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Pea genetics database<p>UTILLdb is a database of phenotypic and sequence information on mutant genes from a reference Pisum sativum EMS-mutant popu-lation.</p>

Abstract

The systematic characterization of gene functions in species recalcitrant to Agrobacterium-based
transformation, like Pisum sativum, remains a challenge. To develop a high throughput forward and
reverse genetics tool in pea, we have constructed a reference ethylmethane sulfonate mutant
population and developed a database, UTILLdb, that contains phenotypic as well as sequence
information on mutant genes. UTILLdb can be searched online for TILLING alleles, through the
BLAST tool, or for phenotypic information about mutants by keywords.

Background
Mutational approaches have been widely exploited in breed-
ing and basic research. In the genomic era, the completion of
the sequencing of several plant genomes has enabled the
development of reverse genetics strategies, where one first
identifies a target gene based on the functional annotation of
its sequence, and then proceeds with the phenotypic charac-
terization of mutant alleles. Several mutagenesis techniques
are dedicated to this approach, notably RNA interference
suppression [1,2] and insertional mutagenesis by transposon
tagging [3,4] or Agrobacterium T-DNA insertion [5]. These
methods, however, are still mainly based on Agrobacterium
T-DNA vectors and, thus, rely on the ability of a given plant
species to be transformed. On the other hand, chemical muta-
genesis based on an alkylating agents like ethylmethane sul-
fonate (EMS) [6] provides an easy and cost-effective way to

saturate a genome with mutations. TILLING (targeting
induced local lesions in genomes) uses EMS mutagenesis
coupled with gene-specific detection of single-nucleotide
mutations [7-9]. This reverse genetic strategy encompasses
all types of organisms [10-14] and can be automated in a high
throughput mode, which is an absolute necessity to match the
speed of candidate gene discovery.

The success of the TILLING approach relies on the construc-
tion of high quality mutant libraries. Ideally, the mutant pop-
ulation is phenotyped so that in silico analysis of the mutant
lines can be carried out. To date, phenotypic databases can be
found for tomato [15], rice [16], Lotus japonicus [13] and Ara-
bidopsis [17], and a searchable collection of phenotypic
mutants is available for Zea mays [18], Pisum sativum [19]
and Arabidopsis thaliana [20].

Published: 26 February 2008

Genome Biology 2008, 9:R43 (doi:10.1186/gb-2008-9-2-r43)

Received: 29 November 2007
Revised: 17 January 2008
Accepted: 26 February 2008

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2008/9/2/R43
Genome Biology 2008, 9:R43

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302733
http://genomebiology.com/2008/9/2/R43
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


http://genomebiology.com/2008/9/2/R43 Genome Biology 2008,     Volume 9, Issue 2, Article R43       Dalmais et al. R43.2
Pea (P. sativum) belongs to the Leguminoseae family, which
provides excellent dietary components with health-promot-
ing benefits and offers the important ecological advantage of
contributing to the development of low input farming systems
by fixing atmospheric nitrogen and further minimizing the
need for external inputs when used as a break crop. Since
Gregor Mendel's groundbreaking work on the theories of
heredity, pea has been extensively used for basic research, in
particular in the fields of seed biology and plant architecture.
In many studied examples, legume genes were shown to have
novel functions compared to those described for related Ara-
bidopsis genes. Detailed characterization of these legume
genes will help our understanding of cross-species gene func-
tion [21]. However, functional gene validation by transforma-
tion is impractical due to the difficulty of transforming pea
using Agrobacterium. This situation renders pea an ideal
candidate for TILLING. Although several pea EMS mutant
populations already exist, they are unsuitable for a genomic
approach as they have not been prepared or maintained
under rigorously controlled conditions and suffer from cross-
contamination. Hence, there is a need for a high-quality P.
sativum genetic mutant reference collection, which could be
used for both forward and reverse genetics studies. Within
the frame of the European Grain Legumes Integrated Project
[22], we have developed such a population by mutagenizing
P. sativum cultivar Caméor with EMS, and establishing an
associated TILLING platform and phenotype database,
UTILLdb.

Results
Production of Caméor mutant population
Caméor is an early-flowering garden pea cultivar that com-
pletes its reproductive cycle within four months, permitting
three successive generations a year under greenhouse condi-
tions. Although pea is predominantly self-fertilizing, some
residual cross-pollination can occur. In order to avoid con-
tamination, 100 Caméor plants, derived from single seeds,
were analyzed for genetic uniformity using a set of 16 short
sequence repeat markers distributed over every arm of the
seven predicted pea chromosomes [23] and left to set seeds in
insect-proof greenhouses. In total, 10,000 Caméor seeds
were produced and used to create the mutant population.

In order to balance maximum mutation density with accepta-
ble plant survival rate, we first conducted a 'kill-curve' analy-
sis on batches of 100 seeds, using a range of doses from 8 to
57 mM EMS. Most treated first generation mutant (M1)
plants exhibited retarded growth at an early seedling stage,
but all of them recovered. Thirty plants from each treatment
were then grown until maturity and assessed for fertility and
seed production. A high loss of fertility was observed at the
highest doses, with less than 30% of plants fertile at doses
higher than 32 mM EMS. The highest EMS doses allowing
50% of plants to set seeds, 16 mM and 24 mM, were retained
and tested on large batches of seeds (Table 1). Little difference

was observed between these two doses with a tendency
toward higher seed production with 16 mM EMS, so a final
dose of 20 mM EMS was used for population production. The
mean number of seeds per pod was also slightly higher for the
plants treated with 16 mM than for those treated with 24 mM
EMS. The high rate of arrested embryos in pods of M1 plants
treated with EMS doses of 16-24 mM attested to its good
mutagenesis efficacy. Out of 8,600 M1 plants, more than
4,817 lines that had produced more than 5 M2 seeds each
were individually harvested. To produce M3 seeds, four M2
seeds per M1 plant were sown in two-liter pots and M3 seeds
were harvested from two sister plants, referred to as A and B.
Leaf material was harvested from the healthiest looking
plant, referred to as A (Figure 1). Seed stocks were sent to the
Grain Legumes stock center in Dijon for multiplication, dis-
tribution and long-term storage of the lines.

Phenotyping of the Caméor mutant population
As we intended to create a reference mutant collection that
could be used for forward and reverse genetics, we carried out
a systematic phenotyping of the mutant population. Our phe-
notype scoring was based on visual characterization of four
plants per M2 family at key developmental stages, from ger-
mination until fruit maturation. To facilitate the phenotype
scoring we defined a phenotype ontology adapted to pea. This
phenotyping tool does not cover all phenotypic alterations
(for example, no root evaluation was carried out) and was
constructed for high-throughput scoring of many mutant
lines in a relatively short growing season. The vocabulary
used to describe the mutant plants was organized in a hierar-
chical tree and is composed of 107 subcategories of pheno-
types clustered at different levels. The complete list of the
vocabulary used is shown in Additional data file 1 and the
number of lines found in each major phenotype category is
shown in Table 2.

Out of the 4,817 M2 families, 1,840 showed a visible pheno-
type, which represents 38% of the lines. Among the lines that
showed a visible phenotype, 45% were scored for a single phe-
notype and 55% displayed multiple phenotypes, that is, they
fall into more than one major phenotype category (Figure 2a).
This rate of pleiotropy is an underestimation as the pheno-
typic characterization is based on high-throughput visual
observation of only four mutant lines per M2 family. Detailed
morphological and biochemical characterization of higher
numbers of plants per M2 family would result in more pheno-
typic effects per mutant and, thus, a higher rate of pleiotropy.
The most commonly observed phenotypes are related to stem
size, leaf and plant architecture, followed by those related to
cotyledons, stipules and seeds, with the least abundant phe-
notypes being related to flowers, plantlet architecture and
petiole morphology (Figure 2b). Examples of phenotypes cor-
responding to the primary categories described are shown in
Figure 3.
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Caméor TILLING platform
To set up the pea TILLING platform, DNA samples were pre-
pared from 4,704 M2 plants, each representing an independ-
ent family and organized in pools of 8 M2 families. One key
factor in TILLING is the availability of the annotated genomic
sequence of the gene to be tilled. Even though the pea genome

has not yet been sequenced, acquisition of the genomic
sequences of target genes is facilitated by the high degree of
synteny between pea and the model plant Medicago truncat-
ula, which is being sequenced [24]. The CODDLE program
(Codons Optimized to Discover Deleterious Lesions [25,26])
combined with the PRIMER3 tool [27] are used to define the
best amplicon for TILLING. PCR products used for TILLING
have a maximum size of about 1,500 bp and, therefore, longer
genes are divided into several amplicons. To reduce variation
in the quality and the quantity of the PCR amplification prod-
uct due to the pea genome complexity and low amount of
genomic DNA used in PCR, nested PCR is performed. Muta-
tions are detected in the amplified targets using the mis-
match-specific endonuclease ENDO1, as described previously
[28]. Individual mutant lines are identified following a pool
deconvolution step, and then the mutated base is identified
by sequencing.

A primary objective in a mutagenesis project is to generate a
saturated resource where every locus is mutated and repre-
sented by multiple alleles. To evaluate the existence of
multiple alleles per locus, we screened for mutations in the
pea Methyl transferase 1 gene (PsMet1) [29]. Three amplicons
of 1,383, 1,310 and 1,149 bp were tilled (Figure 4) and 96
mutants were identified (Figure 5). Sequence analysis of the
mutations showed that 6 were intronic, 37 silent, 50 missense
and 3 nonsense mutations (Figure 4b). Although characteri-
zation of PsMet1 mutants is beyond the scope of this article,
we found that retrieval of the mutant alleles from the A plant
M3 seed stocks was successful, without the need to use
backup M3 seed stocks collected from the sister B plants (Fig-
ure 1). The exonic mutants were mostly present as heterozy-
gotes (79 out of 90 mutations), but 11 lines were homozygous
for the mutations. As expected with EMS mutagenesis, these
mutations were distributed relatively evenly within the
screened amplicons (Figure 4b).

To further evaluate the quality of the mutant population, we
extended the TILLING screen to another 19 genes and
identified 371 point mutations in those genes (Table 3). As
expected for EMS, all the mutations were G:C to A:T transi-
tions [6,30]. Induced mutations discovered in exons con-
sisted of 66.75% missense, 28.51% silent and 4.74% stop
mutations (Table 4). Although the number of observed mis-
sense mutations was bigger than the amount predicted by
CODDLE (63.80%), we recovered stop mutations in a slightly
lower proportion than predicted (6.90%). As many tilled
amplicons harbor intronic segments, some recovered muta-
tions were intronic. Although some of these could potentially
affect the efficiency of mRNA splicing, such an impact is
unpredictable. Thus, intronic mutants were not characterized
further. In contrast, the large number of non-synonymous
mutations recovered is of interest as they may lead to gain- or
loss-of-function phenotypes. Such mutations will also permit
dissection of the function of the protein with respect to its
sub-domain structure.

Establishment of pea EMS mutant libraryFigure 1
Establishment of pea EMS mutant library. Caméor seeds were EMS 
mutagenized. Out of 8,600 M1 plants self-fertilized in an insect-proof 
glasshouse, 4,817 produced more than 5 M2 seeds each. Four M2 seeds, 
referred to as A-D, per M1 parent were grown to maturity and scored for 
phenotypes. DNA was extracted from the plants referred to as A, which 
were left to set M3 seeds. As a backup, M3 seeds were harvested from the 
sister B plants. The collected M3 seeds were sent to the Grain Legumes 
Biological Resource Center for distribution, maintenance of the lines and 
long-term storage of the mutant library.
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We calculated the mutation frequency in the 20 targeted
genes (Table 3) according to Greene et al. [6]: mutation fre-
quency equals the size of the amplicon multiplied by the total
number of samples screened divided by the total number of
identified mutants. We estimated the average mutation rate
to be one mutation every 200 kb. This mutation density is 1.5
times higher than the rate of one mutation per 300 kb
reported for Arabidopsis, the best characterized TILLING
mutant population to date [6]. Therefore, the 16-24 mM dose
of EMS used to create the pea mutant population appears to
be an adequate dose for TILLING. On average, we identified
34 alleles per tilled gene (after normalization to TILLING of
the entire population). Considering that about half of mis-
sense mutations should have a deleterious effect on a typical

protein [31], 25 alleles per tilled kilobase would be sufficient
for phenotypic analyses.

Setup of the UTILLdb database
We scored 4,817 lines in the mutant population for pheno-
typic alterations using 107 subcategories of phenotypes. In
TILLING screens we searched for mutations in 20 genes and
identified 467 alleles. In order to manage and integrate the
expanding data from both the phenotype recordings and
TILLING target genes, we implemented the database
UTILLdb. UTILLdb was developed according to a relational
database system, interconnecting four main modules: lines,
phenotype categories, sequences and mutations. Two main
types of data are accessible, the morphological phenotypes of
mutants and the sequences of tilled genes and corresponding
alleles, when available. UTILLdb may be searched using a
sequence, through a BLAST tool [32] or for a phenotypic fea-
ture using a keyword search. The outcome of the search is
shown as a table of results that displays the phenotype of each
line, with associated pictures and mutated sequence if it
exists. Thus, the user could ask whether lines that share
mutations in a specific gene share the same phenotypes and
vice versa. As we expect the phenotypic characterization of
the TILLING mutants to become more detailed as they are
analyzed by UTILLdb users, UTILLdb was designed so that
the passport data of the mutant lines can be extended or mod-
ified as needed. UTILLdb is publicly accessible through a web
interface [33]. A link is implemented to facilitate seed
ordering. UTILLdb serves also as an entry point for users
wishing to have their favorite gene tilled on the Caméor TILL-
ING platform. Results from those screens as well as the phe-
notype of the mutants identified will be implemented in
UTILLdb.

Discussion
Mutant population for forward and reverse genetics
EMS-mutagenized populations have been created for differ-
ent crops with, in many cases, multiple populations per crop.
Information on the quality of the mutagenesis and the
production and maintenance of the seed stocks are, however,
often unavailable. We have constructed a reference EMS
mutant population from P. sativum cultivar Caméor under

Table 1

Effect of EMS

Dose of EMS 0 mM 16 mM 20 mM 24 mM

Total M1 seeds sown 100 1000 4000 3600

Percentage of M1 plants setting seeds 100% 61% 63% 58%

Percentage of M1 plants yielding more than 5 seeds 100% 56% 52% 39%

Percentage of arrested embryos in pods of M1 plants 3% 45% 49% 52%

Mean number of seeds per pod (± SD) 4.83 ± 0.91 2.00 ± 0.86 0.91 ± 1.30 0.79 ± 1.93

Effect of the concentration of EMS on M2 seed setting, on the frequency of arrested embryos (data are expressed as the percentage of total seeds 
analyzed) and on the mean number of seeds per pod in the M1 generation (200 pods analyzed per dose). SD, standard deviation.

Table 2

Number of M2 families affected in the major categories and sub-
categories of phenotypes

Major category Subcategory No. of families

1 Cotyledon Color 172

Shape 32

2 Plantlet architecture Architecture 7

3 Plant architecture Architecture 316

Branching type 205

4 Leaf Color 610

Shape and arrangements 387

Appearance 253

Size 81

5 Stipule Size/color/shape 77

6 Petiole Petiole 6

7 Stem Stem size 1,447

Shape 36

8 Flower Flower morphology 24

Flowering time 4

Reproductive organs 12

9 Seed Seed color 2

Shape 4

Size 66
Genome Biology 2008, 9:R43
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controlled conditions and developed a database, UTILLdb,
which presents phenotypic data based on visual
characterization of M2 plants from young seedling to fruit
maturation stages. A hierarchical categorization of mutant
phenotypes was used to describe the mutant plants. To facili-
tate the phenotype description, digital images were also
recorded. We did not implement the previously published

plant phenotype ontology [34,35], a hierarchical description
intended to develop a vocabulary that describes anatomy,
morphology, and growth and developmental stages of a flow-
ering plant, for the main reason that the plant phenotype
ontology vocabulary is not yet adapted to describe mutant
morphological traits in a crop like pea. Instead, the vocabu-
lary used to describe the pea mutant plants was inspired from
previous investigations of mutant collections (tomato [15],
lotus [13], barley [36]) and adapted to pea.

Tto exploit the mutant population using reverse genetics,
genomic DNA was prepared from the mutant lines via high-
throughput automated protocols, and organized in pools for
bulked screening. Individuals with mutations in the gene of
interest were isolated by systematic pool deconvolution.
Genes and mutations were integrated in UTILLdb through a
web interface, which allows for global analysis of the TILL-
ING mutants in the collection. This database also serves as a
portal for users to request materials or TILLING
experiments.

Saturation of the mutation screen
EMS mutagenesis causes primarily G:C to A:T transitions
[30]. In the TILLING screen for mutations in PsMet1, we
identified 90 independent exonic mutations in a sequence
that contains 1,434 cytosines and guanines and this in a
mutant population of 4,704 M2 families. Based on this we
estimated the average frequency of mutations to be 1.33 × 105

(90/4,704 × 1,434). Given a genome size of 5,000 Mb and a
43.23% G:C content in the coding sequence of the pea genome
[37], there are 2.2 × 109 bp susceptible to EMS mutagenesis.
Assuming that all G:C base pairs are equally sensitive to EMS,
we would expect approximately 2.93 × 104 mutations in each
EMS-mutagenized M1 plant ((1.33 × 10-5) × (2.2 × 109)). We
used the binomial distribution, P = 1 - (1 - F)N, to calculate the
probability of finding a mutation in a given G:C base pair in
our mutant population. In this formula, P is the probability of
finding the mutation, F is the mutation frequency per base
pair (1.33 × 10-5), and N is the number of M1 mutant lines
(4,704). Using this formula we estimated the probability of
finding one mutation in any given G:C base pair in the
genome as 0.06%. Increasing the size of the mutant popula-
tion to 50,000 M2 plants raises the probability of finding one
mutation in any given G:C base pair in the genome to 52%.
This number is relatively small and could be managed by our
platform. In fact, 50,000 independent lines represent 65
DNA pool plates (96-wells) or only 16 plates (384-wells). This
purely theoretical example shows that EMS mutagenesis cou-
pled with TILLING is a very powerful tool for creating genetic
diversity, especially if one considers that routine transforma-
tion of P. sativum has not yet been achieved and, hence,
insertional mutagenesis is not an option.

Analysis of mutants identified through TILLING
The calculated overall mutation rate of one mutation every
200 kb found in our population is intermediate between the

Distribution of phenotypic characteristics of the mutant population and rate of pleiotropyFigure 2
Distribution of phenotypic characteristics of the mutant population and 
rate of pleiotropy. (a) Number of M2 families in each phenotypic group. 
The x-axis indicates the nine major phenotypic categories, listed in Table 
2, and the y-axis indicates the total number of M2 families. Each bar 
represents the number of mutants in the corresponding category. The 
blue bar represents the quantity of pleiotropic mutants (having more than 
one phenotype), given by the first number in the category label. The red 
bar represents the non-pleiotropic mutants and is given by the second 
number in the category label. (b) Total number of M2 families (y-axis) 
sharing 1-5 major phenotypic categories (x-axis). The bar for one 
phenotypic category indicates how many mutants are categorized in only 
one phenotypic group (non-pleiotropic mutants), and the bars for the 2-5 
phenotypic categories represent the number of mutants that share two to 
five phenotypes, respectively. In each case, the total number of mutants is 
indicated on the top of the bar.
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Figure 3 (see legend on next page)
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rate of one mutation per 300 kb reported for Arabidopsis [6]
or Cenorhabditis elegans (1/293 kb) [38] and rice [39], and
2.5-fold higher than the rate of two mutations per megabase
for TILLING in maize [40]. A much more saturated mutation
density has been observed in tetraploid wheat (1/40 kb), hex-
aploid wheat (1/24 kb) [41] or Brassica napus (1/10 kb;
unpublished data); however, such species are able to with-
stand much higher doses of EMS without obvious impact on
survival or fertility rates, due to multiple gene redundancies
in their polyploid genomes.

In the TILLING screen, we recovered from 8 (Sym29) to 96
mutants (PsMetI) per tilled gene. Some genes (End1, TL) are
obviously much more mutated than others (DOF2,
eIF(iso)4e), despite the similarity of their GC content (36.6%
for DOF2, 34% for TL). Of course, the propensity of a gene to
withstand mutations without the resulting protein causing
deleterious effects on the plant plays a major role and game-
tophytic lethal mutations will never be found in the popula-
tion. However, we could see that some primer pairs used for
screening gave a higher background noise than others, which
affects the discrimination between true mutants and false
positives on the polyacrylamide gel image, and reduces the
number of mutants recovered. Nevertheless, our average
score of 34 mutant alleles identified per tilled gene is higher
than the 10 mutations per gene of Arabidopsis [6] or rice
[39].

Screening for mutations in PsMet1 resulted in 96 alleles, of
which 50 were missense and 3 non-sense mutations; in this
case, the large number of mutations recovered is, at first
sight, impressive, but the large gene size and targeted region
(3,842 bp), together with the fact that we tilled the entire pop-
ulation (4,704 lines), accounts for this result. On the other
hand, this example illustrates the strength of TILLING when
it comes to finding a specific point mutation.

Because of the high number of alleles we routinely identify,
the possible impact of missense mutations on the function of
a protein is assessed before systematic phenotyping of the
mutant plants, using two different programs: SIFT (Sorting
Intolerant From Tolerant) [42], which uses PSI-BLAST
alignments, and PARSESNP (Project Aligned Related
Sequences and Evaluate SNPs) [43], which provides a posi-
tion-specific scoring matrix based on alignment blocks (Fig-
ure 4d). In the case of PsMet1, 13 out of the 50 missense
mutations (23%) were predicted to have a major impact on

the function of the protein. Thus, the corresponding 13
mutant lines are characterized first.

In Arabidopsis, the MetI gene controls maintenance of CpG
methylation [29]. It was previously shown that point muta-
tions in AtMetI can lead to genome hypomethylation [29,44]
with a variable impact on plant development, ranging from a
late-flowering phenotype to reduced embryo viability. P. sati-
vum has a genome mainly composed of non-coding repeated
sequences [45], which are typically subjected to chromatin-
mediated epigenetic suppression of transcription [46], in
which an elevated rate of DNA methylation plays a major role.
We intend to investigate the stability of those regions in a
hypomethylated context, that is, in PsmetI lines for which
CpG methylation is altered. As we are currently amplifying
our mutant lines in order to get homozygous mutants and
characterize their phenotypes and DNA methylation levels, it
is still too early to speculate on the observed versus predicted
effect of the mutations according to SIFT.

Conclusion
In the 21st century, the need for crop improvement in order
to face the growing demand of modern agriculture is
increasing, while the social acceptance of so-called genetically
modified or transgenic crops remains low. Besides, many
plant species of agronomic importance are still unsuitable for
Agrobacterium-based insertional mutation techniques,
including pea. The development of TILLING technology,
based on EMS mutagenesis, can contribute to overcoming
this deficiency. Furthermore, as EMS generates an allelic
series of the targeted genes it becomes possible to investigate
the role of essential genes that are otherwise not likely to be
recovered in genetic screens based on insertional mutagene-
sis. We have developed a complete tool that can be used for
both forward (EMS saturated mutant collection and the asso-
ciated phenotypic database) and reverse (high-throughput
TILLING platform) genetics in pea, for both basic science or
crop improvement. Hence, by opening it to the community,
we hope to fulfill the expectations of both crop breeders and
scientists who are using pea as their model of study.

Materials and methods
EMS treatment
EMS was diluted to the chosen dose in deionized water. Bot-
tles (Schott type) each containing 900 seeds immersed in 450

Examples of mutant phenotypes representing the nine major phenotypic groupsFigure 3 (see previous page)
Examples of mutant phenotypes representing the nine major phenotypic groups. (a) Plant 566: cotyledon color, albino. (b) Plant 939: plantlet architecture, 
bushy; plant architecture, hyper compact; leaf color, pale green; stem size, extreme dwarf. (c) Plant 54: plant architecture, determinate growth. (d) Plant 
1,236: plant architecture, basal branching; leaf color, pale green, yellow; leaf size, medium; stem size, dwarf. (e, f) Plant 903: leaf, cone shaped at leaf base; 
flowers, sterile flowers. (g) Plant 1,567: leaf, distorted; stipule, silver-argentous. (h) Plant 630: flowers, cauliflower type inflorescence; flowers, abnormal 
all; stem, dwarf; leaf, upcurling.
Genome Biology 2008, 9:R43
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Comparison between predicted and obtained mutationsFigure 4
Comparison between predicted and obtained mutations. (a) Output of the CODDLE program using as an example the PsMetI genomic sequence. Exons 
are represented by white boxes and introns by red lines. The CODDLE program was used to identify those regions of the gene in which G:C to A:T 
transitions are most likely to result in deleterious effects on the encoded protein (represented by the probability curve traced in tourquoise). The 
CODDLE algorithm is based on an evaluation of protein sequence conservation from comparison of database accessions of homologous proteins. For 
PsMetI, three fragments were chosen based on these CODDLE results (blue lines). External and internal primers were designed to amplify each region by 
nested PCR. (b) Graphic representation of mutations identified in the three regions of the gene PsMetI. This drawing was made using the PARSESNP 
program [43], which maps the mutation on a gene model to illustrate the distribution of mutations. Purple triangles represent silent mutations and black 
and red triangles represent missense and truncation mutations, respectively.

b

(a) 1383 bp 1310 bp 1149 bp

(b)
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ml of deionized water-EMS solution were placed on a rotary
shaker (50 rpm) overnight (15 h soaking). The EMS solution
was then removed and seeds were rinsed extensively 12 times
for 30 minutes with gentle shaking.

Plant growing conditions
Pea (cultivar Caméor) seeds were sown in pots filled with
sterile pouzzolane (inert medium, light volcanic grit) at a sow-
ing depth of about 2 cm followed by abundant watering in
greenhouse conditions. Plants were then automatically
watered with a solution of 3.5:3.1:8.6 N:P:K. The temperature
was maintained between 14°C at night and 30°C during day-
time, with supplementary lighting to provide a 16 h day.

Genomic DNA extraction and pooling
Four pea leaf discs (diameter 10 mm) were collected in 96-
well plates containing 2 steel beads (4 mm) per well, and tis-
sues were ground using a bead mill. Genomic DNA was iso-
lated using the DNeasy 96 Plant Kit (Qiagen, Hilden,
Germany). All genomic DNA was quantified on a 0.8% agar-
ose gel using λ DNA (Invitrogen, Carlsbad, CA, USA) as a
concentration reference. DNA samples were diluted tenfold
and pooled eightfold in a 96-well format. A population of
4,704 arrayed DNAs from mutagenized individuals is pres-
ently available for screening.

PCR amplification and mutation detection
PCR amplification was based on nested-PCR and universal
primers [14]. The first PCR amplification was a standard PCR
reaction using target-specific primers and 4 ng of pea
genomic DNA. One microliter of the first PCR served as a
template for the second nested PCR amplification, using a
mix of gene-specific inner primers carrying a universal M13
tail (CACGACGTTGTAAAACGAC for forward primers; GGA-
TAACAATTTCACACAGG for reverse primers), in combina-
tion with M13 universal primers, M13F700
(CACGACGTTGTAAAACGAC) and M13R800 (GGA-
TAACAATTTCACACAGG), labeled at the 5'end with infra-red
dyes IRD700 and IRD800 (LI-COR®, Lincoln, NE, USA),
respectively. This PCR was carried out using 0.1 μM of each
primer, using the following two step cycling program: 94°C
for 2 minutes, 10 cycles at 94°C for 15 s, primer-specific
annealing temperature for 30 s and 72°C for 1 minute, fol-
lowed by 25 cycles at 94°C for 15 s, 50°C for 30 s and 72°C for
1 minute, then a final extension of 5 minutes at 72°C. Muta-

Figure 5

TILLING screenFigure 5
TILLING screen. Example of a PsMetI TILLING screen on eightfold pooled 
pea DNA. The image of the cleavage reaction is collected from both 
channels (dyes IRD700 and IRD800). The sizes of the cleavage products 
(circled) from the two dye-labeled DNA strands (red or green) add up to 
the size of the full-length PCR product (top of the gel). PCR artifacts are 
distinguishable from true mutants by yellow points (red and green added) 
as they appear at the same size in both channels. The size of the cleavage 
product (the sizing ladder can be seen at the left and middle of the image) 
indicates approximately where the single nucleotide polymorphism is 
located in the fragment.
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tion detection was carried out as described previously [28].
The nature of the mutations was identified by sequencing.
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CODDLE, Codons Optimized to Discover Deleterious
Lesions; EMS, ethylmethane sulfonate; PARSESNP, Project
Aligned Related Sequences and Evaluate SNPs; SIFT, Sorting
Intolerant From Tolerant; TILLING, targeting induced local
lesions in genomes.
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table providing

Table 3

Tilled genes and mutation density in Caméor mutant population

Tilled genes Amplicon size (bp) % of GC in exons Identified 
mutants

Screened M2 families Mutation 
frequency

Ps CONSTANS-like a (PsCOLa) 1,012 46.30% 11 1,536 1/141 Kb

LectineA 971 40.80% 13 1,536 1/115 Kb

Sucrose transporter (SUT1) 1,014 52.40% 12 1,536 1/130 Kb

Cell wall invertase (cwINV) 1,612 41.50% 12 1,536 1/206 Kb

Serine-threonine proteine kinase (Sym29) 2,457 44.00% 8 768 1/236 Kb

Phosphoenolpyruvate carboxylase (PepC) 1,009 44.40% 25 3,072 1/124 Kb

Lec1-like (L1L) 870 39.10% 21 4,608 1/191 Kb

DOF transcription factor 2 (PsDOF2) 1,200 36.60% 9 3,072 1/410 Kb

Trypsine inhibitor (TI1) 712 34.20% 13 3,840 1/210 Kb

Pea albumine (PA2) 746 38.50% 9 3,072 1/255 Kb

Anther specific protein (End1) 851 40.50% 31 3,072 1/84 Kb

MADS box gene (PM10) 1,302 34.60% 20 4,608 1/300 Kb

MADS box gene (PM2) 1,390 31.30% 28 4,608 1/229 Kb

Tendril-less transcription factor (TL) 1,104 34.00% 28 3,072 1/121 Kb

Eukaryotic translation initiation factor (eiF4e) 1,383 36.90% 36 4,608 1/177 Kb

Eukaryotic translation initiation factor (eIF(iso)4e) 772 36.70% 10 4,608 1/356 Kb

Methyl transferase 1 (Met1) 3,842 40.20% 96 4,704 1/188 Kb

Retinoblastoma related (RBR) 2,959 40.80% 72 4,608 1/112 Kb

Late embryogenesis abundant protein (PsLEAM) 952 44.00% 17 4,608 1/258 Kb

Heat shock protein 22 (HSP22) 622 45.66% 18 4,608 1/159 Kb

Total/mean 26,780 40.12% 467 - 1/200 Kb

Part or all of the Caméor mutant population was screened for mutations in the genes listed. The size of the screened amplicon, the number of 
mutants identified and the mutation frequency for each amplicon are indicated. The average mutation frequency was estimated to one mutation per 
200 kb and is calculated as in Greene et al. [6], except that we have summed the sizes of all the amplicons and we divided by the total number of 
identified mutants.

Table 4

Mutation types

All Silent Missense Truncation

Percent expected (CODDLE) 100 29.30 63.80 6.90

Percent observed 100 28.51 66.75 4.74

Percent heterozygouscacro 86.60 27.7 56.4 2.5

Percent homozygous 13.34 4.78 8.06 0.5

Comparison of expected and observed types of mutations in tilled exonic regions; distribution between heterozygous and homozygous states in the 
mutant lines. The percentage of expected mutations was calculated by adding the results of CODDLE analysis, on the amplified regions only, for each 
gene.
Genome Biology 2008, 9:R43
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the pea mutant phenotype list used for describing and record-
ing M2 mutant plant phenotypes in UTILLdb.
Additional data file 1Pea mutant phenotype list used for describing and recording M2 mutant plant phenotypes in UTILLdbPea mutant phenotype list used for describing and recording M2 mutant plant phenotypes in UTILLdb.Click here for file
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