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Summary

Argonaute proteins were first discovered genetically, and extensive research in the past few years
has revealed that members of the Argonaute protein family are key players in gene-silencing
pathways guided by small RNAs. Small RNAs such as short interfering RNAs (siRNAs),
microRNAs (miRNAs) or Piwi-interacting RNAs (piRNAs) are anchored into specific binding
pockets and guide Argonaute proteins to target mRNA molecules for silencing or destruction.
Various classes of small RNAs and Argonaute proteins are found in all higher eukaryotes and have
important functions in processes as diverse as embryonic development, cell differentiation and
transposon silencing. Argonaute proteins are evolutionarily conserved and can be phylogenetically
subdivided into the Ago subfamily and the Piwi subfamily. Ago proteins are ubiquitously expressed
and bind to siRNAs or miRNAs to guide post-transcriptional gene silencing either by
destabilization of the mRNA or by translational repression. The expression of Piwi proteins is
mostly restricted to the germ line and Piwi proteins associate with piRNAs to facilitate silencing of
mobile genetic elements. Although various aspects of Argonaute function have been identified,
many Argonaute proteins are still poorly characterized. Therefore, it is very likely that as yet

unknown functions of the Argonaute protein family will be elucidated in the future.

Gene organization and evolutionary history

The Argonaute protein family was first identified in plants,
and members are defined by the presence of PAZ (Piwi-
Argonaute-Zwille) and PIWI domains [1]. Argonaute proteins
are highly conserved between species and many organisms
encode multiple members of the family (Table 1). Numbers
of Argonaute genes range from 1 in the fission yeast
Schizosaccharomyces pombe to 27 in the nematode worm
Caenorhabditis elegans. In mammals there are eight
Argonaute genes [2,3]. The Argonaute protein family can be
divided into the Ago subfamily and the Piwi subfamily
(Figure 1) [2,4,5]. In most organisms investigated so far,
which include Drosophila, the zebrafish and the mouse, the
expression of Piwi proteins is restricted to the germ line,
where they bind Piwi-interacting proteins (piRNAs). In
contrast, Ago proteins are ubiquitously expressed in many
organisms. Human Ago1, Ago3 and Ago4 genes are clustered

on chromosome 1, whereas the Ago2 gene is located on
chromosome 8. Whether or not this clustering indicates that
the proteins have similar functions in human cells has not
been determined so far. The human Piwi subfamily comprises
HIWI1, HIWI2, HIWI3 and HILI; they are encoded by genes
on chromosomes 12, 11, 22 and 8, respectively.

The sole Ago protein in S. pombe is involved in the
establishment of heterochromatin and the silencing of
transcription of specific genomic regions. It is therefore
tempting to speculate that transcriptional silencing
appeared earlier in evolution than post-transcriptional
silencing processes. It has, however, been shown that the
single S. pombe Ago can also guide post-transcriptional
gene silencing when provided with an artificial reporter
plasmid [6]. Natural targets of post-transcriptional
silencing in S. pombe have not yet been reported.
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Characteristic structural features
All Argonaute proteins share two main structural features:
the PAZ domain and the PIWI domain. Crystallization of a

Species Number of genes Reference complete Argonaute protein from a higher organism has not
yet been successful. Consequently, only isolated domains
Homo sapiens 8 (80] and archaeal full-length Argonaute proteins have been
Rattus norvegicus 8 121 analyzed structurally by X-ray crystallography and by
nuclear magnetic resonance (NMR) spectrosco Figure
Mus musculus 8 [2] . & . ( ) p Py ( &
2a). Studies on isolated PAZ domains from different
Drosophila melanogaster 5 [81] organisms revealed that this domain contains a specific
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S nucleotide 3’ overhang that results from digestion of RNAs
Arabidopsis thaliana 10 (&3] by RNase III (a step in the processing of small RNAs) [7-11].
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Phylogenetic conservation of Argonaute proteins in various organisms. (a) Phylogenetic tree of Argonaute proteins based on the protein sequence.
Alignments of protein sequences were made with ClustalWV and the tree built with TreeTop. (b) The corresponding domain organizations of the proteins
listed in the tree, showing the PAZ (orange) and PIWI (red) domains. PIWI domains of slicer-active Ago proteins are in dark red; PIWI domains of
inactive Ago proteins are in light red. (c) Catalytic residues of the PIWI domain in single-letter amino-acid code. D, aspartic acid; G, glycine; H, histidine;
K, lysine. The sequences used in the alignment are Homo sapiens (Hs) Agol (NP_036331), Ago2 (NP_036286), Ago3 (NP_079128), Ago4 (NP_060099),
Hili (NP_060538), Hiwi (NP_004755) Hiwi2 (NP_689644), Hiwi3 (NP_001008496); Drosophila melanogaster (Dm) Ago| (NP_725341), Ago2
(NP_730054), Ago3 (ABO27430), Aubergine (CAA64320), PIWI (NP_476875); Arabidopsis thaliana (At) Agol (NP_849784), Ago2 (NP_174413), Ago3
(NP_174414), Ago4 (NP_565633), Ago5 (At2g27880), Agob (At2g32940), Ago7 (NP_177103), Ago8 (NP_197602), Ago9 (CAD66636), Agol0
(NP_199194); Shizosaccharomyces pombe (Sp) Ago (NP_587782) and Caenorhabiditis elegans (Ce) Alg-1 (NP_510322), Alg-2 (NP_871992). Accession

numbers are for GenBank.
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Figure 2

Structure of Argonaute proteins. (a) X-ray crystal structure of the Argonaute protein from the archaeon Aquifex aeolicus. The amino-terminal domain
(N, magenta) is linked by linker | (LI, green) to the PAZ domain (blue). Linker 2 (L2, yellow) connects the PAZ domain with the MID domain (magenta),
which is followed by the PIWI domain (blue) at the carboxy-terminal end of the protein. The PIWI box (red) has been implicated in the interaction
between Argonaute proteins and the nuclease Dicer in human cells [79]. (b) Schematic depiction of the human Ago2 protein. The domains are colored as
in (a). In the PAZ domain, residues important for binding of small RNA 3’ ends are indicated (R, arginine; F, phenylalanine; Y, tryptophan), and in the Mid
domain, the residues required for 5’ end binding to small RNAs and binding to the 7-methylguanine (m’G) cap of target mRNAs are shown

(K, lysine; Q, glutamine) and the PIWI domain in red (catalytic residues are shown). (a) Reproduced with permission from [15].

mammals have shown that some are endonucleases, and
these are often referred to as ‘slicers’. In humans, only Ago2
has slicer activity, and a catalytic triad consisting of Asp597,
Asp669 and His807 has been identified in this protein
[13,14,17,18]. In Drosophila, both Ago1 and Ago2 are slicers;
Ago1 can mediate miRNA-guided cleavage of RNA, whereas
for Ago2, cleavage activity is predominantly guided by
siRNAs. In A. thaliana, which has ten Argonaute genes, Ago1
has been identified as a slicer that uses both miRNAs and
siRNAs as guides [19,20]. A. thaliana Ago4 can also act as a
slicer, and has both catalytic and non-catalytic functions
[21]. Interestingly, many Argonaute proteins are endo-
nucleolytically inactive although the catalytic residues are
conserved (Figure 1). Therefore, one could speculate that
other factors, such as post-translational modifications,
might contribute to slicer activity.

Additional structurally and functionally important motifs
have recently been identified in Ago proteins (Figure 2b).
Structural analysis of the sole Ago protein in the archaeon
Archaeoglobus fulgidus revealed a third functionally
important domain that resides between the PAZ and PIWI
domains and is termed the MID domain. This domain binds
the characteristic 5° phosphates of small RNAs and thus
anchors small RNAs onto the Ago protein [22,23]. Further-
more, the MID domain has been implicated in protein-
protein interactions: Ago interactors such as Tas3 in S. pombe
form a so-called ‘Ago hook’ that binds the MID domain of
Ago proteins [24]. Whether binding of protein interactors
and small RNAs occurs simultaneously or is mutually
exclusive remains unclear. Finally, Ago proteins contain a
highly conserved motif similar to the 7-methylguanine
(m7?G) cap-binding motif of eukaryotic translational
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Ago proteins localize to cytoplasmic P-bodies. Human embryonic kindey cells (HEK 293T) were transfected with epitope-tagged Ago2
(FLAG/HA-Ago2). (a) Cells stained with DAPI to show the DNA. (b,c) The same cells stained with antibodies against (b) hemagglutinin (HA) and
(c) Lsm4, a P-body marker involved in mRNA turnover. P-bodies are indicated by arrows. (d) Merged images from (b) and (c).

initiation factor 4E (eIF4E) [25]. Two aromatic residues in
human Ago2, Pheq470 and Phes05, are required for this
interaction. As some Ago proteins inhibit translational
initiation of specific mRNA targets, it has been suggested
that m7G-cap binding by Ago proteins may prevent elF4E
binding and therefore repress translation.

Localization and function

Tissue distribution and subcellular localization

Ago proteins localize to the cytoplasm of somatic cells and
are concentrated in cytoplasmic processing bodies
(P-bodies; Figure 3) [26-28]. P-bodies are highly dynamic
and morphologically diverse foci where enzymes important
for RNA turnover are enriched [29]. It has therefore been
suggested that Ago proteins target mRNAs to P-bodies for
degradation or translational repression. However, this
model has been challenged recently. In Drosophila, Ago
proteins can repress target mRNAs in the absence of
P-bodies, and P-bodies are formed as a consequence of Ago
function [30]. Moreover, a quantitative analysis in mam-
malian cells has shown that Ago2 also localizes to the diffuse
cytoplasm as well as to stress granules - structures that are
induced upon cellular stress and contain mRNA-protein
complexes [31]. It is currently unclear which of these
structures are essential for Ago function.

Drosophila germ cells are characterized by an electron-
dense, cytoplasmic structure called nuage, which is
implicated in RNA interference (RNAi) and RNA processing
and transport, and which contains the proteins Piwi and
Aubergine (Aub), a member of the Piwi subfamily. Similar
structures have been identified in mammalian germ cells
and are called chromatoid bodies [32]. Interestingly,
chromatoid bodies contain members of the Piwi as well as

the Ago subfamilies and might therefore be the germ-cell
counterparts of somatic-cell P-bodies [33,34].

Argonaute proteins have also been found in the nucleus. It is
well established in plants that Ago4 directs siRNA-guided
DNA methylation of chromatin [21,35,36]. Recently, it has
been found that A. thaliana Ago4 (AtAgo4) localizes to
distinct nuclear foci that are associated with the nucleolus
and termed Cajal bodies. Cajal bodies are nuclear sites of
ribonucleoprotein particle (RNP) assembly and it has been
suggested that a larger DNA methylation complex contain-
ing AtAgo4, siRNAs and, presumably, many other factors is
assembled in the Cajal bodies [37,38]. In Drosophila, Piwi
and Aub have been implicated in the silencing of
transcription. Although it has not yet been shown directly, it
is very likely that Piwi and Aub localize to the nucleus of
Drosophila germ cells. In human cells, Ago1 and Ago2 have
also been implicated in transcriptional silencing. siRNAs
directed against promoters of different genes associate with
Ago1 and Ago2 and silence gene expression at the trans-
criptional level [39,40]. However, Ago proteins have not
been clearly observed in mammalian cells by immuno-
fluorescence studies, presumably due to the lack of highly
sensitive antibodies.

Functions of Argonaute proteins

Members of the Argonaute protein family have been
implicated in both transcriptional and post-transcriptional
gene silencing. Ago proteins can bind siRNAs as well as
miRNAs and mediate repression of specific target RNAs
either by RNA degradation or by inhibiting translation. In
mammals, miRNAs or siRNAs guide the RNA-induced
silencing complex (RISC) to perfectly complementary target
sites in mRNAs, where endonucleolytically active Ago
proteins cleave the RNA (Figure 4) [41-46].
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Figure 4

Roles of Argonaute proteins in gene silencing guided by small RNAs. Ago proteins can bind (a) siRNAs derived from long double-stranded precursor
RNAs or (b) miRNAs derived from endogenous hairpin structures. On binding with perfect complementarity to a target mRNA, the Ago-siRNA or
Ago-miRNA complex induces its cleavage and degradation (left). An Ago-miRNA complex binding imperfectly to the 3° UTR of the target mRNA induces
translational inhibition (middle), or deadenylation and subsequent decapping and degradation of the target mRNA (right). m’G, 7-methylguanine.

Other miRNAs, on the other hand, predominantly bind to
partially complementary target sites located in the 3’
untranslated regions (UTRs) of their specific target mRNAs.
Imperfect base pairing between small RNAs and their target
mRNAs leads to repression of translation and/or deadeny-
lation (removal of the poly(A) tail) of the target, followed by
destabilization of the target, which most probably occurs in
P-bodies (Figure 4) [47,48]. The mechanism by which Ago
proteins mediate translational repression is still a matter of
debate. Ago proteins have been shown to act on translation
initiation (summarized in [49]), on translation elongation
[50-53] and on the degradation of nascent polypeptides [54].
Therefore, the mechanisms by which Ago proteins inhibit
translation might depend on the target that is being regulated.
Such a model, however, remains to be experimentally proven.

Tt was shown very recently that upon cell-cycle arrest in human
cells, Ago proteins bind to the 3> UTRs of specific mRNAs and

stimulate translation. Interestingly, Ago proteins inhibit
translation in proliferating cells and it has therefore been
suggested that Ago-mediated translational regulation oscillates
between repression and activation during the cell cycle [55,56].

In Drosophila, zebrafish and mammals, miRNAs can guide
deadenylation of target mRNAs [57-59]. In Drosophila, it
became apparent that the interaction of Ago proteins with
GW182, a protein required for miRNA function, is required
for efficient deadenylation and subsequent degradation of
target mRNAs by providing an interaction platform for the
CCR:NOT complex, the major deadenylase complex in fly
cells [57]. Although members of the GW182 protein family
are important for gene silencing in other organisms as well
[26,60-62], their mode of action remains elusive.

In S. pombe, small RNAs are transcribed from centromeric
repeats and associate with Ago to form the RNA-induced
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initiation of transcriptional gene silencing (RITS) complex.
RITS recruits methyltransferases to specific genomic regions,
leading to methylation of Lys9 in histone H3 and the subse-
quent establishment of silenced heterochromatin (reviewed
in [63]). In Drosophila, Piwi and Aub have been reported to
be required for binding of the heterochromatin-specific
protein HP1 to heterochromatic regions [64,65]. Further-
more, Piwi, Aub and Ago3 (which belongs to the Drosophila
Piwi subfamily) are required for transposon silencing in the
Drosophila germ line [66-69]. Genetic studies revealed that
Piwi is also required for germ-cell maintenance and it has
recently been shown that Piwi has an additional role in
epigenetic activation of distinct genomic loci [70]. The
functions of the Piwi subfamily members in mammals are
largely unknown. In mice, the Piwi subfamily members are
MIWI, MIWI2, and MILI. Male MILI and MIWI knockout
mice are sterile, implicating a role for MILI and MIWI in
spermatogenesis [71,72]. MILI together with piRNAs has
recently been shown to be involved in silencing of trans-
posable elements in mouse testes [73,74].

Frontiers

Although the Argonaute protein family was discovered only
recently, many of their cellular functions are known and
some have been characterized in detail. Nevertheless, many
aspects of Argonaute function are still unclear. For example,
it is intriguing that only human Ago2 shows slicer activity,
even though the catalytic residues are conserved in other
human Ago proteins. The answer to this question will
probably have to await X-ray structures of human Ago
proteins with their bound small RNAs, which have not yet
been reported. The slicer activities of Argonaute proteins
have not been analyzed in a wide range of organisms, and
most of the natural slicer targets have not been found. Ago
proteins are embedded in large regulatory networks [75] and
future research will aim to describe and functionally
characterize such networks. It will be very interesting to
analyze how Ago regulatory networks are regulated them-
selves, as Ago proteins have been implicated in a variety of
diseases, including fragile X syndrome [76], autoimmune
diseases [77] and cancer [78]. FMRp, the gene product
affected in fragile X syndrome, has been found in bio-
chemically purified Ago complexes and it has been suggested
that FMRp is involved in miRNA biogenesis [76]. Auto-
immune antibodies directed against Ago proteins and other
components of the RNAi pathway have been isolated from
patients suffering from systemic rheumatic diseases. It is
therefore tempting to speculate that larger Ago complexes
are targeted by the immune system and that Ago proteins
might contribute to the establishment of autoimmune
diseases [77]. Therefore, a detailed characterization of the
biological roles of Ago proteins in conjunction with their
associated small RNAs will not only help us to understand
gene-silencing mechanisms but might also lead to a better
understanding of numerous diseases.
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