30, 31 to 100, and 101 to 300). We used the PDT method
to produce each FL graph. Unlike PDTs predicting specific
GO terms where the objects under study are genes, here the
objects of interest are gene pairs. The variable to be predicted
for each gene pair is the answer to the question 'are these two
proteins functionally linked, that is, do they share any one of
the specific GO terms in a specified GO category?' The
attributes used for this classifier are gene-gene relationships,
such as protein or genetic interactions. To limit over-fitting,
we used the same PDT early-stopping criterion described in
the context of function prediction, with threshold 10-8. Thus,
for each GO category, each pair of S. cerevisiae genes is
assigned a FL 'weight' reflecting the probability that the gene
pair shares a specific GO term in that category. To score the
annotation of a particular candidate gene with a particular
GO term, we retrieve FL weight scores for all pairings of the
candidate gene with genes known to have the GO term and
average the top three FL scores.

Combining guilt-by-profiling and guilt-by-association scores
Guilt-by-profiling and guilt-by-association classifier scores
are combined by a simple logistic regression model with one
free parameter. For a given gene i and a target function j, let
the probability score computed by the guilt-by-profiling and
guilt-by-association classifiers be PGBP(i, j) and PGBA(i, j),
respectively, then the corresponding combined score P(i, j) is
defined as:

where w is optimized over the range from 0 to 1 based on area
under the precision versus recall curve obtained in cross-val-
idation.

Training and cross-validation
For both PDT and RF classifiers, we performed ten-fold
cross-validation to obtain a probability score for each gene
and used these scores to assess performance. For the RF clas-
sifier, we obtained an 'out-of-bag' score for every gene. Each
tree in the forest uses only approximately 66% of genes in
training. Therefore, for each gene we identified the approxi-
mately 33% of trees that did not use that gene in training and
averaged the scores for that gene to obtain its 'out-of-bag'
score.

We optimized the free parameters of the RF classifier accord-
ing to the performance of 'out-of-bag' scores. To evaluate per-
formance of a set of scores, we obtain at multiple score
thresholds the number of true positive (TP), false positive

(FP), true negative (TN), and false negative (FN) genes at the
given threshold. TP (FP) is defined as the number of proteins
with a score greater than the threshold, which are (are not)
currently annotated with target function. FN (TN) is defined
as the number of proteins with a score below the threshold
that are (are not) currently annotated with the target func-
tion. Thus, we can compute 'precision':

'recall' or 'true positive rate':

and 'false positive rate':

Thus, to assess the performance of a given set of scores, we
can plot Pprecision versus Precall, or Ptrue versus Pfalse (the latter
is often called a ROC curve). Although the ROC curve is
widely used in evaluating the performance of a classifier, it is
not the best measure for this application. Because annota-
tions are sparse, only very low false positive rates correspond
to predictions with a level of precision that is likely to be use-
ful. Therefore, we used the area under the precision-recall
curve to optimize the three free parameters of the RF classi-
fier and the single free parameter of the logistic regression
procedure used to combine guilt-by-profiling and guilt-by-
association scores. We also used the precision-recall curve to
compute the 'projected precision' corresponding to a given
prediction score. First, we computed its corresponding recall.
Then, we identified the maximal precision at or greater than
the recall in the precision-recall curve, and used that preci-
sion as the 'projected precision' corresponding to a given pre-
diction score.

Predictions of MIPS functions using a previously 
defined benchmark data set
Data sources
For comparison with the earlier MRF-NB method, we used
the benchmark data set to which it was previously applied.
This used the MIPS catalog of functional categories ('FunCat')
[41]. Although this catalog currently includes 28 top-level
functional categories that describe general functions, we used
the 13 functional classes derived previously from MIPS [26]
(see Table 1 for detailed description). We also predicted only
for the 3,588 S. cerevisiae genes annotated with at least one
of the 13 function classes, as was done previously. We used
the same information used in training the MRF-NB model,
including Pfam domain and tandem affinity purification
(TAP) complexes [5], protein and genetic interactions derived
from MIPS, and gene expression correlation. We downloaded
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this information from the website corresponding to the previ-
ous MRF-NB publication without any post-processing [42].

We trained PDT and RF guilt-by-profiling classifiers using
gene characteristics, that is, protein domain and complex
information. The FL graph for the guilt-by-association classi-
fier was trained using protein and genetic interactions from
MIPS, gene expression correlation, and TAP complex interac-
tion based on the 'spoke' model [32].

GO function prediction
Sources of data
We downloaded associations of GO terms with S. cerevisiae
genes from SGD [43] in December 2006. We also down-
loaded the GO directed acyclic graph structure from the GO
database (November 30, 2006 release) and used it to 'propa-
gate' associations so association to a particular GO term was
propagated to all ancestral GO terms. We identified 2,530 GO
terms that are associated with at least three S. cerevisiae
genes according to the propagated annotation. We defined a
measure of functional specificity for each GO term by count-
ing the number of genes currently associated with that GO
term. Then, following the same strategy that was used in a
recent critical assessment of Mus musculus gene functions
(unpublished data), we divided these GO terms into 12 sub-
categories according to GO branches and GO specificities (3
to 10, 11 to 30, 31 to 100, and 101 to 300 genes). The total
number of GO terms in these 12 categories was 2,455. The
parameters of the RF classifier and Funckenstein were
trained independently for each of the 12 GO subsets.

For guilt-by-profiling predictions, we collected a large
number of gene attributes derived both from sequence analy-
sis and high-throughput experimental data (see Table 3 for
details). For guilt-by-association predictions, we downloaded
experimentally determined interaction types from the BioG-
RID database [37]. This database defines 23 protein and
genetic interaction types, for example, yeast two-hybrid pro-
tein interaction and synthetic lethal genetic interaction (see
Table 4 for details), corresponding to a total of 55,039 unique
gene pairs with some relationship. We also computed shared
annotation relationships for all gene characteristics in Table
3. Within a given class of gene characteristics, a gene pair was
considered to have shared annotation if the number of shared
characteristics was more than 90% of the number of unique
characteristics held by either protein.
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