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Abstract

Background: The rates of molecular evolution for protein-coding genes depend on the stringency
of functional or structural constraints. The Ka/Ks ratio has been commonly used as an indicator of
selective constraints and is typically calculated from interspecies alignments. Recent accumulation
of single nucleotide polymorphism (SNP) data has enabled the derivation of Ka/Ks ratios for
polymorphism (SNP A/S ratios).

Results: Using data from the dbSNP database, we conducted the first large-scale survey of SNP A/
S ratios for different structural and functional properties. We confirmed that the SNP A/S ratio is
largely correlated with Ka/Ks for divergence. We observed stronger selective constraints for
proteins that have high mRNA expression levels or broad expression patterns, have no paralogs,
arose earlier in evolution, have natively disordered regions, are located in cytoplasm and nucleus,
or are related to human diseases. On the residue level, we found higher degrees of variation for
residues that are exposed to solvent, are in a loop conformation, natively disordered regions or
low complexity regions, or are in the signal peptides of secreted proteins. Our analysis also
revealed that histones and protein kinases are among the protein families that are under the
strongest selective constraints, whereas olfactory and taste receptors are among the most variable
groups.

Conclusion: Our study suggests that the SNP A/S ratio is a robust measure for selective
constraints. The correlations between SNP A/S ratios and other variables provide valuable insights
into the natural selection of various structural or functional properties, particularly for human-
specific genes and constraints within the human lineage.

Background principle is that a major force governing the rate of amino
It is well established that there are tremendous variations in  acid substitution is the stringency of functional or structural
rates of evolution among protein-coding genes. A central  constraints. Proteins with rigorous functional or structural
problem in molecular evolution is to identify factors that requirements are subject to strong purifying (negative) selec-
determine the rate of protein evolution. One widely accepted  tive pressure, resulting in smaller numbers of amino acid
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changes. Therefore, these proteins tend to evolve slower than
proteins with weaker constraints. A classic measure for selec-
tive pressure on protein-coding genes is the Ka/Ks ratio [1],
that is, the ratio of non-synonymous (amino acid changing)
substitutions per non-synonymous site to synonymous
(silent) substitutions per synonymous site. The assumption is
that synonymous sites are subject to only background nucle-
otide mutation, whereas non-synonymous sites are subject to
both background mutation and amino acid selective pressure.
Thus, the ratio of the observed non-synonymous mutation
rate (Ka) to the synonymous mutation rate (Ks) can be uti-
lized as an estimate of the selective pressure, where Ka/Ks « 1
suggests that most amino acid substitutions have been elimi-
nated by selection, that is, strong purifying selection. Ka/Ks
ratios for protein-coding genes are generally derived from
inter-species sequence alignments and different evolution
models have been developed to accurately estimate the ratios
[2]. There have been many studies using Ka/Ks ratios to
measure evolutionary constraints among different classes of
proteins. For example, it has been suggested that essential
genes in bacteria evolve slower than non-essential genes [3],
that house-keeping genes are under stronger selective con-
straints than tissue-specific genes [4], and that secreted pro-
teins are under less purifying selection based on Ka/Ks ratios
from human-mouse sequence alignments [5].

In the past few years, advances in sequencing technology have
led to a rapid accumulation of DNA variation data for human
populations, including copy number variations and single
nucleotide polymorphisms (SNPs). Currently, the dbSNP
database [6] at the National Center of Biotechnology Infor-
mation (NCBI) catalogues about 12 million human SNPs,
close to half of which are validated. It has also been shown by
several independent sequencing studies that dbSNP has high
coverage of frequent SNPs [7,8]. The vast amount of SNP data
can not only shed light on the variation in disease susceptibil-
ity and drug response among human populations, but also
help us understand molecular evolution. In particular, these
SNP data have provided us with another way of measuring
evolutionary constraints, based on a prediction of the neutral
theory of molecular evolution that A/S ratios should be highly
correlated between intra-species polymorphism and inter-
species divergence [9]. In fact, SNP A/S ratios (also referred
to as Ka/Ks ratios for polymorphisms) have been calculated
to determine whether there is frequent positive selection on
the human genome [10,11], and they have been compared
with Ka/Ks for human-chimpanzee divergence [12]. How-
ever, it is not clear whether SNP A/S ratios are closely corre-
lated with Ka/Ks in practice given the current volume of SNP
data, and there have not been any large-scale studies of selec-
tive constraints on protein structural and functional proper-
ties using SNP data.

In the present study, we conducted a large-scale survey of
SNP A/S ratios using SNP data from dbSNP. We first con-
firmed that the SNP A/S ratio is a good measure for selective
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pressure by showing its correlation with Ka/Ks from inter-
species alignments and protein alignment conservation. We
then obtained a variety of structural and functional properties
from either database annotations or computational predic-
tion methods and analyzed SNP A/S ratios for different
classes of proteins and residues in an attempt to study the
natural selection of these properties from the SNP perspec-
tive. Our comprehensive analysis provides: valuable insight
into some features that have not been examined previously;
independent confirmation of some previously established
results; and additional data for areas where previous studies
have had contradictory findings.

Results

We collected 13,686 human genes that have at least one vali-
dated coding SNP according to dbSNP. The analysis was lim-
ited to validated SNPs to ensure data quality. Overall, 45,538
coding-region SNPs and 1,529,119 intronic SNPs were identi-
fied in these genes, corresponding to SNP densities of 2.0 and
2.4 SNPs, respectively, per 1,000 nucleotides. The number of
non-synonymous coding SNPs per non-synonymous site (A)
is 0.00123, the number of synonymous coding SNPs per syn-
onymous site (S) is 0.00439, and the A/S ratio is 0.28. The
values of A and S are both two times more than what have
been reported in a small study [11], but the A/S ratio is
similar.

SNP A/S ratio as a measure for selective constraints
To assess whether SNP A/S ratios from the current large-
scale SNP data set provide a good measure for selective con-
straints, we first compared them with Ka/Ks ratios derived
from inter-species alignments. We collected 9,759 human
proteins with both validated coding-region SNPs and availa-
ble human-mouse Ka/Ks data from Ensemble [13], binned
them by their Ka/Ks values, and measured the SNP A/S ratios
for each group. There is a strong positive correlation between
these two measure (Figure 1a; Kendall's rank correlation [14]
T = 0.50, p-value < 1e-04), which is in agreement with the
neutral theory of molecular evolution. Analysis of data from
chimpanzee and Old World monkey (Macaca mulatta) led to
similar conclusions, although the Ka/Ks values may need to
be corrected to subtract the contribution of SNPs due to rela-
tively short evolutionary distance.

We next investigated whether the conservation in protein
sequences correlates with the SNP A/S ratio under the
assumption that both the conservation at the protein
sequence level and the SNP A/S ratio at the nucleotide level
are indications for selective constraints. Using the position-
specific alignment entropy (a measure for conservation) from
PSI-BLAST profiles [15], we calculated A/S ratios for residues
with different conservation scores. We indeed observed a
monotonic decrease of the A/S ratio with an increase in pro-
tein sequence conservation (Figure 1b). The residues with the
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The SNP A/S ratio is a good measure for evolutionary constraints. Error bars represent 95th percentile confidence intervals from bootstrap resampling.
(@) SNP A/S ratios correlate with Ka/Ks ratios from human-mouse alignments. Proteins were grouped into bins of equal intervals (interval = 0.05)
according to their Ka/Ks ratios, and the SNP A/S ratio was calculated for each bin. (b) SNP A/S ratios correlate negatively with residue conservation
scores from protein sequence alignments. All residues were grouped into bins of equal intervals (interval = 0.5) according to their position specific
alignment information taken from PSI-BLAST alignment profiles, and the SNP A/S ratio was obtained for each bin.

conservation range of 0-0.5 have a ratio of 0.33, while those
having conservation scores bigger than 3.5 have an A/S ratio
of 0.06.

SNP A/S ratios for protein features

Many studies have been published addressing the correlation
between evolutionary constraints and other variables, most of
which were based on relatively small data sets. Having estab-
lished the SNP A/S ratio as a good measure for selective con-
straints, we attempted to use the large-scale human SNP data
set to revisit some of the features in the earlier studies, and
also to investigate several protein properties that had not
been examined before.

Selective constraints and mRNA expression

Until a few years ago, the prevalent theory in molecular evo-
lution was that evolutionary rate is largely dependent on
structural and functional constraints. Recently, increasingly
more evidence suggests that there is a strong correlation
between evolutionary rate and gene expression. It has been
observed that highly expressed genes evolve slowly in bacteria
[16], yeast [17], and mammals [18]. In yeast, it has been
shown by principal component regression that the number of
translation events is the dominant determinant of evolution-
ary rate among several other functional attributes [19], lead-
ing to the increasingly popular 'translational robustness'
hypothesis [20]. However, a later study suggested that the
dominant effect may result from the noise in biological data
that confounded the analysis [21]. Studies of human mRNA

expression data showed that the breadth of expression (that
is, the number of tissues in which a gene is expressed) also
correlates with evolutionary rate [22,23]; it is still debatable
whether the breadth or the rate of expression is the stronger
predictor [18]. We obtained mRNA expression data for
10,885 genes in our data set that are available from a pub-
lished microarray experiment (Gene Expression Atlas) [24]
and investigated the correlation between selective constraints
and four gene expression parameters examined previously:
peak expression level, mean expression level, expression
breadth, and tissue specificity. Overall, this set of genes with
available mRNA expression data has an SNP A/S ratio of
0.25, lower than that of our entire data set (0.28). We indeed
observed that highly expressed genes tend to have low A/S
ratios (Figure 2a,b): both mean and peak expression rate neg-
atively correlate with the SNP A/S ratio (r = -0.178 and -
0.160, respectively; Table S1 in Additional data file 1). Genes
with the lowest mean expression levels have an A/S ratio of
0.38, about twice as high as the ratio in the highest expression
group (Figure 2a). The SNP A/S ratio also correlates well with
the breadth of expression (Figure 2¢; © = -0.213, p-value < 1e-
04), but only marginally with tissue specificity (Figure 2d; t =
0.047, p-value = 0.003). Since these four expression parame-
ters correlate strongly with each other, we carried out partial
correlation analysis [14] to identify the stronger predictors for
evolutionary rates. The correlation between tissue specificity
and the A/S ratio disappeared entirely after controlling for
mean expression level (t = 0.0107, p-value = 0.499; Table S1
in Additional data file 1) or expression breadth (t = 0.0084,
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Correlation between SNP A/S ratios and expression parameters. Genes were grouped into bins of roughly nine equal intervals according to several
expression measurements from a microarray experiment, and the SNP A/S ratio was obtained for each bin. Error bars represent 95th percentile
confidence intervals from bootstrap resampling. (a) Negative correlation between SNP A/S ratios and mean mRNA expression levels. (b) Negative
correlation between SNP A/S ratios and peak mRNA expression levels. (c) Negative correlation between SNP A/S ratios and expression breadth. (d) No

correlation between SNP A/S ratios and expression tissue specificity.

p-value = 0.596; Table S1 in Additional data file 1). Expres-
sion breadth and mean expression level both remain
significantly correlated with the A/S ratio when controlling
one for the other (t = -0.096 and -0.064, p-values < 1e-04 and
7e-04, respectively; Table S1 in Additional data file 1). Peak
expression level is highly correlated with mean expression
level and its partial correlation patterns largely resemble
those of mean expression level. It has recently been recog-
nized that it is critical to control for expression when studying
the statistical relevance of other variables as predictors for
evolutionary rates, since many previously reported correla-
tions became insignificant after this control. As expression

breadth appeared to have the strongest correlation with the
SNP A/S ratio in our data set among the four parameters, we
chose to control for it in the following correlation analysis
between selective constraints and other variables. The results
did not change qualitatively when controlling for mean
expression level instead.

SNP A/S ratio and evolutionary variables

Consistent with the hypothesis that gene duplications are an
important source of new protein function, it has been
observed that duplicated genes evolve under weaker purifying
selection than unduplicated ones [25,26]. We collected
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SNP A/S ratios and evolutionary variables. (a) Proteins with paralogs (167 proteins) are under weaker selective pressure than proteins without paralogs
(12,460 proteins). The 95th percentile confidence intervals of the A/S ratio are [0.38, 0.58] for proteins with paralogs, and [0.26, 0.27] for proteins without
paralogs (dark gray bars). To control for expression breadth, the subset of proteins with mRNA expression data were analyzed (65 proteins with paralogs
and 10,612 without, light gray bars) and Monte Carlo samplings were performed so that the two groups had the same distribution of expression breadth.
The differences in A/S ratios are significant both before (light gray bars) and after (white bars) controlling for expression. (b) Proteins that arose early in

evolution are subject to stronger evolutionary constraints.

12,460 human genes without paralogs and 167 genes with
paralogs according to the HomoloGene database [27,28], and
found that the A/S ratio is markedly higher for genes with
paralogs (0.46 versus 0.27, p-value < 1e-04; Figure 3a, dark
gray bars). To control for expression breadth, we analyzed the
subset of genes with mRNA expression data from the Gene
Expression Atlas [24]. The two groups of genes do not differ
in their distribution of expression breadth (Kolmogorov-
Smirnov test, p-value = 0.507). The difference in the A/S ratio
did not change significantly when the expression breadth was
controlled by Monte Carlo sampling (Figure 3a, light gray
bars and white bars). We then examined whether the higher
rate could be solely explained by additional copies of paralogs
while keeping one copy stable. When we selected the fastest
evolving genes from each homology group, they have an A/S
ratio of 0.55 compared with 0.36 for the batch of the slowest-
evolving genes from each homology group. Both numbers are
higher than the A/S ratio for genes without paralogs (0.27),
suggesting that both duplicated copies are evolving faster
than unduplicated genes. The much bigger variation in the
with-paralog group (95th percentile confidence interval =
[0.38, 0.58]) reflects the small number of genes in that partic-
ular group.

To determine whether the SNP A/S ratio correlates with the
age of proteins, we classified each protein into one of seven
age groups according to their most ancient homologs. It
appears that young proteins (for example, those found in

human or primates only) have the highest A/S ratios (0.76 for
human and 0.66 for primates), whereas proteins traceable to
all animals or other eukaryotes have much lower ratios of
about 0.25 (Figure 3b). This is consistent with a previous
finding that proteins that arose earlier in evolution tend to
have a larger proportion of sites subjected to negative selec-
tion [29], although there was some debate about whether the
observation was an artifact resulting from the inability of
BLAST to detect homology for the fastest-evolving genes
[30,31]. We examined the functions of proteins in each group
by their Gene Ontology (GO) [32] annotation of biological
process. The human-specific group is the least well anno-
tated, with only 6% having GO annotation compared with
62% overall and 84% for proteins conserved in both eukaryo-
tes and prokaryotes (the "universal' group). Among the pro-
teins with GO annotation of biological process, we observed
the enrichment of 'epidermis development', ‘'defense
response to bacterium', and 'spermatogenesis' in the human
and primate groups, whereas 'amino acid metabolic process',
'glycolysis', and 'fatty acid metabolic process' are overrepre-
sented in the 'universal' group.

SNP A/S ratios and sequence/structure variables

As an example of the many conflicting reports in the literature
about correlations with evolutionary rates, for a variable as
simple as protein length, it was shown that there was positive
correlation [33], negative correlation [34,35], or no correla-
tion [36]. In addition, there was a study based on protein
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Figure 4

Evolutionary constraints on protein sequence and structure features. Error bars represent 95th percentile confidence intervals from bootstrap resampling.
(@) For proteins shorter than 500 residues, short proteins have high A/S ratios. (b) Buried residues are under stronger selection. The 95th percentile
confidence intervals of the A/S ratio are [0.23, 0.25] for buried residues, and [0.30, 0.32] for exposed residues. (c) Loop residues have relaxed
evolutionary constraints. The 95th percentile confidence intervals of the A/S ratio are [0.25, 0.26] for residues in alpha-helices, [0.24, 0.27] for residues in
beta-strands, and [0.30, 0.32] for residues in loops. (d) Proteins with disordered regions are more conserved, while disordered residues are under lower

selective pressure. (e) Residues in low complexity regions evolve faster.

sequence alignments that showed that less conserved pro-
teins are shorter than more conserved ones on average [37].
In our data set, we observed a negative correlation between
protein length and SNP A/S ratio (Kendall's t = -0.137, p-
value < 1e-04). The correlation did not change upon control-
ling for expression breadth. Our analysis also showed that
this correlation is only prominent for proteins shorter than
500 residues, and disappears for longer proteins (Figure 4a).

Solvent accessibility measures the degree of an amino acid
residue's exposure to the surrounding solvent. There have
been a number of studies about the effect of mutations on sol-
vent accessibility and its implication in human diseases; most
of them were based on relatively small collections of SNPs in

known protein structures. The general consensus was that
buried residues are less likely to vary and their mutations are
more likely to cause disease [38,39]. We obtained solvent
accessibility predictions for all proteins in our dataset using
PROFacc [40], and compared the SNP A/S ratios. Exposed
residues have an A/S ratio of 0.31, significantly higher than
that of 0.24 for the buried residues (Figure 4b). The p-value
for this difference is smaller than 1e-04 according to boot-
strap analysis. Similar results were obtained when using
three-state prediction (buried, intermediate, and exposed) or
numeric relative accessibility values. This underscores higher
selective constraints on buried residues, possibly due to their
importance in maintaining protein stability.
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We also investigated selective constraints upon different pro-
tein structure conformations. We first grouped all residues
into different secondary structure conformations (alpha-
helix, beta-strand, or loop) according to predictions by
PSIPRED [41]. Significantly higher A/S ratios were observed
for residues in the loop conformation (Figure 4c), suggesting
relaxed selective pressure on these residues. There is no dif-
ference between residues in alpha-helices and beta-strands.
We next examined natively disordered proteins, a class of
structurally flexible proteins that have recently gained trac-
tion because of their potential important roles in dynamic
molecular recognition of macromolecules [42]. It has been
estimated that one-third of eukaryotic proteins contains dis-
ordered regions [43], and that they are more likely to be
involved in regulatory functions and protein-protein interac-
tions [44,45]. We obtained disorder predictions using
DISOPRED2 [43] and retained only the disordered regions
longer than 30 residues. Interestingly, while proteins with
disordered regions have a lower A/S ratio (Figure 4d; Figure
S2b in Additional data file 1), the residues in disordered
regions have a much higher A/S ratio than other residues
(0.38 versus 0.22; Figure 4d). This seems to suggest that dis-
ordered proteins as a class are under stronger selective pres-
sure, but the disordered residues are allowed to evolve much
faster to explore different ways to interact with other mole-
cules. Since disordered regions are often characterized by low
sequence complexity [42,44], we also examined the selective
constraints on low complexity regions as defined by SEG [46].
Not surprisingly, low complexity regions have a higher A/S
ratio, but the profile is different from that of the disordered
regions (Figure 4e), confirming that disorder and low com-
plexity are related but different sequence features.

SNP A/S ratios and protein subcellular localization

Subcellular localization is an important aspect of protein
function. There have been conflicting reports about the corre-
lation between protein subcellular localization and evolution-
ary rate. While a previous survey of human SNPs in 2002 did
not find a significant correlation of selective pressure against
deleterious non-synonymous SNPs with localization [47], a
more recent study of mammalian sequences found that
secreted proteins evolve much faster than cytoplasmic pro-
teins (Ka/Ks 0.27 versus 0.12), and that membrane segments
are under higher selective pressure than non-membrane seg-
ments (0.07 versus 0.15) [48]. We attempted to address this
issue by examining A/S ratios from several subcellular
localization assignment methods. When we divide our data
set into 3,064 secreted proteins and 10,622 non-secreted pro-
teins according to SignalP [49] predictions, there is a small
and insignificant difference between these two classes, but
the residues within the signal peptides appear under much
less selective pressure (A/S ratios of 0.42 versus 0.29; Figure
5a). Interestingly, when only the subset of genes that have
mRNA expression data was examined (both before and after
controlling for expression), secreted proteins had signifi-
cantly higher A/S ratios than non-secreted proteins (p-value
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< 1e-04; Figure S3a in Additional data file 1). There is no dif-
ference between membrane proteins and non-membrane
proteins, membrane segments and non-membrane segments
according to TMHMM [50] predictions (Figure 5b; Figure
S3b in Additional data file 1). We also obtained predictions of
subcellular localizations for non-membrane proteins by LOC-
tree [51], a hierarchical prediction system mimicking cellular
sorting mechanisms. Predicted extracellular proteins have an
A/S ratio of 0.34 on average, significantly higher than nuclear
and cytoplasmic proteins (Figure 5¢). Lastly, we examined A/
S ratios of 6,228 proteins that have unambiguous GO cellular
component assignments. We observed the same trend as for
the LOCtree predictions, although the absolute numbers are
slightly lower (Figure 5d). This may be explained by the fact
that more conserved proteins are more likely to get GO anno-
tation through sequence homology. The selective constraints
acted upon membrane proteins seem to fall between the
extracellular and cytoplasmic proteins according to the GO
annotations (Figure 5d). The results from both LOCtree pre-
dictions and GO annotation did not change qualitatively
when controlling for expression breadth (Figure S3c,d in
Additional data file 1). Overall, our analysis suggests that
extracellular proteins are indeed under more relaxed selec-
tion than cytoplasmic and nuclear proteins, but the difference
is not as dramatic as previously reported. The absence of dif-
ference between membrane and non-membrane proteins
according to TMHMM predictions may result from the lack of
distinction between the extracellular and cytoplasmic/
nuclear proteins.

Selective constraints on functional classes and protein
families

We next studied the variation in SNP distribution of func-
tional categories based on GO annotations. A/S ratios were
calculated for 176 GO biological process categories and 152
molecular function categories that have at least 20 genes in
our data set. As expected, there are dramatic differences in
selective constraints among different categories: A/S ratios
range from 0.72 for 'sensory perception of smell' to 0.07 for
'protein kinase C activation' (Table 1). We compared our
results with a comparative genomic study of human and
chimpanzee [12]. Seven of the top ten categories with highest
divergence rates between human and chimpanzee are not
present in our entire set of 176 categories due to differences in
gene sets and the availability of SNP data. Among the three
that are present, all show elevated A/S ratios, and two of them
are also in our top ten list (GO:0007608 sensory perception
of smell and GO:0007565 female pregnancy). When GO
terms were mapped to a small set of high level terms accord-
ing to Gene Ontology Annotation [52] (GOA slim), the biolog-
ical process category with the most relaxed selective
constraint was 'response to stimulus', which has a signifi-
cantly higher A/S ratio of 0.33 compared with 'multicellular
organismal development', 'transport’, 'macromolecule meta-
bolic process', and 'cell differentiation' (Figure 6a). In terms
of molecular function, the least variable groups are 'protein
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Selective pressures on protein subcellular localization. Error bars represent 95th percentile confidence intervals from bootstrap resampling. (a) Analysis of
SignalP predictions suggests that while there is no significant difference in selective pressure between secreted and non-secreted proteins, residues within
signal peptides are evolving faster. (b) TMHMM predictions show no difference in A/S ratios between membrane proteins and non-membrane proteins,
transmembrane segments and non-transmembrane segments. (c) LOCtree predictions of protein subcellular localization indicate extracellular proteins
(1,587 proteins) are under more relaxed selective pressure than cytoplasmic proteins (2,105) and nuclear proteins (5,431). (d) GO cellular component
annotations suggest extracellular proteins (522 proteins) are under more relaxed selective pressure than cytoplasmic proteins (1,030) and nuclear
proteins (1,961), while membrane proteins (2,715) fall in between. The 95th percentile confidence intervals of the A/S ratio are [0.27, 0.33] for
extracellular proteins, [0.21, 0.24] for nuclear proteins, [0.22, 0.26] for cytoplasmic proteins, and [0.26, 0.29] for membrane proteins.

transporter activity' and 'motor activity', and the opposite
groups are 'receptor activity' and 'isomerase activity' (Figure
6b).

We also sought to quantify the selective pressure on protein
families. Of the 13,686 proteins in our data set, 10,629 can be
assigned to at least one Pfam [53] family using the HMMER

program. Among the 190 Pfam families that have at least 20
members, the families with the lowest A/S ratios include pro-
tein kinase C-terminal domain family (PFo0433) and core
histones (PF0o0125); on the high end there are mammalian
taste receptors (PF05296), the rhodopsin family (PFoo001),
and glutathione S-transferases (PF02798 and PF00043)
(Table 2). We took a closer look at the G protein-coupled
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Figure 6

Evolutionary constraints on protein functional categories. Error bars represent 95th percentile confidence intervals from bootstrap resampling. GO
annotations were extracted for each protein, and the GO terms were mapped to high level GOA slim terms for (a) biological process and (b) molecular
function. SNP A/S ratios were then calculated for each group.

receptor (GPCR) family. GPCRs comprise a large protein  set. Mammalian taste receptor proteins (PF05296) and rho-
family of seven transmembrane receptors that play important ~ dopsin family (PFoo001) are among the most variable pro-
roles in sensing environmental signals. They are the targetsof ~ tein families, with an A/S ratio of 0.49. The other three
more than 40% of all modern drugs. There are five Pfam  (PFo0002 secretin family, PFO0003 metabotropic glutamate
GPCR families that have more than 20 proteins in our data  family, and PFo1461 7TM chemoreceptor) have A/S ratios of
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Table |
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GO biological process categories with the highest and lowest SNP A/S ratios

GO accession A/S ratio Number of proteins GO description

GO:0007608 0.72 298 Sensory perception of smell
GO:0050896 0.54 403 Response to stimulus

GO:0007565 0.48 43 Female pregnancy

GO:0006298 0.47 29 Mismatch repair

GO:0031424 0.46 22 Keratinization

GO:0007186 043 600 G-protein coupled receptor protein signaling pathway
GO:0007131 0.42 20 Meiotic recombination
GO:0008033 0.40 26 tRNA processing

GO:0045087 0.39 57 Innate immune response
GO:0006633 0.37 20 Fatty acid biosynthetic process
GO:0006986 0.14 40 Response to unfolded protein
GO:0006445 0.14 26 Regulation of translation
GO:0006096 0.14 37 Glycolysis

GO0:0007420 0.13 25 Brain development

GO:0006334 0.13 38 Nucleosome assembly
GO:0006816 0.12 61 Calcium ion transport

GO:000741 1 0.12 20 Axon guidance

GO:0006333 0.10 22 Chromatin assembly or disassembly
GO:0000398 0.09 62 Nuclear mRNA splicing, via spliccosome
GO:0007205 0.07 2|  Protein kinase C activation

Top part: ten GO categories with the highest A/S ratios. Bottom part: ten GO categories with the lowest A/S ratios.

around 0.25, similar to the overall A/S ratio of 0.28 in our
entire dataset. There are 558 proteins that belong to the rho-
dopsin family, including 286 olfactory receptors. The ele-
vated A/S ratio in the family can be largely attributed to
olfactory receptors (A/S = 0.73): the non-olfactory receptors
in this family have an A/S ratio of 0.30. Therefore, it appears
that among GPCRs, only olfactory and taste receptors have
extraordinarily high variations, while other proteins behave
like average human proteins.

Selective pressure on disease-related proteins

Knowledge about the degree of selection for disease-related
genes can help us understand the etiology of human diseases.
An early study found that human disease genes evolve faster
at both synonymous and non-synonymous sites than non-dis-
ease genes, and Ka/Ks ratios of disease genes are 24% higher
[54]. Although the elevated Ks has subsequently been con-
firmed by others, later studies reported no difference in Ka/
Ks between disease genes and non-disease genes [55] or lower
Ka for disease genes [56]. It has also been shown that signifi-
cant differences exist between the Ka/Ks ratio for different
pathophysiological classes: genes related to neurological dis-
eases evolve much slower than those associated with
immune, hematological and pulmonary diseases [55]. We
investigated the SNP distribution of human disease genes
using two cancer-related gene collections (243 genes from
Cancer Gene Census (CGC) [57], and 3,103 genes from the

Catalogue of Somatic Mutations in Cancer (COSMIC) [58])
and the catalog of heritable human disease genes from Online
Mendelian Inheritance in Man (OMIM; 2,334 genes) [27].
These three data sets represent 4,649 unique human genes,
and 139 genes are common to all three sets. Our analysis of
the SNP data shows that disease related genes indeed have a
higher synonymous SNP density (OMIM, 5.14; COSMIC,
4.41; CGC, 4.73; non-disease, 4.19, per 1,000 Synonymous
sites). However, the numbers of non-synonymous SNPs per
site for disease genes are lower than that for non-disease
genes, resulting in significantly lower A/S ratios in disease
genes (p-value < 1e-04; Figure 7). The difference between our
analysis and some previous studies could be explained by two
factors. First, our data sets are substantially bigger than what
were used in previous studies. For example, the Smith and
Eyre-Walker study [54] analyzed only 392 genes in the
disease set and 2,038 genes in the non-disease set, and the
Huang et al. study [55] included 1,178 human disease genes.
The other possibility is that the evolution of disease-related
genes has different patterns in the human lineage, leading to
the difference in SNP A/S ratios and Ka/Ks ratios from
human-rodent alignments. It has also been suggested that
when non-disease genes are partitioned into housekeeping
genes and others, the evolutionary rates of disease genes lie
between them [59]. This is consistent with our data: the SNP
A/S ratio for OMIM is 0.24, indeed higher than housekeeping
genes (genes with the broadest expression patterns, A/S =
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Table 2
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Pfam families with the highest and lowest SNP A/S ratios

Pfam accession AJS ratio Number of proteins Pfam description

PF05296 0.49 55 Mammalian taste receptor protein (TAS2R)
PFO0001 0.49 558 7 transmembrane receptor (rhodopsin family)
PF02798 0.47 20 Glutathione S-transferase, amino-terminal domain
PF00043 0.46 24 Glutathione S-transferase, carboxy-terminal domain
PFO1454 0.45 24 MAGE family

PF09723 0.44 42 Putative regulatory protein (CxxC_CxxC_SSSS)
PF02023 0.44 39 SCAN domain

PF00059 0.43 58 Lectin C-type domain

PF07859 0.42 21 alpha/beta Hydrolase fold

PF00048 0.40 23 Small cytokines (intecrine/chemokine), interleukin-8 like
PFO0105 0.14 38 Zinc finger, C4 type (two domains)

PF00536 0.14 68 SAM domain (Sterile alpha motif)

PFO7649 0.13 45 Cl-like domain

PFO0125 0.13 25 Core histone H2A/H2B/H3/H4

PF00535 0.13 27 Glycosyl transferase family 2

PFO1437 0.13 31 Plexin repeat

PF00335 0.13 23 Tetraspanin family

PF00350 0.12 28 Dynamin family

PF07707 0.11 36 BTB And C-terminal Kelch

PF00433 0.09 33 Protein kinase C terminal domain

Top part: ten families with the highest A/S ratios. Bottom part: ten families with the lowest A/S ratios.

0.19; Figure 2¢). Moreover, when controlling for expression
breadth (so that different groups have the same distribution
of expression breadth, and thus the same proportion of
housekeeping genes), non-disease genes still showed signifi-
cantly higher A/S ratios than genes in the OMIM and COS-
MIC sets, while the confidence interval of A/S ratios for genes
in the CGC set slightly overlapped with that for non-disease
genes (Figure S2c in Additional data file 1), mostly due to
large variance in the CGC set resulting from a smaller number
of genes.

Selective constraints and protein-protein interaction

It is still debatable whether there is any correlation between
protein-protein interaction and selective pressure. Most
studies so far have been based on data from the budding yeast
Saccharomyces cerevisiae. After an initial report that yeast
proteins with more interaction partners evolve slowly [60],
several studies suggested that the correlation is dependent on
interaction data sets [61], or that it may be a secondary effect
due to protein abundance [62]. The latest and most conclu-
sive study in yeast suggested that there is no correlation
between connectivity and evolutionary rate in a higher quality
literature curated interaction data set, while negative correla-
tions observed in some high-throughput data sets even after
controlling for expression could be artifacts of the data sets
[63]. We obtained human protein-protein interaction data
from the IntAct database [64] and examined how SNP A/S

ratios are correlated with the connectivity of proteins in the
protein-protein interaction network. When all types of
interactions were included, proteins with more than five
interaction partners appear to have significantly lower A/S
ratios than proteins with no more than one partner (Figure
8a, gray bars). We also noticed that proteins with more
interaction partners tend to have higher mRNA expression
(Figure 8b, gray bars). The Kendall's rank correlation
between connectivity and the SNP A/S ratio was -0.131 (p-
value < 1e-04), and it dropped to -0.106 (p-value < 1e-04)
after controlling for both mean expression level and expres-
sion breadth. The correlation between protein abundance and
high connectivity in the interaction network could be either a
real biological phenomenon or experimental bias; for exam-
ple, mass spectrometry-based protein complex pulldown
experiments are more likely to identify interaction partners
for abundant proteins. When we included only yeast two-
hybrid interactions in our analysis, which are supposedly less
biased with respect to intrinsic expression levels, the correla-
tion between connectivity and abundance largely disap-
peared, except for the proteins with no interaction partners in
the database (Figure 8b, white bars); at the same time, the
difference in A/S ratios between proteins with only one part-
ner and those with more than one became smaller and lost
statistical significance in some cases according to bootstrap
analysis (Figure 8a, white bars). For yeast two-hybrid interac-
tions only, the correlation between connectivity and the SNP

Genome Biology 2008, 9:R69

R69.11



http://genomebiology.com/2008/9/4/R69

T
T
0.3}
s [ 1
—
T o2t l 1
<
o
S o1l
0
Cancer gene COSMIC OMIM Others
census
Figure 7

Disease-related genes are under stronger selective pressure. Disease
related genes were obtained from CGC (243 genes), COSMIC (3,103
genes), and OMIM (2,334 genes) databases. The SNP A/S ratio was
calculated for each group. The 95th percentile confidence intervals from
bootstrap resampling (shown as error bars) are [0.19, 0.27] for CGC,
[0.20, 0.22] for COSMIC, [0.23, 0.26] for OMIM, and [0.31, 0.33] for
others.

A/S ratio was -0.100, and it dropped only slightly to -0.090
(p-value = 0.007) after controlling for expression. Neverthe-
less, the partial correlations were still statistically significant

Genome Biology 2008,  Volume 9, Issue 4, Article R69 Liu et al.

in both the yeast two-hybrid interaction set and the all inter-
action set. Our analysis supports the idea that the correlation
between evolutionary rate and connectivity in the interaction
network can, in part, be explained by protein abundance and
that some of the correlation may result from experimental
bias. Similar to all the conflicting studies in yeast, it is likely
that this result is inconclusive and may vary from data set to
data set.

SNP A/S ratio and splicing

A recent study suggested that protein evolution is strongly
affected by mRNA splicing, in addition to the biology of the
protein [65]. Based on Ka and Ka/Ks from the human-mouse
comparison, it was reported that the proportion of sequence
near intron-exon boundaries is a strong predictor of evolu-
tionary rates in human, in part due to splice enhancers
located close to intron-exon junctions. We were able to con-
firm this result using SNP data. Codons within 70 bp of the
intron-exon boundaries have a SNP A/S ratio of 0.22, signifi-
cantly lower than 0.30 for codons that are far from the
junction. At the protein level, proteins with more than 80% of
the sequences within 70 bp of the boundaries have an SNP A/
S ratio of 0.20, much lower than those with only 5% close to
the boundaries (Figure 9). The Kendall's rank correlation
between the proportion of sequence near intron-exon bound-
aries and SNP A/S ratio is -0.163, comparable to the correla-
tion between mean mRNA expression levels and the SNP A/S
ratios. After controlling for expression breadth, the correla-
tion remained significant (t = -0.147, p-value < 1e-04).
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Figure 8

Selective pressures on connectivity in protein-protein interaction networks. Error bars represent 95th percentile confidence intervals from bootstrap
resampling. (a) Proteins with more interaction partners appear to have lower A/S ratios (gray bars); however, for yeast two-hybrid interactions, the
differences are less significant for proteins with at least one interaction partner (white bars). (b) Proteins with more interaction partners tend to have
higher mMRNA expression levels (gray bars). This could result from experimental bias: for yeast two-hybrid interactions, the differences are not significant

for proteins with at least one interaction partner (white bars).

Genome Biology 2008, 9:R69

R69.12



http://genomebiology.com/2008/9/4/R69

0.4+

0.3}

0.2} Py

SNP A/S ratio

0.1+t

0 1 1 1 1 1 1 1 1 )
0 01 02 03 04 05 06 07 08 0.9

Proportion of CDS within 70 base pairs of an intron exon junction

Figure 9

The SNP A/S ratio negatively correlates with the proportion of coding
sequence (CDS) within 70 bp of an exon-intron junction. Genes were
grouped into bins of nine equal intervals according to the proportion of
sequence within 70 bp of an exon-intron junction, and the SNP A/S ratio
was obtained for each bin. Error bars represent 95th percentile
confidence intervals from bootstrap resampling.

Discussion

Measuring selective constraints with SNP A/S ratios
The average SNP density in our data set is about 2 SNPs per
1,000 nucleotides. Although we have limited our analysis to
proteins with at least one validated coding SNP, many pro-
teins in our set still have no non-synonymous SNPs or synon-
ymous SNPs. Therefore, it is neither practical nor reliable to
measure the selective constraints on individual proteins
using the SNP A/S ratio. Nevertheless, we have demonstrated
that when a group of proteins (or residues) are measured
together, the measure can be quite robust and often in good
agreement with Ka/Ks for divergence. For example, the SNP
A/S ratio for proteins with paralogs in our data set is 0.47,
very close to the Ka/Ks ratio of 0.45 for duplicated mamma-
lian genes reported earlier [25]. Although this may not seem
surprising given that it is an expected prediction from the
neutral theory of evolution, our analysis showed that the SNP
A/S ratio can indeed be a practical and robust measure given
the current volume of SNP data in public databases.

There are two unique advantages of using SNP A/S ratios to
measure selective constraints. First, for human-specific genes
and genes whose ortholog relationships can not be deter-
mined reliably, inter-species Ka/Ks ratios can not be esti-
mated. For example, among the 13,686 genes in our data set,
human-mouse Ka/Ks ratios for 3,937 genes are not available
through Ensemble. In those cases, SNP A/S ratios provide an
alternative way of measuring selective pressure by the same
evolutionary principle. Second, the SNP A/S ratio is a direct
measure of the selective constraints specific to the human lin-
eage, which can not be obtained from Ka/Ks for species
divergence.

Genome Biology 2008,  Volume 9, Issue 4, Article R69 Liu et al.

In comparison with other simpler measures used in some ear-
lier SNP studies (for example, [38]), such as density of synon-
ymous and non-synonymous SNPs or the fraction of SNPs in
different protein classes, the SNP A/S ratio offers several
advantages: its interpretation is clearer from evolutionary
theories; it is not subject to data selection bias arising from
the popularity of genes in sequencing efforts, which could be
a problem when using SNP density; and it is normalized by
the number of synonymous and non-synonymous sites, so the
numbers are comparable across different protein classes or
different studies.

Correlation between SNP distribution and structural/
functional constraints

To address the issue of determinants of molecular evolution,
many studies have been published examining the correlation
between variables that characterize the evolution, expression
and function of genes. However, as noted in the Results sec-
tion, there are many controversies among those reports. It is
clear that the validity and significance of correlations depend
on many factors, including feature variables, data sets, and
the correlation measure. Here, we provide the first large-scale
study of SNP A/S ratios, and reported correlations between
the ratio and a number of variables; not surprisingly, some
are not in agreement with previous studies. Although further
studies are still needed to draw definitive conclusions about
the major determinants, we agree with many others that it is
likely that many of these variables correlate with each other in
some way, and some of them are secondary effects rather than
primary determinants [66]. Several statistical methods, such
as partial correlation and principle component regression,
have been used to attempt to dissect these complex and rich
connections; yet it remains an important open challenge in
molecular evolution.

Conclusion

Molecular evolution is a dynamic process, with strong impli-
cations for both differences between species and variations
within a given species. SNPs in the human genome perhaps
capture a glimpse of this dynamic process and, therefore,
could offer key insights missed by conventional cross-species
comparisons. Here, we first established the SNP A/S ratio as
a reliable metric for studying the selective constraints for
molecular evolution, and then used this metric to systemati-
cally investigate a large number of protein features that con-
tribute to differences in molecular evolution rate. Our study
provided the first such large-scale survey based on SNP A/S
ratios, leading to novel insights into features that have not
been examined before and clarification of findings that were
contradictory in the literature.
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Materials and methods

Source of sequences and SNP data

We first filtered the human entries in the NCBI's Entrez Gene
database [27] by the presence of RefSeq [27] records, and lim-
ited our analysis to genes that have at least one validated
coding SNP according to dbSNP [6] build 127. For each gene,
we chose one transcript (and its corresponding protein prod-
uct) by selecting the transcript with the most validated coding
SNPs, most advanced RefSeq annotation status, and the long-
est sequence. We also discarded proteins that are longer than
5,000 residues or shorter than 25 residues. Our final data set
has 13,686 proteins with 45,538 coding SNPs.

mRNA expression data

mRNA expression data were obtained from Gene Expression
Atlas [24,67]. Only normal adult samples were included in the
analysis. Samples were sorted into 54 non-redundant tissue
types. The expression level of each probe set in a given tissue
was calculated as the mean of log (base 10) MAS5 signal
intensities of all samples in that tissue. The 'mean expression
level' of a probe set was defined as the mean across all tissues,
while 'peak expression level' was defined as the maximum
among all tissues. The tissue specificity of a probe set was
defined as the heterogeneity of its expression level across all
tissues. It was calculated according to [68] as:

n':l (1 — ﬁ
J 10g S max

n-1

where n = 54 is the number of human tissues examined here,
S; is the expression level in each tissue, and S,,,,, is the highest
expression level of the probe set across all tissues. When a
gene has multiple probe sets, its expression levels and tissue
specificity were represented by the probe set with the highest
mean expression level.

Affymetrix present/absent calls were used to calculate the
breadth of the expression. A probe set was considered
'present’ in a tissue if it had 'present’ calls in no less than half
of the samples in that tissue, and the expression breadth of a
probe set was defined as the number of tissues in which the
probe set was "present’. When a gene has multiple probe sets,
its expression breadth was represented by the probe set with
the highest value of breadth.

Structural and functional features

Ka/Ks ratios from human-mouse alignments were down-
loaded from Ensembl [13]. The information about human
paralogs was extracted from HomoloGene database [27,28]
release 57; the existence of paralogs is indicated by the pres-
ence of other human proteins in the same homology group.
To investigate the degree of conservation throughout the evo-
lutionary history, that is, the age of a protein, we performed
BLAST searches [15] of each protein sequence against NCBI's
RefSeq database, and collected all hits with an e-value < 1e-10
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and a protein length difference smaller than 30% as potential
homologs. The query protein was then classified into one of
the seven age groups (human, primate, mammal, vertebrate,
animal, eukaryote, or universal) according to its most ancient
homolog. The use of different e-values and length difference
cutoffs did not change the results qualitatively. We also
obtained the conservation score for each residue in all pro-
teins in our data set by running PSI-BLAST [15] against
NCBI's nr database (parameters: '-j 3 -h 5e-3 -F F') and taking
the values in the 'information per position' (a measure of
alignment entropy) column from the ASCII format of PSI-
BLAST profiles.

We obtained protein structure features by the following com-
putational methods using their default parameters: two-state
(exposed or buried) solvent accessibility by PROFacc [40],
signal peptides by SignalP version 3.0 [49], transmembrane
helices by TMHMM 2.0 [50], secondary structures by
PSIPRED [41], sequence complexity by SEG [46], and
natively disordered proteins by Disopred2 [43]. Disopred2
predictions were subsequently filtered to retain only the dis-
ordered regions longer than 30 residues.

GO annotations [32] were extracted from the GenBank record
of each gene, and the GO terms were subsequently mapped to
a selection of high-level terms according to GOA slim [52,69].
For cellular component annotations, the GOA slim terms
were further collapsed into four categories (extracellular
region, nucleus, cytoplasm, and membrane) where appropri-
ate. Proteins assigned to more than one of these four catego-
ries were excluded from the analysis of subcellular
localization by GO annotation. Subcellular localization pre-
diction for non-membrane proteins (that is, no transmem-
brane helix predictions from TMHMM) were also obtained by
using LOCtree [51]. To assign proteins to protein families, we
ran hmmpfam from the HMMER package (version 2.3)
against Pfam_ls [53] models (release 21.0) and obtained
Pfam family hits with an e-value < 0.01. Numbers of protein-
protein interaction partners were obtained from the IntAct
database [64,70] (28 September 2007 release). We also
obtained disease related genes from CGC (243 genes) [57,71],
COSMIC [58,72] (3,103 genes), and OMIM databases [27,73]
on 28 September 2007. For OMIM, only those genes with the
‘confirmed’ status (2,334 genes) were included in the
analysis.

Sequences within 70 bp of an exon-intron junction were col-
lected in the same way as described in [65]. Briefly, tran-
scripts with less than three exons were excluded from the
analysis. All internal exons were trimmed so that the first
base was the first base of the first complete codon, and the last
base the last of the final complete codon. The first and last
codons were then removed from each exon, and remaining
codons within 70 bp of the intron-exon boundary were
defined as sequences close to the boundary.
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The features we considered can also be divided into two
classes: protein-level features and residue-level features. A
protein-level feature describes the property of an entire
protein, for example, whether a protein has a transmembrane
helix or not; in contrast, a residue-level feature describes the
property of a subset of residues within a protein, for example,
whether a residue resides in the transmembrane helix or not.

Data analysis

The SNP A/S ratio, also known as the Ka/Ks ratio for poly-
morphism, is defined as the ratio of the number of non-syn-
onymous SNPs per non-synonymous site to the number of
synonymous SNPs per synonymous site. The numbers of syn-
onymous sites and non-synonymous sites were calculated
using the method of Miyata and Yasunaga [74]. The ratio for
a set of proteins (or residues) was calculated by summing the
number of SNPs and the number of sites to obtain A and S for
the concatenated set before taking the ratio.

We performed bootstrap re-sampling analysis to assess the
statistical significance of the differences observed in A/S
ratios between different groups. We obtained 10,000 boot-
strap replicates by re-sampling with replacement from the
original data set. A/S ratios for different groups were calcu-
lated for each replicate, and confidence intervals and p-values
of the differences were obtained from those 10,000 sets of A/
S ratios. For protein-level feature groups, re-samplings were
performed within each group, so that those re-sampled data
sets had the same number of proteins in each group as the
original data set had. For residue-level feature groups, the re-
sampled data sets were constructed by re-sampling the
13,686 proteins in our entire data set.

Monte Carlo samplings were used to assess the differences in
A/S ratios between groups when controlling for expression
parameters. Briefly, the distribution of expression breadth
(or expression level) for the group with the smallest number
of genes was set as the target distribution; genes in all other
groups were then sampled without replacement using Monte
Carlo simulation so that all groups had the same distribution
of the expression breadth (or level). The effectiveness of
Monte Carlo samplings was confirmed by Kolmogorov-Smir-
nov tests. An example is shown in Figure S1in Additional data
file 1. For each group, 100 samplings were performed, and the
A/S ratio for the group was taken as the mean of A/S ratios
from the 100 Monte Carlo samples.

Since the average SNP density in our data set is about 2 SNPs
per 1,000 nucleotides, and many proteins in our data set have
either no non-synonymous SNPs or no synonymous SNPs, it
is not possible to reliably calculate the correlation between
the SNP A/S ratio and other continuous variables using each
protein as a data point. We chose to randomly group every six
proteins together as a data point so that, on average, each
data point had roughly the same number of SNPs as the
reported number of single-nucleotide substitutions (1.23%)
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between the human and chimpanzee genomes [12]. Non-par-
ametric Kendall's t rank correlation coefficients [14] and two-
tailed p-values were used throughout the study. When con-
trolling for expression parameters, Kendall's partial correla-
tion between x and y controlling for z was calculated as:

_ Txy_fszyz
Txy.z - > 5
(1-7,7)(1-7y,7)

The random grouping was performed 100 times. The correla-
tion and partial correlation coefficients were computed from
these 100 samples, and the medians of those 100 sets of coef-
ficients were reported.
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