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Abstract

Background: The wide availability of genome-scale data for several organisms has stimulated
interest in computational approaches to gene function prediction. Diverse machine learning
methods have been applied to unicellular organisms with some success, but few have been
extensively tested on higher level, multicellular organisms. A recent mouse function prediction
project (MouseFunc) brought together nine bioinformatics teams applying a diverse array of
methodologies to mount the first large-scale effort to predict gene function in the laboratory
mouse.

Results: In this paper, we describe our contribution to this project, an ensemble framework based
on the support vector machine that integrates diverse datasets in the context of the Gene
Ontology hierarchy. We carry out a detailed analysis of the performance of our ensemble and
provide insights into which methods work best under a variety of prediction scenarios. In addition,
we applied our method to Saccharomyces cerevisiae and have experimentally confirmed functions
for a novel mitochondrial protein.

Conclusion: Our method consistently performs among the top methods in the MouseFunc
evaluation. Furthermore, it exhibits good classification performance across a variety of cellular
processes and functions in both a multicellular organism and a unicellular organism, indicating its
ability to discover novel biology in diverse settings.

Background

An important challenge in the post-sequence era of modern
biology is determining the functional role of all proteins in the
cell. With the recent invention of several large-scale experi-
mental methods, we have begun to accumulate a wealth of
functional genomic data to help address this challenge,

including expression and protein-protein interaction data,
and phenotype and phylogenetic profiles. These large data-
sets have fuelled an interest in computational approaches to
gene function prediction, which promise to harness the infor-
mation present in these large collections of data to automati-
cally derive accurate gene annotations [1-7].
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Although a variety of computational approaches have been
proposed for predicting gene function, most of them have
been developed and applied in unicellular organisms such as
Saccharomyces cerevisiae. Applying these methods to
higher, multicellular organisms is non-trivial because of their
intrinsic complexity, including different development stages,
tissue types and physiological functions. However, we per-
haps have the most to gain from computational annotation
efforts based on diverse data, as our knowledge about the role
of individual proteins in these systems is largely incomplete.
In fact, although organisms such as the laboratory mouse
tend to be of great scientific importance, the majority of their
proteins are annotated electronically based on only a single
data source (the IEA [inferred from electronic annotation]
evidence code) [8]. Many sources of genome-scale data are
available for most genes and, thus, functional prediction from
multiple data sources for multicellular organisms is an
important open problem whose solution is critical to func-
tional genomics.

To explore the development of gene function prediction
methods for multicellular organisms, several groups recently
participated in an organized function prediction project for
the laboratory mouse, MouseFunc [9]. Several state-of-the-
art machine learning methods were applied, including sup-
port vector machines (SVMs), Bayesian networks, decision
trees and random forests. Here, we describe our contribution
to this effort, an ensemble classifier approach that is based on
the SVM and integrates information in the context of the
Gene Ontology (GO) hierarchy.

Our approach is motivated by three key aspects of the gene
function prediction problem. First, we hope to accurately
annotate function for a broad range of biological processes,
molecular functions and cellular components. Given this
diversity, it is unlikely that one learning model will perform
the best in all possible contexts, thus motivating our choice of
an ensemble of complementary approaches. Second, estab-
lished knowledge of gene function (that is, the gold standard
for learning) is organized in the hierarchical structure of the
GO, which can be leveraged to improve overall prediction
accuracy. Finally, the available genomic data (for example,
gene expression and protein-protein interaction data) are
heterogeneous both in terms of the functional information
they capture and in their inherent structure; a model for
learning must be flexible enough to accommodate these dif-
ferences and leverage functional diversity within the data.

Our ensemble classifier is based on the SVM and leverages
these characteristics unique to the gene function prediction
setting (Figure 1). We illustrate that a combination of comple-
mentary strategies often outperforms a single SVM classifier
and, furthermore, demonstrates consistently strong perform-
ance relative to competing groups in the MouseFunc submis-
sions [9]. In the sections that follow, we provide an analysis of
prediction performance and insights into when and why our
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ensemble framework performs well. Finally, we also demon-
strate that our method can confidently predict novel biology
with experimental confirmation of predictions in S. cerevi-
siae.

Results

Our approach consists of an ensemble of three different clas-
sifiers, all based on the SVM: a single SVM, single kernel clas-
sifier; a hierarchically corrected combination of SVM
classifiers; and a naive Bayes combination of single dataset
SVM classifiers (Figure 1). The basic process we applied was
to train all three classifiers for each GO term, use out-of-bag
bootstrap values to assess their performance, and finally
assemble combined predictions based on classifier perform-
ance. We describe each of these approaches and their combi-
nation into the ensemble framework in detail in Materials and
methods.

We applied this method in the MouseFunc GO prediction
project [9]. This project involved prediction of a total of 1,726
biological process terms, 326 cellular component terms and
763 molecular function terms for laboratory mouse. As
described in [9], methods were evaluated according to two
different benchmarks. The first set included 1,718 genes
whose annotations were held-out in advance, and the second
set consisted of novel annotations, including 1,954 genes,
added by Mouse Genome Informatics (MGI) in the approxi-
mately 8 months between dataset assembly and the predic-
tion submission deadline. Here we focus our analysis on the
latter set, which could be considered the ideal test case to
determine how well our approach can predict completely new
biology. Furthermore, to simplify the discussion, we have also
restricted most of our analysis to the biological process GO
terms. The trends discussed here are similar for the other
types of terms (cellular component and molecular function)
and the prediction of biological process terms is generally
more difficult as shown by lower average areas under receiver
operating characteristic (ROC) curves (AUCs; see Figure 2 in

[oD.

The ensemble method performs among the top
prediction methods

Our ensemble approach performs well across a broad range of
processes (GO terms), including both large and small terms
from all GO branches. We measure an overall average AUC of
0.72, with an average precision of 0.13 at 20% recall. Of the
2,172 total terms across all three ontologies, there are 188
with better than 90% precision at 20% recall. Furthermore,
our method always performs in the top three of the nine
MouseFunc submissions in terms of the average AUC across
all categories of terms. These categories were defined by the
project organizers for each GO branch (biological process,
cellular component, and molecular function) based on the
number of annotations to each term [9]. Our method achieves
the best average AUC for 3 of these 12 categories, the second
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An ensemble framework based on the SVM that integrates diverse datasets in the context of GO hierarchy. After pre-processing the data, we developed
an approach that consists of an ensemble of three different classifiers: I, a single SVM classifier for each GO term was trained on combined data; 2, single
SVM classifiers were combined through Bayesian networks to correct their predictions based on the hierarchical relationship between GO terms in the
GO directed acyclic graph; and 3, a naive Bayes classifier was built for each GO term to directly integrate the results of single-dataset SVM classifiers. The
bootstrap held-out values on the training set were used to characterize each classifier's performance, and the ensemble prediction was formed by selecting
the best performing classifier on each GO term. GO, Gene Ontology; SVM, support vector machine.

best AUC for 6 of the 12, and the third best AUC for 3 of the 12
(Table 1 and Figure 2).

Our method performs the best relative to the other submis-
sions on large terms, that is, terms with many annotations. In
fact, two of our three first-place finishes are for the largest
terms (biological process terms with 101 to 300 annotations
and cellular component terms with 101 to 300 annotations).
Conversely, two of our three third-place finishes are for the
smallest terms (biological process terms with three to ten
annotations and cellular component terms with three to ten
annotations). Thus, our method consistently performs among
the top methods used in this project across a range of func-
tional categories, although it does appear that our best per-
formance occurs on large and medium-sized terms. We will
explore this trend in greater detail below in this section.

Analysis of ensemble classifier performance

We further analyzed the individual components of our
ensemble approach to gain knowledge about which methods
perform the best under which circumstances.

Bagged SVM classifier performance is robust across a wide range of
GO terms

Since the SVM on a combined input dataset served as the
basis for our approach, we first compared its performance
alone on the evaluation set to submissions from other teams.
The mean AUCs for biological process GO terms for the
bagged SVM range from 0.63 (terms with 3 to 10 annotations)
to 0.69 (terms with 31 to 100 annotations). With this per-
formance, the linear-kernel SVM ranks consistently among
the top three or four methods for all size categories of GO
terms (Figure 3). In fact, on average, only three methods
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GO term size influences the performance of individual methods. GO term size appears to be a significant factor that influences the relative performance
among groups (the performance of each group is shown by the average AUC values). Although there is no general trend common to all groups, individual
groups demonstrate consistent trends regardless of what GO branch was tested. For example, groups B and D perform better on big GO terms. Group
C performs better on small terms, and groups E to H perform well on intermediate-sized GO terms. Asterisks indicate second round submissions. AUC,
area under receiver operating characteristic curve; BP, biological process; CC, cellular components; GO, Gene Ontology; MF, molecular functions.

(groups C, D [our group] and G) performed better than the graphs (HIER-BFS; Figures 4 and 5). We examined how often
single SVM classifier across the entire set of biological process  the hierarchical correction from either of these yielded better
terms. Furthermore, only the ensemble approach described  prediction accuracy than the bagged SVM predictions.

here consistently outperformed the single SVM predictions

regardless of the GO term size, while group C performed sig- Predictions for a majority of GO terms are improved signifi-
nificantly well on small terms. We were surprised at the rela-  cantly by the hierarchical correction after selection of the sub-
tive success of this approach since our implementation was  graphs based on held-out values. The HIER-BFS classifier
straightforward with little 'fine-tuning' with the exception of =~ improved the single SVM predictions for 1,012 of 1,726 (59%)
some input data processing and bootstrap aggregation  biological process GO terms by an average AUC of 0.049
(described in Materials and methods). However, this result (26% increase of random performance; Figure 5b). Similarly,
confirms our original choice of the SVM as a robust baseline =~ the HIER-MB classifiers improved predictions for 996 of

method for the more sophisticated classifiers in our ensem- 1,726 (58%) terms by an average AUC of 0.044 (23% increase;
ble. Figure 4b). Through a combination of both strategies, the

improvement is sustained across the whole range of GO term
Hierarchical correction of SVM classifiers improves performance sizes, but both tend to improve prediction performance

We further applied our hierarchical correction based on GO (AUC) more for smaller terms (Figures 4c and 5c). For
hierarchies and measured its improvement over single SVMs  instance, HIER-BFS improves predictions for terms with
(see Materials and methods for details). For all GO terms with more than 200 annotations by an average of 0.018 (10%
five or more annotations in the training set, we applied both  increase) but improves predictions for terms with between 3
approaches to subgraph generation, including the Markov ~ and 10 annotations by an average of 0.095 (58% increase).
blanket graphs (HIER-MB), and the breadth-first search We observed a similar trend for the HIER-MB classifier: 0.03
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Ranking of the performance of our group based on the mean AUCs

GO term size Biological process

Cellular component Molecular function

Test set ranking
3-10
11-30
31-100
101-300

N N W w

Novel set ranking
3-10 3
11-30 2
31-100 |
101-300 |

3 2
2 3
| 4
| 3
3 2
2 2
2 3
| 2

When a group submitted in both rounds during the MouseFunc annotation prediction, the latest performance was used in the ranking. AUC, area

under receiver operating characteristic curve; GO, Gene Ontology.

(17% increase) compared to 0.071 (43% increase) for smaller
terms. Unsurprisingly, the two approaches improve predic-
tions for largely the same set of GO terms. Of the 1,012 and
996 terms for which predictions were improved using the
HIER-BFS and HIER-MB approaches, respectively, the com-
bination of the two improved predictions for a total of 1,046
terms (61%) by an average of 0.048 (25%). Thus, including
GO hierarchical information in function prediction can yield
consistent improvements across a variety of terms, even in a
challenging scenario such as mouse function prediction.

Naive Bayes combination of SVMs on diverse data improves
performance for large GO terms

We also measured the improvement offered by the third clas-
sifier in our ensemble, the naive Bayes combination of per-
dataset SVMs. The motivation behind this approach is that
genomic data are heterogeneous in the specific functions they
capture and very different in their accuracy in predicting dif-
ferent functions, which may not be harnessed effectively by a
single-kernel SVM classifier. For this approach, we trained an
SVM on each individual dataset for each GO term, using boot-
strapping to characterize the output distribution of positive
and negative examples. Generally, the distribution of SVM
outputs for held-out positive examples was shifted higher
with respect to that of negative examples (for example, see
Figure 6a). A naive Bayes classifier on discretized SVM out-
puts was then used to assign a probability of functional
assignment to a GO term of interest given such distributions
from each dataset (Figure 6b).

A naive Bayes combination of per-dataset SVMs results in a
significant improvement over the single SVM classifier for
several GO terms (Figure 6¢). In all, it resulted in a signifi-
cantly higher classification performance for 403 of 1,726
(23%) biological process GO terms. Interestingly, this set
includes 87% of the terms with more than 20 annotations,

suggesting this strategy is very effective for larger terms. Fur-
ther analysis confirms this trend: the naive Bayes classifier
averages a 0.03 AUC improvement (17% increase) for terms
greater than 200 annotations yet results in a loss of perform-
ance of 0.06 (36% decrease) on smaller terms. We suspect
that this behavior is due to a lack of positive examples to char-
acterize the per-dataset SVM output distribution, and in light
of this observation, we restricted this method to terms with
more than 20 annotations. This result demonstrates why an
ensemble of different learning models is critical in predicting
diverse gene functions: the naive Bayes combination of single
dataset classifiers works well for large terms but must be com-
plemented with other approaches when few positive exam-
ples are available.

Analysis of the source of ensemble predictions

Our ensemble method integrates output from the three base
classifiers: the bagged single SVM, hierarchical Bayesian
combination of SVM classifiers and the naive Bayes combina-
tion of per-dataset SVMs. We evaluated how often each of
these three approaches was selected for the final prediction
set. As suggested by our earlier analysis, the majority of pre-
dictions are selected from the more sophisticated approaches,
either the hierarchical classifier or the naive Bayes combina-
tion (Figure 7). Specifically, the naive Bayes combination was
more likely to be selected for larger GO terms, while the hier-
archical correction yields consistent improvements in all size
categories, as suggested by our previous analysis. In all, for
terms with more than 100 annotations, predictions for 99%
were improved by one of these alternatives and predictions
for 99%, 89%, and 37% were improved for GO terms with 31
t0 100, 11 to 30, and 3 to 10 genes, respectively. Thus, the SVM
provides a robust baseline classifier for gene function predic-
tion, demonstrated by the performance on GO terms with
fewer than five annotated genes, where only a single SVM was
used. Nevertheless, SVM can often be significantly improved
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Figure 3

Comparison of the performance of a single SVM with other methods in predicting BP annotations of the novel set. This figure shows the AUC achieved by
different submissions to the mouse function prediction project compared to a single SVM approach for GO BP terms of different sizes: (a) 3 to 10; (b) ||
to 30; (c) 31 to 100; and (d) 101 to 300. We found that a single SVM, after careful adjustment of parameters, performed relatively well across different
sizes of GO terms, indicating the robustness of the SVM as a baseline prediction method. Only groups C, D and G performed better, on average, than the
single SVM results. The dashed red lines represent the performance of single SVM in terms of AUC. Asterisks indicate second round submissions. AUC,
area under receiver operating characteristic curve; BP, biological process; GO, Gene Ontology; SVM, support vector machine.

by leveraging unique properties of genomic data and the GO
context, particularly when a reasonable number of positive
examples are available.

Discussion of evaluation results

We have demonstrated that our ensemble classifier achieves
good performance across a variety of terms and performs
consistently well relative to other methods contributed to the
mouse function prediction project. As discussed earlier, one
of the most important factors determining the relative per-
formance of different methods was the size of the GO term
(number of annotations or positive examples). The organizers
grouped the set of predicted GO terms into 4 different size

groups, based on the number of annotations in the training
set: 3 to 10, 11 to 30, 31 to 100, and 101 to 300. These sets
formed the basis of our earlier analysis. As one might suspect
from the trends apparent in our method's performance, the
participating groups' relative performance varied drastically
across GO term size (Figure 2). For example, group B and
group D (our group) were relatively better at predicting larger
GO terms than smaller ones, while group C performed espe-
cially well on very small GO terms. We also observed that
many groups, including groups E to H, performed well on
intermediate-sized GO terms. These trends are usually con-
sistent regardless of the GO term branch, indicating intrinsic
properties of the specific methodologies used by each group.
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Hierarchical correction using Markov blanket structure. (a) Schematic of the local Markov blanket surrounding a GO term (Y1 is the node of interest in
this example). Each GO term is represented by a blank node while the SVM classifier output for that GO node is represented by a shaded node. To
address the hierarchical relationships between GO terms, for each GO term (Y1), we included all neighboring nodes in its Markov blanket to construct a
Bayesian network. The distribution of SVM outputs (observed nodes) for positive and negative examples was encoded in the conditional probability tables
of the Bayesian network. We then infer the probability of a particular gene's involvement in each GO term (a hidden node) based on its values in these
observed nodes. (b) Improvement of the AUC for the novel set using the HIER-MB classifiers compared to single SVM predictions for selected terms for
biological process terms of size 101 to 300 (number of genes annotated to this GO term in the training set). For each GO term, the best-performing sub-
hierarchy was selected, and the ones that performed better than single SVM (characterized by held-out values in the training set) are plotted in this figure.
(c) Median improvement of predictions for selected GO terms over different biological process GO term sizes. Hierarchical correction using Markov
blanket structure performs better (when selected) for smaller terms. AUC, area under receiver operating characteristic curve; GO, Gene Ontology;
HIER-MB, Markov blanket hierarchical correction; SVM, support vector machine.

The reasons for our improved performance at predicting
larger terms are relatively clear based on our earlier analysis.
First, the basis of our approach, the single SVM, shows signif-
icantly better performance than other approaches for larger
GO terms. Second, as discussed above, the naive Bayes com-
bination is particularly effective on larger terms, which

accounts for much of our superior performance in those
cases. In general, because we used a supervised method for
forming ensemble predictions (that is, through evaluation on
the bootstrap held-out values), we require a reasonable
number of examples to properly estimate relative perform-
ance of different classifiers. Thus, the ensemble yields
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Figure 5

Hierarchical correction using BFS sub-networks. (a) Schematic of BFS sub-networks. Each GO term is represented by a blank node while the SYM
classifier output for that GO node is represented by a shaded node. Starting from each GO term (Y1), we did a BFS to construct the local hierarchy, until
a maximum of 30 terms were included. In this process, we considered only GO terms with five or more annotations in the training set. (b) Improvement
of AUC for the novel set using the HIER-BFS classifier compared to single SVM predictions for selected terms for biological process terms of size 101 to
300 (genes annotated to this GO term in the training set). For each GO term, the best-performing sub-hierarchy was selected, and the ones that
performed better than single SVM (characterized by held-out values in the training set) are plotted in this figure. (c) Median improvement of predictions
for selected GO terms over different biological process GO term sizes. Again, hierarchical correction using BFS structure performs better for smaller
terms when they were selected. AUC, area under receiver operating characteristic curve; BFS, breadth-first search; GO, Gene Ontology; HIER-BFS,
breadth-first search hierarchical correction; SVM, support vector machine.
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Figure 6 (see previous page)

Bayesian combination of diverse datasets. (a) A typical example of distribution of SVM outputs of a single dataset. This distribution of SVM output (from

the Su et al. expression dataset [34]) for positive examples is shifted slightly

higher relative to the distribution of the negative examples. (b) Schematic of

Bayesian combination of diverse datasets. For each GO term, we constructed a naive Bayes classifier where the output of single-dataset SVMs was used as
a single input node (observed node). (c) Improvement of AUC over single SVM predictions for selected terms for biological process terms with size 101
to 300 genes. The Bayesian combination of datasets was selected where the held-out results on the training set showed superior performance over the
single SVM. (d) Median improvement of predictions for selected GO terms over different biological process GO term sizes. The Bayesian combination of
diverse datasets performs well only for large GO terms. AUC, area under receiver operating characteristic curve; GO, Gene Ontology; SVM, support

vector machine.

improvement only where there are sufficient positive exam-
ples to support this estimation.

The variation among groups suggests an important lesson
about gene function prediction. Namely, there is rarely one
method that performs the best in all prediction scenarios. We
anticipated this in designing our approach, which motivated
our choice of an ensemble of classifiers, although all of our
methods tended towards better performance on medium to
large GO terms. Fortunately, there were other methods
applied in this annotation prediction effort that show the
opposite trend (for example, group C), suggesting that only a

handful of methods may be able to provide superior results
for most situations. In fact, a combination of our ensemble
method's results for large terms and group C's results for
small terms would nearly dominate all categories.

Another major source of variation in the relative performance
of the different methods was the choice of the evaluation set.
As mentioned earlier, two sets of annotations were used by
the organizers to evaluate the submissions. The first evalua-
tion was completed on a set of annotations simply held-out at
the time of dataset distribution (the held-out set). Addition-
ally, we were also able to evaluate our results on the new bio-
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Figure 7

Composition of selected approaches for different GO term sizes. In our ensemble method, three different approaches based on SVM were applied,
including bagged single SVMs, SVMs with hierarchical correction, and Bayesian integration of single-dataset SVMs. Each of them exhibits good performance
in a different domain, which is indicated in this figure by the percentage of terms where each of the different methods exhibited the best performance for
four different size categories. For smaller GO terms, the single SVM and hierarchical correction often achieve superior performance. For larger GO terms,
Bayesian integration of diverse datasets performed better than the other two methods. GO, Gene Ontology; SVM, support vector machine.
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logical knowledge curated during the approximately eight
month period after data assembly (the novel set). Our discus-
sion here has been limited to evaluation of our method on the
novel set, mainly because we think this set best models the
real prediction scenario. Interestingly, we found that the rel-
ative performance of the different groups significantly differs
between the held-out set and the novel set, although there is
a slight correlation (Figure 8). Furthermore, the average AUC
across all categories and groups drops significantly between
the held-out set and the novel set. One characteristic that
would potentially explain these differences is that the novel
annotation set is dominated by ISS (inferred from sequence
or structural similarity) annotations, while the test set has a
significant fraction of RCA (inferred from reviewed computa-
tional analysis) annotations (Figure S3 in [9]). The similarity
of the distributions of evidence codes between the test set and
the training set makes the test set an easier prediction prob-
lem, which is confirmed by overall higher performance on
that set. Despite these differences between the two evaluation
sets, we were encouraged that our method performed among
the top submissions using either benchmark (Table 1). In gen-
eral, however, this alerts one to the fact that we should be very
critical when evaluating our computational results using
cross-validation analysis alone.

Literature follow-up on novel mouse gene function
predictions

Encouraged by the good performance of our method across a
variety of biological processes, we investigated a number of
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specific predictions for previously uncharacterized mouse
genes. For example, in predicting the genes involved in chro-
matin modification (GO:0016568), we achieved an AUC of
0.8396 in the novel set, and 80% precision at 20% recall. One
gene of high confidence (0.99) but not annotated to this term
was PRDM14 (MGI:3588194). This gene has no biological
process annotations yet, and based on previous computa-
tional analysis, this gene is suggested to localize to the
nucleus [10]. Our prediction of its involvement in the chro-
matin modification process correlates with the findings of a
recent publication that showed that stable expression of
PRDM14 up-regulated expression of a variety of genes
involved in breast cancer [11]. In particular, PRDM14 con-
tains a PR domain, possibly a derivative of SET, which is
known to affect chromatin structure [12]. Oncogenic proper-
ties have been shown in other chromatin modifiers as well,
including EZH2 and SMYD3 [13,14]. Given this evidence, it is
likely that PRDM14 regulates specific gene expression levels
through the modification of chromatin structure. This litera-
ture study suggests that using our approach can enhance the
efficiency of novel gene function discovery, including the
identification of genes involved in a core process such as chro-
matin modification, which is potentially relevant to our
understanding of human biology.

Experimental validation of gene function predictions in
S. cerevisiae

The evaluations described above were based on cross-valida-
tion analysis and literature follow-up of specific predictions.
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Figure 8

Relative performance of different methods with regard to the test set and novel set on GO biological process terms (size 101 to 300). The relative
performance of individual groups differs between the test set and novel set. In addition, the performance on the novel set was generally worse than on the
test set. This indicates that cross-validation should be used carefully in assessing the relative performance of different algorithms and that evaluation on
novel biology is necessary. Asterisks indicate second round submissions. GO, Gene Ontology.
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Figure 9

Petite assay on the oms [ Agutant. To further evaluate the performance of our ensemble algorithm, we applied our methodology to S. cerevisiae. We tested
the second most significant uncharacterized gene with predicted involvement in mitochondria organization and biogenesis (GO:0007005). For this GO
term, the Bayesian integration of single-dataset SVM was selected as the best performer in the ensemble. Using an assay for measuring the frequency of
petite colonies for deletion mutants, we found that compared to (a) the wild type, (b) the oms/ A mutant showed 67% more cells without functional
mitochondria. GO, Gene Ontology; SVM, support vector machine.
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We wanted to further verify that we are able to predict novel
biology using our approach and, furthermore, that our
method could be successfully extended to other species. Thus,
we also applied our ensemble method (including single SVM,
hierarchical correction and naive Bayes integration of diverse
datasets) to S. cerevisiae, and validated the top predictions of
mitochondria-related function (GO:0007005, mitochondria
organization and biogenesis). For this term, the naive Bayes
combination of diverse SVMs was selected as the best-per-
forming method. The top uncharacterized gene predicted by
our methods was ICY1. Though the function of this gene
remains unknown, it was identified as a high-copy suppressor
of the TIM22 mitochondrial protein import complex [15].
Furthermore, when ICY1 is deleted, these cells require mito-
chondrial DNA for survival (Saccharomyces normally can
survive without mitochondrial DNA) [15]. Though the spe-
cific function of ICY1 remains unclear, these genetic pheno-
types strongly suggest a role in mitochondrial membrane
maintenance.

The second top uncharacterized gene was YDR316W (OMS1).
Similar to ICY1, OMS1 was identified as a high copy suppres-
sor of a mitochondrial protein (Oxa1). Though localization
studies [16,17] have identified Oms1 as a mitochondrial pro-
tein, its function remains a mystery. Using a classic assay to
measure perturbations in normal mitochondrial function
[18], we experimentally verified that Oms1 is required to
maintain functioning mitochondria. Briefly, wild-type and
omsiA strains were grown in glycerol, which selects for cells
that have functional mitochondria. These cultures are then
plated for single colonies on rich media, which allows growth
of cells without functional mitochondria. Resultant colonies
are grown on rich media to measure the proportion of cells in
the parent colony that lost mitochondrial function. This is
done by plating single cells from the colony on rich media and
overlaying the resulting colonies with tetrazolium, which
stains colonies that have functioning mitochondria red while
colonies lacking functioning mitochondria stay white (Figure
9). Eight independent frequencies were measured for both
omsiA cells and wild type. The omsi14 cells had 67% more col-
onies without functional mitochondria compared to wild type
(P < 0.003, Mann Whitney U-test). This assay clearly demon-
strates that Oms1 is required for the normal production of
functional mitochondria and provides a strong validation of
our prediction methodology.

Conclusion

We have described an ensemble approach to gene function
prediction based on three configurations of SVM classifiers.
Specifically, we have demonstrated how the hierarchical con-
text of the GO can be used to refine independent GO term pre-
dictions and how a naive Bayes combination of single dataset
classifiers can harness diverse functional information in het-
erogeneous data. We have shown that an ensemble of these
approaches can significantly improve GO term predictions
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across a range of processes and performs very well relative to
a number of other state-of-the-art machine learning
approaches. Finally, we have demonstrated through predic-
tion of novel annotations for mouse and experimental valida-
tion of our predictions in yeast that this method can be used
to precisely discover new biology.

Materials and methods

Bagged SVM classifier for each GO term

The basis of our approach is a SVM classifier, which is a state-
of-the-art machine learning method that has been used suc-
cessfully for supervised learning on high-dimensional data in
a number of different application domains [19]. Our applica-
tion here is straightforward: we combine the raw input data
into a single dataset, train a linear-kernel SVM on each GO
term of interest using annotated genes as positive examples,
and use bootstrap aggregation (bagging) to derive predic-
tions. We evaluated several variations on data pre-processing
and bootstrapping, and highlight some of the critical factors
here.

One of the most critical choices in applying the single SVM
was the way in which features from diverse input data types
were combined. We found that direct concatenation of all
datasets led to over-weighting of datasets with more features
(for example, protein-protein interaction data), which is con-
sistent with previous reports of feature scaling for improved
performance (for example, [20]). Thus, to normalize each
dataset's contribution to the Gram matrix, we separated all
feature vectors for each gene into dataset-specific subsets of
components, that is:

= [s1-2 . =k
vi—l:vi’vi""’vi ]

where oF is the feature vector for gene i from dataset k. Each

of these dataset-specific gene vectors were then normalized
separately as follows:

All normalized features for each gene were then concatenated
in a single input matrix, D:

=1 =2’ ~k

1 U1 vl

| 1 =2 -k
D=|v, v U,
. l_)k

This matrix, D, defined the set of features for each gene that
were input into each SVM. This simple procedure dramati-
cally and consistently improves -classifier performance.
Before this normalization, all input genomic datasets were
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pre-processed as described in the 'Tmplementation details'
section below.

A second critical aspect of our application of single SVMs was
our use of bootstrapping. We applied bootstrap aggregation
(bagging) for each GO term, where examples (genes) were
randomly sampled with replacement (0.632 bootstrap, that
is, the expected fraction of selected data points is 0.632) [21].
For each bootstrap sample, a model was learned based on the
selected examples, and the resulting classifier was used to
give an output for both non-selected (out-of-bag) examples
and the unknown examples. The final classifier outputs were
taken as the median of out-of-bag values across bootstraps for
the training set, and as the median of all values across boot-
straps for the unknown examples. We found that perform-
ance rises sharply with the number of bootstrapping rounds
and levels off after approximately 25 rounds for all GO terms.

Bayesian hierarchical combination of SVM classifiers
The second component of our approach is a method for refin-
ing independent GO term classifiers by integrating them in
the context of the GO hierarchy. The method we propose here
is an extension of a simpler approach we developed and suc-
cessfully applied to the problem of yeast gene function predic-
tion in earlier work [22].

To briefly summarize, the basis of the approach is a Bayesian
network that enforces hierarchical consistency across GO
terms (for example, if a child node is predicted positive, then
the parent node must also be a positive prediction). Each hid-
den node in the Bayesian network corresponds to a GO term
and is associated with an observed node, which is the output
of the single SVM for that GO term (Figures 4a and 5a). The
Bayesian framework encodes both the hierarchical rules and
the classification performance of the single node classifiers
[22]. In our formulation here, the SVM classifiers at each
node are first trained on the GO terms independently and
performance characteristics are derived from bootstrapped
outputs on held-out genes.

We apply this approach as described in [22], but extend it to
work for the entire GO hierarchy (the initial method was
developed for a small set of GO terms). To make inference on
our Bayesian networks feasible, we split each GO branch (bio-
logical process, molecular function and cellular component)
into several smaller subgraphs, each preserving the local
neighborhood around each term. We used two different
approaches for defining these subgraphs.

First, for each GO node on which we made predictions, we
constructed Bayesian networks based on subgraphs including
only other GO terms in its Markov blanket (Figure 4a). The
nodes in a Markov blanket for Y are typically a subset of its
parents, its children and its children's parents. The values of
the variables corresponding to the nodes in the Markov blan-
ket for Y contain all the necessary data to make a prediction
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for Y [23]. We refer to this approach as HIER-MB. Our second
approach for defining subgraphs was to apply a breadth-first
search (BFS) from each GO term to recover all descendants
up to a maximum of 30 total GO terms, restricting our set to
only terms with > 5 annotations in the training set (Figure 5a).
GO term predictions were made for all nodes present in these
subgraphs. We refer to this method as HIER-BFS. Using
these two approaches, each GO term occurred in several
Bayesian networks, reflecting slightly different local GO term
contexts. Finally, hierarchically corrected predictions for
each GO term were chosen on the basis of the performance of
the median of bootstrap outputs for bootstrap held-out genes.

Naive Bayes combination of SVM classifiers on diverse
data

The final component of our ensemble is a naive Bayes combi-
nation of per-dataset SVM classifiers. The motivation behind
this approach is the understanding that a single-kernel SVM
on a concatenation of several diverse datasets may be less
than optimal for the heterogeneity of the input genomic data.
Thus, we applied an approach that learns at a dataset-specific
level, but that also robustly integrates across several datasets.
A naive Bayes combination of per-dataset SVMs is ideal for
this setting; naive Bayes classifiers have been widely applied
in a variety of domains and are known for their robust per-
formance on diverse biological settings [5] and SVMs are able
to provide good classification performance, particularly on
high-dimensional datasets. This combination enabled us to
capture the heterogeneity across datasets while still harness-
ing the accuracy of the SVM. SVMs were trained independ-
ently on each of the input datasets, and these outputs were
combined with a naive Bayes classifier on the basis of the
held-out set performance. We used linear kernel SVMs for all
datasets except the protein-protein interaction data, where
we used a diffusion kernel [24] because it showed superior
performance. Previous work on integration of diverse data
with SVMs has focused on kernel-level integration (for exam-
ple, [25-27]). We suggest this as an alternative, with the pos-
sible advantage that our framework allows for non-linear
combinations of the input data, which is not always the case
for kernel-level integration methods. Although direct com-
parison of these two approaches is beyond the scope of this
work, we find that the one presented here can significantly
improve a single SVM classifier's predictions in many cases
(see Results). For all dataset classifiers, we used bootstrap
aggregation (bagging) over 25 bootstrap samples, reporting
the median output of all held-out SVM instances for each
gene. These held-out values were used to characterize the dis-
tribution of positive and negative examples for each dataset
and GO term (Figure 6a). We then applied a naive Bayes clas-
sifier to estimate the probability of annotation to a certain GO
term, given SVM outputs of all datasets for a gene:

n
P(GOY | E,,E,,...E,) = %P(GOY)H P(E; | GOY)

i=1
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where GOY stands for a positive GO term annotation (Yes), E;
represents the value of the SVM output for dataset i, and Z is
a scaling factor depending only on E,, E,,.... E,,.

Forming an ensemble prediction

We measured the performance of each classifier (single SVM,
hierarchical correction of SVMs, and a naive Bayes combina-
tion of SVMs on diverse datasets) on each term using the AUC
for the performance of the median of out-of-bag bootstrap
outputs and selected the best-performing approach for each
GO term.

One could imagine a more sophisticated scheme for combin-
ing these approaches and, in fact, we experimented with sev-
eral. For instance, we evaluated using the naive Bayes
combined predictions as input to the hierarchical correction
network. However, this and several other more complex
methods resulted in poor classification performance, often
characterized by overfitting. As we illustrate in the Results
section, each of our individual methods shows improvement
in relatively distinct areas of the GO, which may explain why
simple combination schemes are effective.

Implementation details

Pre-processing of functional genomic data and gold standard

The MouseFunc benchmark datasets used in this study were
provided by the organizers [9] and consisted of both binary
and continuous features. The binary datasets, often very
sparse, included the InterPro domain data [28], MGI pheno-
type data [29], Online Mendelian Inheritance in Man
(OMIM) disease data [30] mapped to laboratory mouse [31],
PfamA domain data [32] and protein-protein interaction data
[33]. Because only non-zero entries were used as SVM input,
feature columns that contained less than three non-zero
entries were removed from the data matrix. All missing data
were treated as zero entries.

Continuous-valued features included the Su et al. expression
data [34], Zhang et al. expression data [35], expression data
from Serial Analysis of Gene Expression (SAGE), and phylo-
genetic profiles from InParanoid [31]. All entries in these data
matrices are usually non-zero. However, the values vary in
scale across data matrices, making direct application of the
SVM classifier impractical. As a result, for each continuous
dataset, we z-score normalized the data by feature to zero-
mean and unit-variance before normalizing each dataset's
contribution to the Gram matrix (see the 'Bagged SVM classi-
fier for each GO term' section).

All methods used here for gene function prediction are super-
vised, and thus require a gold standard set of positive and
negative examples for each GO term. The positive examples
for each term were taken as genes annotated directly or to a
descendent term. Negative examples were assumed to be all
other genes in the training set.
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SVM implementation and parameter selection

In this study, we used the SVMlight software [36] as a basis to
implement all SVM classifiers. We experimented with several
parameters, including C (trade-off between training errors
and margin), w (epsilon width), and j (cost-factor) over a
wide range. We found that only the cost-factor had a signifi-
cant impact on the classifier performance on our data, and we
set its value to the ratio of negative examples to positive
examples in the training set. With the exception of a diffusion
kernel on the protein-protein interaction data, all other SVMs
used a linear kernel. We also experimented with a radial basis
function kernel but found that it resulted in poorer perform-
ance for many GO terms. For Bayesian network inference, we
used the University of Pittsburgh Decision System Labora-
tory's SMILE library and GENIE modeling environment [37].

Computational cost of the algorithm

The most computationally intensive part of our method is
training the SVMs, which in the worst case, is linear in the
number of training examples (1) and the number of non-zero
features (s) (O(sn)) [38]. SVMs are trained for each GO term,
each dataset (approximately 10), and each bootstrap fold (25
total). The structure of the Bayesian networks for hierarchical
correction are fixed based on the structure of the GO and the
size of each subgraph is limited such that the time complexity
of inference on each network is minimal (fewer than 30 total
nodes). Parameter estimation for both the hierarchical and
naive Bayes classifiers is based on out-of-bag bootstrap values
from the SVM classifiers and is also minimal compared to the
SVM training phase.

Experimental protocol for yeast mitochondria assay
Yeast is able to grow and proliferate even without functional
mitochondria on fermentable carbon sources. As such, yeast
cells occasionally fail to pass respiratory competent mito-
chondria on to daughter cells, but these cells can continue to
proliferate. Cells lacking functional mitochondria are called
petite cells. In this assay we assessed the rate at which single
gene knockout strains produced petite offspring as adapted
from [18].

The omsiA:kanMX strain was obtained by fresh sporulation
of the heterozygous deletion strain from the international
consortium collection [39]; six independent spores were iso-
lated by single colony purification on selective media for the
kanMX cassette.

For each mutant strain tested, we grew several replicates of
the strain for 48 hours in liquid YP Gycerol at 30°C [40].
Strains able to grow on glycerol were diluted and plated for
single colonies on YPD plates, which releases the requirement
for functional mitochondria. Thus, as colonies formed, cells
without functional mitochondria were generated. When the
colony is fully formed it comprises a mixture of cells with
functional mitochondria and cells without functional mito-
chondria. We measured this ratio by re-suspending a colony

Genome Biology 2008, 9:S3

Guan et al. S3.16



http://genomebiology.com/2008/9/S1/S3

and plating a dilution of this re-suspension such that 100 to
300 colonies were formed on a YPD plate. By overlaying with
soft agar containing tetrazolium, cells with functional mito-
chondria were stained red, while cells without functional
mitochondria remained white. The final mixture for agar
overlay contained 0.2% 2,3,5-triphenyltetrazolium chloride
(Sigma, St Louis, MO, USA), 0.067 M phosphate buffer pH
7.0 and 1.5% bacto agar. The ratio of white cells to total cells
gives the petite frequency. Eight independent petite frequen-
cies (biological replicates) were measured for each strain
tested. The distribution of these frequencies was compared to
the frequency of petite generation in wild-type yeast.
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