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Abstract

Background: Evolutionary changes that are due to different environmental conditions can be
examined based on the various molecular aspects that constitute a cell, namely transcript, protein,
or metabolite abundance. We analyzed changes in transcript and metabolite abundance in evolved
and ancestor strains in three different evolutionary conditions - excess nutrient adaptation,
prolonged stationary phase adaptation, and adaptation because of environmental shift - in two
different strains of bacterium Escherichia coli K-12 (MG1655 and DHI10B).

Results: Metabolite profiling of 84 identified metabolites revealed that most of the metabolites
involved in the tricarboxylic acid cycle and nucleotide metabolism were altered in both of the
excess nutrient evolved lines. Gene expression profiling using whole genome microarray with 4,288
open reading frames revealed over-representation of the transport functional category in all
evolved lines. Excess nutrient adapted lines were found to exhibit greater degrees of positive
correlation, indicating parallelism between ancestor and evolved lines, when compared with
prolonged stationary phase adapted lines. Gene-metabolite correlation network analysis revealed
over-representation of membrane-associated functional categories. Proteome analysis revealed the
major role played by outer membrane proteins in adaptive evolution. GItB, LamB and YaeT
proteins in excess nutrient lines, and FepA, CirA, OmpC and OmpA in prolonged stationary phase
lines were found to be differentially over-expressed.

Conclusion: In summary, we report the vital involvement of energy metabolism and membrane-
associated functional categories in all of the evolutionary conditions examined in this study within
the context of transcript, outer membrane protein, and metabolite levels. These initial data
obtained may help to enhance our understanding of the evolutionary process from a systems
biology perspective.
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Background

Most micro-organisms grow in environments that are not
favorable for their growth. The level of nutrients available to
them is rarely optimal. These microbes must adapt to envi-
ronmental conditions that consist of excess, suboptimal (lim-
iting) or fluctuating levels of nutrients, or famine. Evolution
can be studied by observing its processes and consequences in
the laboratory, specifically by culturing a micro-organism in
varying nutrient environments [1-4]. Extensively studied
microbial evolutionary processes include nutrient-limited
adaptive evolution [5-7] and famine-induced prolonged sta-
tionary phase evolution [8-10]. During prolonged carbon
starvation, micro-organisms can undergo rapid evolution,
with mutants exhibiting a 'growth advantage in stationary
phase' (GASP) phenotype [2]. These mutants, harboring a
selective advantage, out-compete their siblings and take over
the culture through their progeny [11-13]. Adaptive evolution
of micro-organisms is a process in which specific mutations
result in phenotypic attributes that are responsible for fitness
in a particular selective environment [1]. Laboratory studies
conducted under these evolutionary conditions can address
fundamental questions regarding adaptation processes and
selection pressures, thereby explaining modes of evolution.

In this study we used Escherichia coli K-12 strains (MG1655
and DH10B) subjected to the following processes: a serial
passage system (excess nutrient adaptive evolution studies),
constant batch culture (prolonged stationary phase evolution
studies), and culture with nutrient alteration after adaptation
to a particular nutrient (examining pleiotropic effects due to
environmental shift). During adverse conditions, micro-
organisms are known to exploit limited resources more
quickly and are observed to assimilate various metabolites.
Some of these residual metabolites comprise an alternative
resource that the organism can metabolize [2]. Continual
assimilation of metabolites and the various compounds
metabolized by the organism offer a specific niche that allows
the organism to evolve with genetic capacity to utilize those
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assimilated metabolites [2]. Hence, a detailed metabolite
analysis of these evolved populations would enhance our
understanding of these evolutionary processes. Along with
data generated from transcriptomics approaches, metabo-
lomics data will be vital in obtaining a global view of an organ-
ism at a particular time point, during which metabolite
behavior closely reflects the actual cellular environment and
the observed phenotype of that organism.

We applied metabolome and gene expression profiling
approaches to elucidate excess nutrient adaptive evolution,
prolonged stationary phase evolution, and pleiotropic effects
due to environmental shift in two strains of differing geno-
type. To eliminate the possibility of the strain-dependent phe-
nomenon of evolution and to examine the parallelism of the
laboratory evolution process, we examined in two strains the
evolutionary processes referred to above. Hence, the groups
in which we compared the metabolite and gene expression
profiles were as follows (Table 1): MG and DH (MG1655 and
DH10B E. coli strains grown in glucose, respectively); MGGal
and DHGal (MGi1655 and DH10B grown in galactose);
MGAdp and DHAdp (MG1655 and DH10B adapted about
1,000 generations in glucose); MGAdpGal and DHAdpGal
(MGAdp and DHAdp [the glucose evolved strains] grown in
galactose); and MGStat and DHStat (MG1655 and DH10B
grown in prolonged stationary phase; 37 days).

In this study we developed a picture of laboratory molecular
evolutionary processes in two different strains by integrating
multidimensional metabolome and gene expression data, in
order to identify metabolites and genes that are vital to the
evolutionary process.

Results

The Adp line cultures (MGAdp and DHAdp) were maintained
in prolonged exponential growth phase by daily passage into
fresh medium for about 1,000 generations, undergoing many

Strains and their evolved conditions

Strain abbreviations

Evolved condition

MG

DH

MGGal
DHGal
MGAdp
DHAdp
MGAdpGal
DHAdpGal
MGStat
DHStat

MG1655 grown in glucose (ancestor)

DHI0B grown in glucose (ancestor)

MG1655 grown in galactose (ancestor)

DHI0B grown in galactose (ancestor)

MG 1655 adapted about 1,000 generations in glucose (evolved)
DH 0B adapted about 1,000 generations in glucose (evolved)
MGAdp (glucose evolved strains) grown in galactose (evolved)
DHAGJp (glucose evolved strains) grown in galactose (evolved)
MG1655 grown in prolonged stationary phase (37 days; evolved)
DHI0B grown in prolonged stationary phase (37 days; evolved)
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rounds of exponential phase growth. The Stat line cultures
(MGStat and DHStat) were maintained in constant batch
culture for 37 days, during which no nutrients were added
after the initial inoculation and no cells were removed (unlike
the preceding setup). For the AdpGal line cultures (MGAdp-
Gal and DHAdpGal), Adp lines (glucose adapted) were grown
in medium containing galactose as carbon source, thus creat-
ing an environmental shift for the cells with respect to the
standard nutrient source. During this period of adaptation,
both Adp lines (evolved) exhibited increased fitness in their
growth, whereas Stat lines (evolved) exhibited growth behav-
ior similar to that of their ancestors. The samples of MG, DH,
MGGal, DHGal, MGAdp, DHAdp, MGAdpGal, DHAdpGal,
MGStat, and DHStat lines grown in the respective carbon
sources (Table 1) were harvested during the mid-exponential
phase of growth for both metabolome and transcriptome
analysis.

In the metabolome analysis, from about 200 peaks in each
chromatogram about 100 metabolites were identified by gas
chromatography-mass spectrometry. In the transcriptome
analysis a whole genome microarray consisting of 4,288 open
reading frames of Escherichia coli K-12 was used. To examine
the multivariate measures of variability of the metabolite and
gene expression profiles for the obtained data, and for clus-
tering the biological samples, we applied principal compo-
nents analysis (PCA). In order to identify parallel metabolite
accumulation and gene expression, we applied pair-wise cor-
relation plot analysis. To examine the extent of parallelism
among the evolved lines, gene-metabolite correlation net-
works were constructed and their topologic properties were
studied. By mapping the correlation networks to Gene Ontol-
ogy (GO) functional annotations, the functional relevance of
the networks was determined. Subsequently, the functional
modules that were statistically significantly over-represented
in respective evolution processes were identified.

Metabolome profiling

Metabolome profiling has frequently been applied to obtain
quantitative information on metabolites for studies on muta-
tional [14] or environmental effects [15], but not in an evolu-
tionary context. Here, for our evolutionary studies, we used
an approach that combined metabolomics and transcriptom-
ics that offers whole genome coverage. In total, 84 metabo-
lites of known chemical structure were quantified in every
chromatogram (see Additional data file 1). The full datasets
from the metabolite profiling study are presented in an over-
lay heat map (Figure 1). This map shows the averaged abso-
lute values of all indentified metabolites of the samples
analyzed. In most cases the levels of metabolites are signifi-
cantly changed in evolved lines, and their directional behav-
ior is more or less constant in both the ancestral strains and
in their evolved strains (Figure 2).

In the comparison between MGAdp and DHAdp strains, out
of 111 metabolites 50% (55 metabolites) and 55% (61 metabo-
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lites) of them had score d; > 1 or < -1 (significance analysis of
microarrays [SAM], T statistic value) [16], of which 27% (31)
of metabolites were common to both strains. The MGAdpGal
and DHAdpGal strains were observed to have 39% (43
metabolites) and 33% (37 metabolites), respectively, where
13% (10) of the metabolites were common to both of these
strains. Likewise, MGStat and DHStat exhibited differences
in 48% (53 metabolites) and 37% (41 metabolites) of the
cases, and 20% (19) of metabolites were common in both
strains (Table 2; also see Additional data file 2).

Those metabolites that exhibited differences between ances-
tral and evolved strains fell into groups of metabolites
involved in tricarboxylic acid (TCA) cycle, nucleotide metab-
olism, amino acids and their derivatives, and polyamine bio-
synthesis (Figure 1). For example, metabolites that are
involved in the nucleotide pathway were significantly differ-
ent between both ancestral and evolved strains (MG/MGAdp:
P=0.007; DH/DHAdp: P = 0.038 [Wilcoxon rank sum test;
Benjamini-Hochberg corrected; a false discovery rate-con-
trolled P-value cutoff of < 0.05]). Nucleic acids - adenine,
thymine and uracil - along with ribose-5-phosphate and oro-
tate (orotic acid) metabolite levels significantly differed in
both of the Adp evolved strains (Figure 2¢). Orotate is an
intermediate in de novo biosynthesis of pyrimidine ribonu-
cleotides, levels of which were high in ancestor strains, which
was not the case for other metabolites that were not interme-
diates in this process (Figure 2a, b, c¢). Likewise, levels of
metabolites involved in the TCA cycle were significantly dif-
ferent for both ancestral and evolved strains (MG/MGAdp: P
= 3.70 x e96; DH/DHAdp: P = 0.026 [Wilcoxon rank sum
test; Benjamini-Hochberg corrected; a false discovery rate-
controlled P-value cutoff of < 0.05]). An overview of the TCA
cycle and the diversion of its key intermediates reveal clear
differences in metabolite levels among the Adp evolved
strains and their ancestors in both strains (Figure 3). Because
the TCA cycle is the first step in generating precursors for var-
ious biosynthesetic processes and is among the main energy-
producing pathways in a cell, changes in these metabolite lev-
els can be expected to play a vital role in the adaptive evolu-
tion of these evolved strains, which exhibited increased
fitness in growth compared with their ancestor strains.

Gene expression profiling

Several studies have used gene expression profiling to study
molecular evolution, but these studies were confined to a sin-
gle type of evolutionary process and were focused on a single
molecular aspect that characterizes a cell (transcript abun-
dance) [17-20]. In our study we focused on three evolutionary
conditions in two strains and two molecular aspects of a cell
(transcript and metabolite abundance). This approach
allowed us to integrate metabolome and transcriptome data-
sets to elucidate the process of adaptive evolution under lab-
oratory conditions.
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Figure |

Overlay heat map of the metabolite profiles. Logarithmically transformed (to base 2) averaged absolute values were used to plot the heat map. Red or blue
color indicates that the metabolite content is decreased or increased, respectively. For each sample, gas chromatography/mass spectrometry was used to
quantify 84 metabolites (nonredundant), categorized into amino acids and their derivatives, polyamines, metabolites involved in nucleotide related
pathways, tricarboxylic acid (TCA) cycle, organic acids, phosphates, and sugar and polyols. The m/z values given for each metabolite in parentheses are the
selective ions used for quantification. Highlighted black boxes indicate significant changes in the metabolite level in the TCA cycle and the nucleotide
related pathways of the evolved lines. The internal standard ribitol metabolite level is also highlighted, which is shown as control.
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Figure 2

Typical examples of metabolite differential levels among the ancestral and evolved lines. (a) Sections of chromatograms showing orotate or orotic acid
(denoted by an arrow) abundance among all the lines. (b) Mass spectrum of orotate purified standard and mass spectrum of the identified peak as orotate
in both strains. (c) Box and Whisker plots of metabolites involved in nucleotide related pathways. | and 3 represent MG and DH lines (ancestors); 2 and
4 represent MGAdp and DHAGp lines (evolved). The top and bottom of each box represent the 25th and 75th percentiles, the centre square indicates the
mean, and the extents of the whiskers show the extent of the data. For each metabolite, the maximal measured peak area was normalized to a value of

100.

Using the whole genome microarray, consisting of 4,288
open reading frames, we compared expression levels of the
transcripts in all of the evolved conditions. The comparison of
MG/MGAdp and DH/DHAdp lines among 4,159 genes
revealed that 15% (633 genes) and 19% (814 genes), respec-
tively, had altered expression levels (score d;> 1 or < -1; SAM,
T-statistic value [16]). Among these, 18% (263) of the genes
were common to both strains. In the MGGal/MGAdpGal ver-
sus DHGal/DHAdpGal comparison of 4,126 genes, we
observed there to be a 5% (206 genes) and 16% (674 genes)
change, respectively, and 4% (35 genes) of these genes were

common to both strains. Likewise, on comparing MG/
MGStat versus DH/DHStat, we observed that 14% (569
genes) and 20% (825 genes) of the 4,156 genes had altered
expression levels, of which 9% (120 genes) were common to
both strains (Table 3; also see Additional data file 3). In all
comparisons, statistically significant functional categories
(with P < 0.05 [Wilcoxon rank sum test]) that did exhibit dif-
ferences between ancestral and the evolved strains fell into
broad groups of genes that are involved in transport, biosyn-
thesis, and catabolism (Figure 4). The gene expression
changes associated with these main and broad functional cat-
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Statistically significant metabolites involved in various evolved conditions

Evolved condition Total number of Number of over- Number of less Total number of Number of Total number of
metabolites taken ~ abundant abundant differentially intersecting intersecting
into account metabolites (d;> 1) metabolites (d;<-1)  abundant metabolites metabolites
metabolites
MGAdp 1 48 7 55 27 (+) 31
DHAdp 1 39 22 6l 4(-)
MGAdpGal 1 37 6 43 7(+) 10
DHAdpGal 1 18 19 37 3()
MGStat 1 36 17 53 12 (+) 19
DHStat 1 20 21 41 7()

Metabolites were assumed to be significant when their score d;> | or < -| (significance analysis of microarrays, T statistic value). (+), over-abundant/

expressed candidates; (-), less abundant/under-expressed candidates.

egories consist of groups emphasizing specific functions (see
Additional data file 4). For example, genes involved in the
pentose phosphate pathway were significantly differentially
expressed between ancestral and evolved strains of the Adp
lines (MG/MGAdp: P = 0.036; DH/DHAdp: P = 0.019; see

Additional data files 5 and 6). The pentose phosphate path-
way produces the precursors (pentose phosphates) for ribose
and deoxyribose in the nucleic acids. The accumulation of
nucleic acid metabolites (Figures 1 and 2) and over-expres-
sion of pentose phosphate pathway genes in the Adp lines
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Figure 3

Levels of metabolites involved in TCA cycle and diversion of key intermediates to biosynthetic pathways. In the box and whisker plots, | and 3 represent
MG and DH lines (ancestors), and 2 and 4 represent MGAdp and DHAGJp lines (evolved). The top and bottom of each box represent the 25th and 75th
percentiles, the centre square indicates the mean, and the extents of the whiskers show the extent of the data. For each metabolite, the maximal

measured peak area was normalized to a value of 100.
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Table 3

Statistically significant genes involved in various evolved conditions

Total number of
intersecting genes

Number of
intersecting genes

Total number of
differentially

Number of under-
expressed genes

Number of over-
expressed genes

Total number of
genes taken into

Evolved condition

account d=1) (d;<-1) expressed genes
MGAdp 4,159 315 318 633 116 (+) 263
DHAdp 4,159 438 376 814 147 (-)
MGAdpGal 4,126 91 115 206 5(+) 35
DHAdpGal 4,126 357 317 674 30 (-)
MGStat 4,156 306 263 569 69 (+) 120
DHStat 4,156 452 373 825 51 (-)

Genes were assumed to be significant when their score d;> | or < -1 (significance analysis of microarrays, T statistic value). (+), over-abundant/
expressed candidates; (-), less abundant/under-expressed candidates.

allow us to assume that the pentose phosphate pathway is
involved in adaptive evolution occurring in response to excess

Extent of changes
To examine the level of metabolite and gene expression

nutrient.

changes among all the evolutionary conditions, we applied
PCA, which is a technique for conducted multivariate data

MGAdp MGAdpGal MGStat
2.15% 3.13%
9.28% 11.349%
6.46%
13.54%
5.16%
7.22% 1.8%
DHAdp DHAdpGal DHStat
7.23% 4.20% 10.24%
11.37% 8.40% 18.44%
2.10%
717%
2.7% 1033% 6.30% 6.15%
P- value <0.05 O Transport B Biosynthesis O Catabolism O Others
Figure 4

Broad functional annotations of the transcriptome profiling data. The pie charts of individual evolutionary experimental conditions show the distribution of
differentially regulated Gene Ontology (GO) functional modules consisting various functional categories, having P < 0.05 (Wilcoxon rank sum test). The
values represent the number of GO functional categories associated with that GO functional module. For each evolutionary condition the details of GO
functional modules and its significant values are provided in Additional data file 4.
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The extent of changes in experimental evolution among the strains. (a-f) Principal components analysis (PCA) of the metabolome (panels a to c) and
transcriptome (panels d to f) data; each data point represents an experimental sample plotted using the first three principal components. PCA was carried
out on the log-transformed mean-centred data matrix using all identified metabolites and the genes with P < 0.05 (Student's t-test) in at least one strain.
Values given for each component in parentheses represents the percentage of variance. (g-1) Pair-wise correlation maps of the metabolome (panels g to i)
and transcriptome (panels j to |) data among the strains, using Pearson correlation coefficient (r). All of the metabolites and the genes having a threshold
value of r <-0.9 or > 0.9 were plotted and color coded on both axes of a matrix containing all pair-wise metabolite or gene expression profile correlation.

Darker spots indicate greater degrees of negative correlation among the strains. Both the analyses were carried out using Matlab 6.5 (The MathWorks,
Inc., Natick, MA, USA).
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analysis that reduces the dimensionality and complexity of
the dataset without losing the ability to calculate accurate dis-
tance metrics. It transforms the metabolome and transcript
expression data into a more manageable form, in which the
number of clusters might be discriminated. When applied to
ancestor and Adp lines, both ancestors (MG and DH) cluster
together; Adp lines (MGAdp and DHAdp) cluster separately
from their ancestor lines, denoting substantial adaptive
changes. This pattern was observed in both the metabolite
and gene expression data, as summarized in Figure 5a, d.
When PCA was applied to MGGal, DHGal and AdpGal lines,
the MGGal and DHGal lines clustered together; AdpGal lines
clustered separately from their ancestor lines, denoting con-
siderable pleiotropic changes due to environmental shift in
both metabolite and gene expression data (Figure 5b, e).
Unlike Adp and AdpGal lines, Stat lines exhibited dissimilar
behaviors; Stat lines (MGStat and DHStat) clustered along
with their ancestor lines (MG and DH), denoting few changes
between ancestor and evolved strains or diverse changes
between the evolved strains in both metabolite and gene
expression data (Figure 5c¢, f). To determine the extent of
adaptation in these evolved lines, we examined whether the
media was the greatest determination of variance or whether
the adaptation was greater. To this end, we conducted PCA
analyses for both the ancestors and evolved lines of both the
strains grown in two different media (MG, MGAdp, DH,
DHAdp, MGGal, MGAdpGal, DHGal, and DHAdGal). Both
the ancestor strains grown in different media clustered
together, and both evolved strains grown in different medium
clustered together; this suggests that adaption was the great-
est determinant of variance (see Additional data file 7).

Direction of the observed extent of changes

To examine the level of observed change among the strains,
we calculated the pair-wise Pearson correlation coefficient (r;
PCC) for all of the metabolites and significantly correlating
genes. All genes having a threshold of r <-0.9 or > 0.9 and all
metabolites were plotted on both axes of a matrix containing
either all pair-wise metabolite or gene expression profile cor-
relations. When these correlations () are color coded, this
facilitates use of visual inspection to determine the degree of
positive and negative correlation among the samples in ques-
tion. The correlation map of Adp, AdpGal, and Stat line com-
parisons exhibited various degrees of negative correlation
(Figure 5g-1). Among these, Stat line comparisons (MG/
MGStat versus DH/DHStat) exhibited a high degree of nega-
tive correlation when compared with AdpGal and Adp line
comparisons in both metabolite and gene expression correla-
tion maps (Fig. 5i, 1), suggesting elevated levels of variability
due to selection among the Stat lines. The correlation map of
the Adp line comparison (MG/MGAdp versus DH/DHAdp)
revealed a lower degree of negative correlation than did the
other line comparisons in both metabolite and gene expres-
sion correlation maps (Figure 5g, j), denoting a reduced level
of variability caused by selection among the Adp lines.
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Gene-metabolite correlation network analysis

It has been demonstrated that functionally related genes are
preferentially linked in co-expression networks [21]. By
integrating and comparing the gene expression and metabo-
lite profile patterns, we were able to explore the connections
between the gene-gene and gene-metabolite links and associ-
ated functions (Figure 6a) by assuming that the more similar
the expression pattern is, the shorter is the distance between
genes and/or metabolites in the co-expression network. Rel-
ative transcript amounts of all genes and relative concentra-
tions of all nonredundant metabolites were combined to form
distance matrices, which were calculated by using the PCC to
build co-expression networks. In many cases there were strik-
ing relationships between network substructure, gene, or
metabolite function and co-expression (Figure 6a). The co-
expression network analysis provides a possibility to use it as
a quantifiable and analytical tool to unravel the relationships
among cellular entities that govern the cellular functions [22].

All-against-all metabolite and gene expression profile com-
parisons for Adp, AdpGal, and Stat matrices were used to gen-
erate evolution-specific co-expression networks constructed
using r (PCC). There was a significant, strong dependence
between co-expression and functional relevance of the net-
works, attesting to the potential of co-expression network
analysis (Figure 6a). In co-expression networks, nodes corre-
spond to genes or metabolites, and edges link two genes or
metabolites if they have a threshold correlation coefficient ()
at or above which genes or metabolites are considered to be
changed differentially, exhibiting similar behavior. Correla-
tion networks as such inherently contain corresponding large
noise components, which were largely eliminated by setting
the threshold of r at 0.9. The correlation networks based on
the high threshold r of 0.9 reported here are less likely to
contain noise while being sufficiently dense for analyses of
topologic properties.

Evaluation of evolution-specific networks

With respect to a number of parameters describing their com-
mon topologic properties, all evolution-specific co-expression
networks (Adp: 4,170 nodes and 23,086 edges; AdpGal: 4,136
nodes and 20,501 edges; and Stat: 4,166 nodes and 54,028
edges) were found to be similar except for the average degree
(see Additional data file 8). The average degree (<k>) is the
average number of edges per node [22]. The Stat co-expres-
sion network exhibits higher <k> than do the Adp and Adp-
Gal networks, which is consistent with its greater numbers of
edges. The parameter <k> gives only a rough approximation
of how dense the network is. The average clustering coeffi-
cient (<C>) is a measure of network density and characterizes
the overall tendency of nodes to form clusters [22]. For all of
the evolution-specific coexpression networks, <C> was
approximately constant and high (about 0.05) when com-
pared with randomly generated networks of similar size, for
which the observed <C> was quite low (about 0.0008). The
average path length <[> is the average shortest path between
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all pairs of nodes [22]. For all of the evolution-specific co-
expression networks, the <I> was approximately constant
and low (about 6.97; Figure 6e). When analyzing the net-
works' generic features, the clustering coefficients C(k) of all
of the networks were more or less constant, implying that
they did not exhibit a hierarchical structure (Figure 6b). The
node degree (k) distribution of all of the networks appeared to
have an exponential drop-off in the tail, following a power law
(Figure 6¢). Overall, these evaluations suggest that the global
properties of these evolution-specific co-expression networks
are indistinguishable.

Evolution-specific intersection networks

Strain-specific and evolution-specific networks were
screened for the set of nodes N, for which there is a link (r >
0.9) between two nodes a and b in both strains in the partic-
ular evolution type, in order to build evolution-specific inter-
section networks. By examining the intersection networks of
both strains, we found that the path length distribution varied
among networks. All intersection networks differed in <k>,
which is consistent with their varying numbers of edges. The
average clustering coefficient <C> was slightly higher in the
Adp intersection network (<C> Adp intersection = 0.113,
AdpGal intersection = 0.07, and Stat intersection = 0.089),
demonstrating high network density and tendency of nodes to
form clusters in the Adp intersection network (see Additional
data file 8). The average path length </> was almost equal in
all cases, but its distribution in the Adp intersection network
differed, indicating high network navigability (Figure 6f, g).
Based on the observations of the global properties of the evo-
lution-specific intersection networks, the Adp intersection
network can be distinguished from other intersection net-
works, demonstrating its unique characteristics.

Parallelism and functional relevance of molecular
evolution

The generated networks were examined for functional coher-
ence by assigning GO functional annotations to the networks'
entities, and the level of parallelism in the representation of
these functional categories was elucidated. Parallel evolution
is the independent development of similar traits in distinct
but evolutionarily related lineages through similar selective
factors on both lines [23]. Parallel evolution of similar traits
across both lines are used as an indicator that the change is
adaptive [24]. Previous studies in E. coli and Saccharomyces
cerevisiae have demonstrated parallel changes in independ-
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ently adapted lines of replicate populations by utilizing gene
expression profiling [17,19]. Here, we examined the parallel-
ism of metabolite and gene expression levels among the
evolved lines of different populations that exhibited similar
growth behavior.

To examine the functional coherence and parallelism among
the evolutionary processes, we mapped the GO functional
annotations to the corresponding evolution-specific co-
expression networks and we attempted to address the extent
to which these co-expressed entities represent functionally
related categories. By mapping GO functional categories to
the co-expression networks, statistically and significantly
over-represented functional categories were color coded
according to the hypergeometric test P value, which was cor-
rected by Benjamini & Hochberg false discovery rate (a false
discovery rate-controlled P value cutoff of < 0.05; Figure 7a-
f). To examine the parallelism of evolutionary processes in
both of the strains within the context of GO functional catego-
ries, we mapped the GO functional annotations to the co-
expression networks (r > 0.9) generated by merging the data
matrix of both strains, forming three evolution-specific co-
expression networks, namely Adp, AdpGal, and Stat networks
(Figure 7a, b, ¢). The level of parallelism differed among these
networks. In the Adp network, for example, membrane, cell
wall (sensu bacteria), inner membrane, transport activity,
catabolism, and cellular catabolism functional categories
were significantly over-represented (P < 0.05; Figure 7a). In
the AdpGal network, membrane, cell wall (sensu bacteria),
inner membrane, transport, catabolism, and cellular catabo-
lism functional categories were over-represented (P < 0.05;
Figure 7b). However, in the Stat network, none of the GO
functional categories was significantly over-represented,
denoting decreased level of parallelism among both strains
(Figure 7c¢). Further examination of parallelism of evolution-
ary processes was extended to intersection co-expression net-
works (Figure 7d, e, f), which were created by selecting the
nodes that are connected (r > 0.9) in both the strains in the
particular evolutionary process in question. By examining the
parallelism in these intersection co-expression networks,
apart from other functional categories, we found that the
commonly observed distribution of statistically over-repre-
sented GO categories in all of the co-expression networks
belonged to membrane-associated GO functional categories
(Figure 7d, e, f).

Figure 6 (see following page)

Gene-to-metabolite correlation network analyses. (@) Substructure extracted from Adp correlation network with MCODE algorithm, showing
preferentially linked functionally related metabolites. The m/z values of selective ions used for quantification are shown in parentheses for each metabolite.
In the box and whisker plots of the metabolites | and 3 represent MG and DH lines (ancestors), and 2 and 4 represent MGAdp and DHAdp lines
(evolved). (b-g) Topologic properties of all evolution-specific coexpression networks. Panel b shows the degree distribution of the clustering coefficients
of all of the evolution-specific network entities. The average clustering coefficient of all the nodes was plotted against the number of neighbours. Panel c
shows the degree distribution of the networks; the number of nodes with a given degree (k) in the networks approximates a power law (P [k] about k¥;
Adp y = 1.70, AdpGal y = 1.76, and Stat y = 1.32). Distribution of the shortest path between pairs of nodes in the evolution specific (panels d and e) and
intersection (panels f and g) networks; constructed with principal components analysis thresholds of 0.8 (panels d and f) and 0.9 (panels e and g).
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Parallelism and functional relevance of molecular evolution. Gene Ontology (GO) functional annotations were mapped to the corresponding evolution-
specific co-expression networks and examined for commonalities in the co-expressed entities representing functional related categories. Each node
represents a GO functional category, and the area of a node is proportional to the number of genes in the network matrix to the corresponding GO
category. Statistically and significantly over-represented categories are color coded based on the hypergeometric test P value, which was corrected by
Benjamini & Hochberg false discovery rate (a false discovery rate-controlled P value cutoff of < 0.05). Gray nodes are not significantly over-represented.
(a-c) GO annotations were mapped to the evolution-specific co-expression networks, namely Adp (panel a), AdpGal (panel b), and Stat (panel c). (d-f)
GO annotations mapped evolution-specific intersection co-expression networks, namely (d) Adp intersection, (e€) AdpGal intersection, and (f) Stat
intersection. Not all over-represented categories are labeled because of the interdependency of functional categories in the GO hierarchy. Definitions of
numbers: |, membrane; 2, cell wall (sensu bacteria); 3, inner membrane; 4, transporter activity; 5, transport; 6, catabolism; 7, cellular catabolism; 8, amino
acid metabolism; 9, nitrogen compound metabolism; 10, carbohydrate metabolism; |1, energy derivation by oxidation of organic compounds.

Parallelism in outer-membrane protein expression

To further examine the extent of parallel evolutionary
changes, we determined the expression levels of proteins
associated with the outer membrane (OM) of the ancestor
and evolved strains, whose membrane-related GO functional
categories were over-represented in the evolution-specific co-
expression networks (Figure 7a-f). OM protein levels revealed
substantial differential expression among the ancestor and
evolved strains (Figure 8). In Adp lines, GItB (glutamate
synthase [nicotinamide adenine dinucleotide phosphate
(NADPH)] large chain precursor), LamB (maltose high-affin-
ity receptor), and YaeT (polypeptide involved in outer-mem-
brane protein biogenesis) proteins were over-expressed;
whereas in Stat lines FepA (outer receptor for ferric entero-
bactin), CirA (outer membrane receptor for iron-regulated
colicin I receptor), OmpC (outer membrane porin), and
OmpA (outer-membrane porin) proteins were differentially
over-expressed (Figure 8). Significantly, we observed paral-
lelism in the level of protein expression patterns in these

evolved strains and involvement of the outer membrane pro-
teins in these evolutionary processes.

Discussion

In this study we examined the metabolome and transcrip-
tome profiles of excess nutrient adaptive evolution, pleio-
tropic environmental shift changes, and prolonged stationary
phase evolution in two strains of E. coli K-12. We found sig-
nificant influence of genes involved in transport and mem-
brane related functional categories in all evolutionary
conditions evaluated in this study. In earlier studies, during
prolonged nutrient limited chemostat culture of bacterial
populations, it was reported that the populations tend toward
mutational adaptation in transport systems in order to
increase the efficiency with which they utilize limited nutri-
ents [25-28]. For example, glucose limited chemostat evolved
strains attained diverse mutations at several loci in LamB
porin, which increased glucose permeability [27-29]. An ear-
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Parallelism and functional significance in the outer membrane protein expression. SDS gel electrophoresis of the protein samples obtained from the outer
membrane of the ancestor and evolved lines showing the identified proteins by peptide mass fingerprinting.

lier study of adaptation of Ralstonia in selective environ-
ments [30] resulted in morphologic changes in the outer cell
envelope in all of the lineages examined.

In adaptation to excess nutrient resources, the Adp lines
exhibited higher levels of metabolites that are involved in the
nucleotide pathway and TCA cycle and its intermediates (Fig-
ures 1, 3, and 8). In line with these observations, the expres-
sion levels of genes involved in these pathways were also over-
expressed in the Adp lines (Figure 9; also see Additional data
file 5). Specifically, the pentose phosphate pathway (produces
pentose phosphates for nucleic acid synthesis) was differen-
tially regulated, along with the histidine biosynthesis path-
way, which shares metabolites with the purine and nucleotide
biosynthesis pathways (see Additional data files 6 and 9). For
example, glutamate, which is involved in the de novo biosyn-
thesis of purine nucleotides and various other pathways as a
reactant, was accumulated in higher amounts in the Adp
lines. In accordance with this observation, the genes that are
involved in the glutamate biosynthesis and the protein gluta-
mate synthase (GltB) were upregulated in the Adp lines (Fig-
ure 8). Taken together, the increased growth fitness in Adp
lines, relative to their ancestor lines, can be presumed to be
due to the differential levels of TCA cycle components (the

first step in generating precursors for several biosynthetic
pathways) and components involved in pentose phosphate
pathway (the main source of precursor metabolites for bio-
synthesis and the main producer of NADPH, which is utilized
in several biosynthesis pathways). However, the involvement
of these pathways in growth fitness requires confirmation in
additional studies. Our finding that central metabolism is
altered in excess nutrient and famine conditions (Figure 9) is
consistent with a previously reported study focusing on adap-
tive evolution in yeast in glucose-limited chemostat
experiments, which demonstrated gene expression variation
in glycolysis, the TCA cycle, and metabolite transport [17].

In long-term stationary phase cultures, cells lose their integ-
rity and release their cellular components into the medium as
cells enter the death phase [2]. For cell maintenance and
growth, the surviving cells scavenge nutrient sources from the
cellular debris (amino acids from proteins, carbohydrates
from the cell wall, and lipids from cell membrane material
and DNA) of their dead siblings [2]. This nutrient scavenging
process due to nutrient limitation enhances the availability of
carbon sources by reconstruction of the OM composition
(glycerophospholipids, lipopolysaccharides and proteins)
and there by improving the permeability of the OM [31]. The
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OM of E. coli consists of a lipid bilayer structure composed of
an outer layer consisting of lipopolysaccharide and an inner
layer consisting of phospholipids [32]. The genes involved in
the biosynthetic pathways of fatty acids (key building blocks
for the phospholipid components of cell membranes) and lip-
ids were over-expressed in Stat lines (see Additional data file
10). Other major components of the OM are proteins; these
largely consist of porins, which co-exist with lipopolysaccha-
ride [33]. The OM of the cell is the first point of contact with
the external environment, and therefore its cellular constitu-
ents may be the most sensitive to the external environment.
Consistent with this hypothesis, OM proteins FepA, CirA,
OmpC, and OmpA were differentially over-expressed in Stat
lines (Figure 8), and the genes belonging to the membrane-
associated GO functional categories were significantly over-
represented in the corresponding evolutionary networks as
well (Figure 7f). This demonstrates the reliability of the corre-
lation network analysis, which was sufficiently robust to iden-
tify significant changes in the integrated metabolite and gene
profiling dataset.

Mutation rates in stationary phase are known to be influenced
by the genetic background of the strain [10]. Initial isogenic
long-term stationary phase cultures are highly dynamic and
are known to yield different 'growth advantage in stationary
phase' mutations due to significant genotypic diversity in
these cultures [2]. Consistent with this hypothesis, when we
applied PCA (Figure 5c¢, f) and correlation plot analysis (Fig-
ure 5i, 1), the metabolite and gene expression levels of Stat
lines exhibited low degrees of parallelism when compared
with their ancestor lines. Likewise, when GO functional anno-
tations were mapped onto the Stat co-expression network, we
found that none of the GO functional categories was
significantly over-represented, denoting a low level of paral-
lelism (Figure 7¢). However, when applied to the Stat inter-
section co-expression network, membrane-associated GO
functional categories were significantly over-represented
(Figure 7f). These observations demonstrate the parallelism
in membrane-associated categories in the Stat intersection
co-expression network but not in the Stat co-expression net-
work. It suggests the existence of parallelism in membrane-
associated categories but not in similar membrane-associated
genes in Stat lines. From this we can conclude that distinct
but functionally related genes are involved in the parallelism
in the Stat intersection co-expression network.
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Conclusion

We analyzed two different strains under three different evo-
lutionary conditions. Integration of metabolome and gene
expression data within the context of evolution facilitated
investigation of the path of evolution and their degree of par-
allelism. Classifying microarray data according to signifi-
cantly over-represented GO functional categories showed
that the transport related categories had the greater overall
representation. Similarly, by mapping the GO annotation to
the correlation networks, we found that the membrane
associated functional categories were significantly over-rep-
resented. The OM of the cell is the first point of contact with
the external environment, which acts as a barrier that is quite
resistant to insult and acts as a channel for nutrient transport.
Components of the OM may therefore be the cellular constit-
uents that are most sensitive to the external environment.
Analyses of the OM proteins of the ancestor and evolved
strains revealed clear differential regulation of the OM
proteins.

In summary, all of the evolutionary experiments reported in
this study demonstrate the vital role played by the involve-
ment of the membrane associated components in the
evolutionary process. These studies show that adaptive evolu-
tion in excess nutrient conditions are appropriate for
examining the extent of parallelism in the evolutionary proc-
ess of the evolved populations, whereas the prolonged sta-
tionary phase conditions are useful in understanding the
evolution of microbial diversity among evolved populations
and the dynamic state of the evolved condition. Such studies
will certainly advance our understanding of the process of
evolution immensely and, along with constructed models
[34], will be an ideal initial source of data for systems biology
study of microbial evolution.

Materials and methods

Strain and culture conditions

Both the bacterial strains MG1655 and DH10B used in this
study are derivatives of E. coli K-12. All of the experiments
were conducted in 250 ml of M9 minimal medium supple-
mented with 4 g/1 glucose or galactose in covered 1 1 Erlen-
meyer flasks at 37°C. Adaptation to excess nutrient
experiments were carried out in the presence of 4 g/1 glucose
through serial passage at exponential phase for about 1,000
generations. The cells were grown overnight and were diluted
by passage into fresh medium. Passage of each culture into
fresh medium was conducted in a laminar flow station using

Figure 9 (see following page)

Gene and metabolite levels in the central metabolic routes and the diversion of key intermediates to biosynthetic pathways. Genes are represented in
green text, and metabolites in orange text. Ancestor and evolved strain-specific gene expression comparisons are denoted in green boxes (M, MG1655; D,
DHI10B). Ancestor and evolved strain-specific metabolite abundance comparisons are denoted in orange boxes (m, MG1655; d, DHI0B). Logarithmically
transformed (to base 2) response ratios were utilized for each comparison according to the log, ratio scale on the upper right inset.
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standard sterile technique practices. Serial passage was
conducted for 37 days at exponential phase for about 1,000
generations. For adaptation due to environmental shift
experiments, the strains that were adapted to excess nutrient
(glucose) condition for about 1,000 generations were grown
in 4 g/1 galactose. For prolonged stationary phase adaptation
experiments, both the strains were incubated for 37 days in
M9 minimal medium with 4 g/1 glucose as initial source of
carbon. The evolved populations were frozen using liquid
nitrogen and stored in a freezer at -80°C.

Metabolite profiling

Approximately equal numbers of cells (7 x 109) were taken
from the exponential phase of growth for all of the experi-
ments. Cells were disrupted using acid washed glass beads at
maximum speed in a Ribolyser (Q-BIOgene, Heidelberg, Ger-
many) at a setting of 6.5 m/second, twice for 45 seconds in the
presence of 80% methanol. Subsequently, metabolites were
derived using methoxylamine hydrochloride and N-methyl-
N-(trimethylsilyl)trifluoroacetamide in the presence of ribitol
as the internal standard. Sample volumes of 1 pl were ana-
lysed using a TraceGC gas chromatograph coupled to a Polar-
isQ ion trap mass spectrometer (Thermo Finnigan, Dreieich,
Germany). Derived metabolites were evaporated at 250°C in
splitless mode and separated on a 30 m x 0.25 mm Equity-5
column with 0.25 pm coating (Supelco, Bellefonte, California,
USA). Metabolites were identified by comparison with
purified standards, the NIST 2005 database (NIST) and the
Golm Metabolome Database [35]. Selected metabolite peak
areas were automatically quantified using the processing
setup implemented in the Xcalibur 1.4 software (Thermo
Finnigan, Dreieich, Germany). The relative response ratios
calculated from the peak areas were normalized by the inter-
nal standard ribitol and dry mass of the sample. For both the
strains in all the biologic experiments, six replicates were
used, which consisted of three independent biologic repli-
cates and three technical replicates. The variation among the
biological replicates was estimated to be relatively low (see
Additional data file 11 [part a]).

Gene expression profiling

E. coli K12 V2 OciChip™ arrays containing 4,288 gene spe-
cific oligonucleotide probes representing the complete E. coli
K-12 genome were utilized in this study (Ocimum
Biosolutions, Hyderabad, India). Total RNA was isolated
using RNeasy kit (Qiagen, Hilden, Germany), in accordance
with the manufacturer's instructions. Reverse transcription,
labeling, and scanning were performed as described previ-
ously [36]. Hybridization was carried out in accordance with
the manufacturer's instructions (Ocimum Biosolutions,
Hyderabad, India).

Microarray data analysis

Mean signal and mean local background intensities were
determined for each spot of the microarray images, by using
the ImaGene 6.0 software for spot detection, image segmen-
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tation, and signal quantification (Biodiscovery, Los Angeles,
California, USA). After subtraction of the local background
intensities from the signal intensities, the average intensity in
both channels was subsequently normalized using the LOW-
ESS (locally weighted scatterplot smoothing) method using
the GeneSight 4.0 software package (Biodiscovery, Los Ange-
les, California, USA). The normalized log, ratios were used to
represent the data graphically and to calculate Wilcoxon rank
sum test Pvalue using MapMan software [37], with functional
classifications based on MultiFun and GO terms, a cell func-
tion assignment scheme, with slight modification [38,39].
The SAM add-in to Microsoft Excel was used for comparisons
of replicate array experiments [16]. For both of the strains in
all of the biologic experiments, three or more replicates were
used, which consisted of three biologic replicates. The
variation among the biologic replicates was estimated to be
relatively low (see Additional data file 11 [part b]). The
ArrayExpress repository [40] accession number for the
microarray data is E-MEXP-1166, which consists of 29
hybridizations.

Network analysis

All of the networks reported in this study were constructed
based on PCC r > 0.9 measure (nodes that correspond to
genes or metabolites with > 0.9 were linked by an edge). All-
against-all metabolite and gene expression profile r values of
evolution-specific matrices were used to generate evolution-
specific co-expression network. Strain-specific and evolution-
specific matrices were used to generate evolution-specific
intersection co-expression network. Intersection co-expres-
sion networks are the network over the set of nodes N, where
there is a link (r > 0.9) between two nodes 7 and j if they are
connected in both of the strains in the particular evolutionary
condition in context. Topologic properties of the networks
were analyzed using the Pajek program [41].

Network functional analysis

Network visualization and functional analysis was achieved
using Cytoscape [42]. Networks were screened for highly
linked clusters of genes or metabolites using MCODE [43].
Genes in the networks were functionally categorized using
their GO biologic process annotation terms [44], and the
over-represented GO terms were identified with BINGO [45].
The hypergeometric test was used for this purpose, with the
Benjamini and Hochberg false discovery rate correction (a
false discovery rate-controlled P value cutoff of < 0.05).

Outer membrane protein analysis

Approximately equal numbers of extracted cells (7 x 109)
were disrupted by ultrasonication with 5 ml of 50 mmol/I
Tris/HCl (pH 7.3), containing 0.7 mg of DNase I (Sigma,
Taufkirchen, Germany) and 0.5 mmol/] protease inhibitor
(Pefabloc SC; Centerchem, Inc., Norwalk, CT, USA). After the
unbroken cells were removed by centrifugation, the superna-
tant was treated with ice-cold 0.1 mol/l sodium carbonate
(pH 11). Eventually, the carbonate treated membranes were
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collected and subsequently analysed by SDS one-dimensional
gel electrophoresis. Excised protein bands were subjected to
tryptic digestion and mass spectra were obtained on a
Ultraflex MALDI-TOF/TOF (Bruker Daltonics, Bremen,
Germany). Peptide masses were searched against the E. coli
database located on our local server using MASCOT search
engine (Matrix Science Ltd., London, U.K) with a mass cutoff
of 100 ppm.

Abbreviations

<C>, clustering coefficient; GO, Gene Ontology; <k>, average
degree; <[>, average path length; NADPH, nicotinamide ade-
nine dinucleotide phosphate; OM, outer membrane; PCA,
principal components analysis; PCC, Pearson correlation
coefficient; SAM, significance analysis of microarrays; TCA,
tricarboxylic acid.
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Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing the
identified metabolites of the ancestral and evolved strains by
gas chromatography-mass spectrometry. Additional data file
2 is a table listing significantly altered metabolites in all of the
evolved conditions. Additional data file 3 is a table listing sig-
nificantly altered genes in all of the evolved conditions. Addi-
tional data file 4 is a table listing significant GO functional
categories involved in all of the evolved conditions. Addi-
tional data file 5 is a figure showing the integration of tran-
scriptome and metabolome data during the comparison of
ancestral and evolved strains in excess nutrient adaptive evo-
lution. Additional data file 6 is a figure showing the gene
expression and metabolite abundance level in the pentose
phosphate pathway in excess nutrient adapted strains. Addi-
tional data file 7 is a figure showing PCA analyses for both the
ancestor and evolved lines of both the strains grown in two
different media. Additional data file 8 is a table listing com-
mon topologic properties of all evolution co-expression net-
works. Additional data file 9 is a figure showing the gene
expression and metabolite abundance level in histidine bio-
synthesis pathway in excess nutrient adapted strains. Addi-
tional data file 10 is a figure showing the integration of
transcriptome and metabolome data during the comparison
of ancestral and evolved strains in prolonged stationary phase
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evolution. Additional data file 11 is a figure showing metabo-
lite abundance level and gene expression level among the bio-
logic replicates.
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