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KEGG spider<p>A web-based tool for interpretation of experimentally-derived gene lists that provides global models uniting genes from different met-abolic pathways.</p>

Abstract

KEGG spider is a web-based tool for interpretation of experimentally derived gene lists in order
to gain understanding of metabolism variations at a genomic level. KEGG spider implements a
'pathway-free' framework that overcomes a major bottleneck of enrichment analyses: it provides
global models uniting genes from different metabolic pathways. Analyzing a number of
experimentally derived gene lists, we demonstrate that KEGG spider provides deeper insights into
metabolism variations in comparison to existing methods.

Background
In the post-genomic era the targets of many experimental
studies are complex cell disorders [1-6]. A standard experi-
mental strategy is to compare the genetic/proteomics signa-
tures of cells in normal and anomalous states. As a result, a
set of genes with differential activity is delivered. In the next
step, the interpretation of identified genes in a model context
is required. A widely accepted strategy is to infer biological
processes that are most relevant to the analyzed gene list. The
inference is based on prior knowledge of individual gene
properties, such as gene biological functions or interactions.
This common approach is usually referred to as enrichment
analysis [7-16].

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
knowledge base for the networks of genes and metabolic com-
pounds. The major component of KEGG is the PATHWAY
database, which consists of graphical diagrams of biochemi-
cal pathways, including most of the known metabolic path-
ways. Several available public tools, such as GenMAPP/
MAPPfinder [17], PathwayProcessor, and PathwayMiner

[18], make use of standard enrichment analysis to find over-
represented global pathways within a gene list. However, for
statistical evaluation these tools use only information about
gene pathway membership, while information about pathway
topology is largely discarded. Additionally, several tools pro-
vide visualizations of pathways reported to be enriched [19-
21]. Some tools provide visualizations of a gene list in the con-
text of the global metabolic network [22,23], providing, how-
ever, no quantitative or statistical analyses. Visual analyses of
the graphical representation of the genes on the global meta-
bolic network give only an intuitive feeling that genes are
related. Taking into account the density of metabolic net-
works, one must not underestimate the value of a statistical
treatment. Even for randomly generated gene lists, it is possi-
ble to connect many of the genes into a metabolic subnetwork
through one or two intermediate partners. A graphical repre-
sentation may have low scientific value without providing a
quantitative estimate of the model quality.

More complex statistical methods have been proposed to take
pathway topology into account by developing specialized
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scoring functions. For example, in the ScorePAGE method
the distance between genes within the metabolic pathway is
included into the scoring function [24]. In this case, the
impact of a pair of genes is weighted with respect to the dis-
tance between genes within the metabolic pathway. Another
recently proposed procedure (impact analyses) [25] exploits
the hierarchical structure of signaling pathways and weights
the impact of genes with respect to their position in the path-
way hierarchy. Genes at the top of the signaling cascade
receive higher impact in comparison to downstream genes.

We propose a novel statistical approach for the analysis of
gene lists in the context of gene metabolic pathways that uses
network topology to make knowledge inference. Our
approach does not evaluate each individual KEGG metabolic
pathway separately, but uses a global gene metabolic network
that integrates all KEGG metabolic pathways together. The
input gene list is translated into a network model, e.g. edges
connect genes that most probably affect the state of each
other. We also proposed a robust statistical treatment of the
inferred network. As an output, our procedure provides a
graphical model as well as statistical significance of the
inferred network computed by a Monte-Carlo simulation pro-
cedure. We show on several real data sets that our approach

provides deeper insight into variations of metabolic pathways
covered by the given gene list in comparison to currently
available methods.

Results and discussion
Let us start from consideration of an illustrative example to
highlight the weaknesses of existing analytical methods.
Assume that as a result of some experiment one gets a list of
nine human genes, ME1, MDH1, FH, ASL, ASS1, CTH, CDO1,
CBS, SHMT1. These genes are related to metabolism, and an
enrichment analysis would identify several overrepresented
metabolic pathways. Three genes (CTH, SHMT1, CBS) are
mapped to 'glycine, serine and threonine metabolism'. Two
genes (ASL, ASS1) are mapped to 'urea cycle' and two genes
(ME1, MDH1) are mapped to 'citrate cycle'. No functional
model that unites all nine genes together would be supplied
by standard enrichment analysis. However, according to the
KEGG pathway wiring diagrams shown in Figure 1, all nine
genes are consecutively connected via metabolites and form a
non-interrupted network that runs through five canonical
KEGG metabolic pathways, namely 'urea cycle', 'citrate cycle',
'pyruvate metabolism', 'cysteine metabolism', and 'glycine,
serine and threonine metabolism'. This illustrative example

Artificial exampleFigure 1
Artificial example. The genes ME1, MDH1, FH, ASL, ASS1, CTH, CDO1, CBS and SHMT1 are presented as red boxes. Five KEGG pathway ('urea cycle', 
'citrate cycle', 'pyruvate metabolism', 'cysteine metabolism', 'glycine, serine and threonine metabolism') wiring diagrams are manually linked together to 
demonstrate that all nine genes form a non-interrupted metabolic network.
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demonstrates that, in many cases, the knowledge of enriched
pathways may be insufficient to get a complete understanding
of the relationship between genes from the supplied list. Con-
sideration of the topology of the global gene metabolic net-
work for the interpretation of gene lists may be much more
informative.

We assume that the closer the genes on the global gene meta-
bolic network, the greater the probability that the change in
the state of one gene will affect the state of the other. In the
considered illustrative example in Figure 1, ASS1 and ASL are
both associated with L-argininosuccinate. Thus, the change
in the state of ASS1 (for example, overexpression) most prob-
ably affects the amount of L-argininosuccinate in the cell
(Figure 1). There are probably many ways the cell can handle
extra amounts of L-argininosuccinate. One of them is to
increase the efficiency of its utilization through possible met-
abolic reactions. The cell response can be the increased level
of ASL expression. The ASL overexpression will speed up L-
argininosuccinate transformation into fumarate and
arginine. Thus, even if two genes are not directly involved in
regulatory relationships, but catalyze close reactions on the
global network, they can affect the state of each other through
auto-regulatory mechanisms switched up by abnormal
amounts of common metabolites.

KEGG spider
KEGG spider [26] is a freely available web-based tool that
implements a global metabolic network framework for the
interpretation of gene lists. It has a simple interface: as input
it accepts several types of gene or protein identifiers. For
example, for the human genome, KEGG spider supports iden-
tifiers from 'Entrez Gene'[27], 'UniProt/Swiss-Prot', 'Gene
Symbol' [27,28], 'UniGene' [27], Ensembl' [29], 'RefSeq Pro-
tein ID', 'RefSeq Transcript ID' [30], and'Affymetrix probe
codes' [31]. As output, the user gets a report on the statistical
significance of the inferred network models (D1, D2,..), as well
as a catalog of enriched KEGG pathways and Gene Ontology
terms. For each model (D1, D2,..), a link is provided to obtain
a graphical visualization. The visualization is performed by
the Medusa package [32]. In addition, the user can highlight
genes from the model according to KEGG canonical path-
ways. The inferred network models can be downloaded as a
text file and used with freely available packages for network
analyses and visualization [32,33].

Here, we present several examples of analysis of published
experimental data by KEGG spider. To illustrate the advan-
tages experimental researchers would get by using KEGG spi-
der in comparison to commonly used pathway enrichment
analyses, we provide a comparison between KEGG spider and
GENECODIS [34], a tool recently published in Genome Biol-
ogy that implements a possibility to perform enrichment
analysis of KEGG pathways. The choice of GENECODIS was
casual, as the results of enrichment analyses of KEGG path-
ways by other tools would be similar.

We also provide a comparison (Additional data file 1) of
KEGG spider to KEGG atlas [23]. KEGG atlas is a web tool
that provides visualization of a gene list (converted into
KEGG KO identifiers) in the context of the global metabolic
network. As has been discussed above, KEGG atlas provides
no quantitative or statistical analyses and, thus, supplies no
criteria for the evaluation of the quality of provided graphical
output. As demonstrated, the output of KEGG atlas for a ran-
dom gene list looks similar to the experimentally derived gene
lists.

Identification of genes commonly up- or 
downregulated in diffuse-type gastric cancers
In [35] a comparison of the expression profiles of cell popula-
tions from 20 diffuse-type gastric cancers with their corre-
sponding non-cancerous mucosae was performed. The
authors report in the paper the top 75 up- regulated and top
75 down-regulated genes. The 150 differentially expressed
genes represent a variety of functions, including genes
involved in various metabolic pathways. In total, 28 genes
map to KEGG metabolic pathways. Enrichment analysis
(Table 1) identified three pathways that are significantly over-
represented. For example, nine genes are from the 'metabo-
lism of xenobiotics by cytochrome P450' pathway and five are
involved in 'bile acid biosynthesis'.

The model D1, containing directly connected genes, provided
by KEGG spider covers 14 genes (p-value < 0.001). The model
D2, in which one intermediate gene is allowed, covers 24
genes (p-value < 0.001). Figure 2 presents a graphical visual-
ization of the inferred D2 model, which spreads through five
canonical KEGG pathways.

Table 1

KEGG metabolic pathways enriched in the list of 150 genes (28 genes map to KEGG metabolic pathways) commonly up- or down-reg-
ulated in diffuse-type gastric cancers [35] (reported by GENECODIS)

Number of genes P-value (not corrected for multiple testing) KEGG pathway

9 4.42E-18 (KEGG) Metabolism of xenobiotics by cytochrome P450

5 2.20E-10 (KEGG) Bile acid biosynthesis

5 2.40E-09 (KEGG) Glycolysis/gluconeogenesis
Genome Biology 2008, 9:R179
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Therefore, in comparison to available analytical procedures,
KEGG spider enhances our understanding of metabolism var-
iation in gastric cancers. First, it demonstrates that deregu-
lated genes do not split into independent groups (pathways)
as may be concluded from standard enrichment analyses:
almost all 24 (out of 28) genes form a non-interrupted (a
maximum of one missing gene is allowed) network. Second, it
provides not only information that 24 genes are mapped close
to each other on the global metabolic network but also esti-
mates the confidence of this event: the p-value reflects the
probability of getting a non-interruptedly connected network
that covers at least the same number of genes for a randomly
sampled list of 28 genes (only genes mapped to KEGG meta-
bolic pathways are used to generate the random lists).

Proteomic analysis of livers of patients with primary 
hepatolithiasis
Primary hepatolithiasis or intrahepatic calculi, which is char-
acterized by the formation of gallstones in the intrahepatic
bile duct, is an intractable liver disease and suspected to be
one of the causes of cholangiocellular carcinoma. To obtain
an insight into the disease, the proteomic analysis of liver tis-
sue specimens was done (affected and unaffected hepatic seg-

ments from patients with primary hepatolithiasis) [36]. For
the specimens from the unaffected segments, 83 unique pro-
teins were reported. For the specimens from the affected seg-
ments, 74 unique proteins were reported. Consequently, 12
up-regulated proteins and 21 down-regulated proteins were
identified in affected versus unaffected hepatic segments.

For example, 17 out of 21 down-regulated proteins (unaf-
fected versus affected hepatic segments) map to KEGG path-
ways. A standard enrichment analysis for the 21 down-
regulated proteins found two pathways 'urea cycle' (five pro-
teins) and 'glycolysis' (four proteins) to be enriched (Table 2).
These results enable the conclusion that some characteristic
metabolic pathways are violated in affected hepatic cells.
Analysis with KEGG spider provides a comprehensive picture
of the characteristic metabolic perturbations between normal
and diseased cells. The model D2, in which proteins are con-
nected via one intermediate protein, covers all 17 proteins (p-
value < 0.001) that are mapped to KEGG metabolic pathways.
The model D2 is presented in Figure 3. The KEGG spider
model retrieves a comprehensive picture of the genetic basis
of metabolic variations in comparison to standard enrich-
ment analyses. As in the previous example, it demonstrates

Network model D2 of 150 commonly up- or down-regulated genes in diffuse-type gastric cancers [35]Figure 2
Network model D2 of 150 commonly up- or down-regulated genes in diffuse-type gastric cancers [35]. Twenty-eight genes can be mapped to 
KEGG metabolic pathways; the model D2 covers 24 genes (p-value < 0.001). Genes from the input list are presented as rectangles, intermediate genes as 
triangles and chemical compounds as circles. Different colors are used to specify different KEGG canonical pathways.
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that deregulated genes are not independent (or split to inde-
pendent pathways) and all 17 metabolism related proteins
form non-interrupted (a maximum of one missing gene is
allowed) network.

Large scale benchmark of KEGG spider
To support the practical significance of KEGG spider, we col-
lected dozens of recently published experimental studies that
reported lists of genes/proteins in various biological contexts.
We reanalyzed them using KEGG spider and demonstrated
that, in most cases, the models provided by KEGG spider
improve our understanding of the genetic basis of metabo-

lism variations. These results can be found at the KEGG spi-
der web site [37].

Of particular interest are the studies that report differentially
expressed genes/proteins between normal/disease cell states
or treated/untreated cell states. We selected 17 such studies,
which report at least eight genes/proteins that can be mapped
to KEGG metabolic pathways and analyzed these genes/pro-
teins using KEGG spider and GENECODIS. The comparative
statistics is provided in Table 3. The 'GENECODIS' column
reports results provided by GENECODIS, the 'k' column
reports the number of pathways found to be enriched at a p-

Network model D2 of 21 down-regulated proteins in a comparison of unaffected versus affected hepatic segments [36]Figure 3
Network model D2 of 21 down-regulated proteins in a comparison of unaffected versus affected hepatic segments [36]. The network 
model D2 covers 17 proteins (p-value < 0.001). Proteins from the input list are indicated by rectangles, intermediate proteins by triangles, and chemical 
compounds by circles. The colors are used to specify KEGG canonical pathways.
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Table 2

KEGG metabolic pathways enriched in the list of 21 down-regulated proteins [36] (affected versus unaffected hepatic segments) 
reported by GENECODIS

Number of genes P-value (not corrected for multiple testing) KEGG pathway

5 4.98E-12 (KEGG) Urea cycle and metabolism of amino groups

4 7.98E-08 (KEGG) Glycolysis/gluconeogenesis
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Table 3

Large-scale comparison between KEGG spider and GENECODIS

Input proteins/genes GENECODIS KEGG spider

Paper Table All KEGG k max Model n P-value

Proteomic analysis of primary cell 
lines identifies protein changes 
present in renal cell carcinoma [40]

Table 1: proteins found to be 
differentially expressed between 
matched normal and RCC primary 
lines

62 23 5 10 D3 22 <0.01

Proteomic analysis of anaplastic 
lymphoma cell lines: identification of 
potential tumour markers [41]

Table 2: proteins overexpressed in 
FE-PD cells compared to SU-DHL-
1 cells

41 13 3 3 D2 12 0.015

Differential expression profiling of 
human pancreatic adenocarcinoma 
and healthy pancreatic tissue [42]

Table 3: proteins at higher levels in 
normal pancreas compared to 
pancreatic cancer

40 12 2 5 D3 12 0.015

Proteomic search for potential 
diagnostic markers and therapeutic 
targets for ovarian clear cell 
adenocarcinoma [43]

Table 1: differentially expressed 
proteins in human ovarian cancer 
cells

36 17 3 4 D2 13 0.025

Quantitative proteomic analysis to 
discover potential diagnostic markers 
and therapeutic targets in human 
renal cell carcinoma [44]

Table 3: differentially expressed 
proteins in RCC patients

91 36 12 14 D2 33 <0.001

Protein profile changes in the human 
breast cancer cell line MCF-7 in 
response to SEL1L [45]

Table 4: MCF7-SEL1L differentially 
expressed genes identified by 
microarray analysis

60 9 1 4 D2 7 0.03

Protein dysregulation in mouse 
hippocampus polytransgenic for 
chromosome 21 structures in the 
Down syndrome critical region [46]

Table 2: list of proteins 
dysregulated in hippocampus of 
polytransgenic micea

42 14 2 5 D2 12 0.015

Differential expression of proteins in 
response to ceramide-mediated 
stress signal in colon cancer cells by 
2-D gel electrophoresis and MALDI-
TOF-MS [47]

Table 1: list of identified proteins 
on HCT116 2-DE gels

82 16 2 4 D3 15 0.02

Subcellular proteome analysis of 
camptothecin analogue NSC606985-
treated acute myeloid leukemic cells 
[48]

Table 2: functional classifications of 
the deregulated proteins in 
NSC606985-induced apoptotic 
NB4 Cellsa

88 15 1 5 D3 15 <0.001
Genome Biology 2008, 9:R179
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Proteome analysis of responses to 
ascochlorin in a human 
osteosarcoma cell line by 2-D gel 
electrophoresis and MALDI-TOF MS 
[49]

Table 2: differentially expressed 
proteins in ascochlorin-treated 
U2OS cells

87 13 3 5 D2 12 <0.001

Quantitative proteomic and genomic 
profiling reveals metastasis-related 
protein expression patterns in gastric 
cancer cells [50]

Table 1: summary of differentially 
expressed proteins and their 
functional classifications

227 59 11 9 D3 54 <0.001

Proteomic analysis of the resistance 
to aplidin in human cancer cells [51]

Table 1: differentially expressed 
proteins between resistant and 
wild-type HeLa cells identified in 
the membrane fraction

26 8 5 3 D2 6 0.02

Proteomic analysis of the resistance 
to aplidin in human cancer cells [51]

Table 2: differentially expressed 
proteins between resistant and 
wild-type HeLa cells identified in 
the cytosolic fraction

37 11 5 7 D2 11 0.015

Identification of specific protein 
markers in microdissected 
hepatocellular carcinoma

Table 2: identified proteins from 
HCC and nontumorous liver tissue 
by in-gel digestion and SELDI-MS

51 20 8 4 D2 17 0.015

Comparison of membrane-
associated proteins in human 
cholangiocarcinoma and 
hepatocellular carcinoma cell lines 
[52]

Table 1: list of proteins from the 
membrane fraction of HuCCA-1 
and HCC-S102 cell lines which 
show up-regulated expression

56 11 2 5 D3 11 <0.001

Contribution of laser 
microdissection-based technology to 
proteomic analysis in hepatocellular 
carcinoma developing on cirrhosis 
[53]

Table 1: proteins differentially 
expressed in tumorous LM-
hepatocytes and total homogenates 
samples identified PMF

43 20 0 0 D3 18 0.04

Proteome alterations induced in 
human white blood cells by 
consumption of Brussels sprouts: 
results of a pilot intervention study 
[54]

Table 1: protein alterations induced 
by a controlled dietary intervention 
with Brussels sprouts in human 
primary white blood cells

44 17 2 4 D2 12 <0.05

The 'Paper' column reports the title of the paper that reported a list of differentially expressed proteins/genes related to different diseases or 
treated/untreated cell states. The 'Table' column reports the table number and legend from the paper. The 'Input proteins/genes' section reports the 
total number of proteins/genes (All) and the number (KEGG) that mapped to KEGG pathways. The 'GENECODIS' section reports results provided 
by GENECODIS; the 'k' column reports the number of pathways found to be enriched (p-value < 0.05); the 'max' column reports the number of 
input genes covered by the largest pathway. The 'KEGG spider' section reports results provided by KEGG spider; the 'Model' column specifies the 
most significant model (D2 or D3); the 'n' column reports the number of input proteins/genes covered by the model; the p-value column reports 
significance estimated by a Monte Carlo simulation procedure.

Table 3 (Continued)

Large-scale comparison between KEGG spider and GENECODIS
Genome Biology 2008, 9:R179
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value < 0.05, and the 'max' column reports the number of
input genes covered by the largest pathway. As can be seen, in
all cases the interpretational power of enrichment analyses
was quite limited. On average, from 10% to 40% of the input
genes mapped to KEGG pathways could be interpreted by one
canonical pathway. As can be seen, in all cases KEGG spider
provided statistically valid models.

Conclusion
Recent advances in genomics technologies allow for the
detection of genes with differential activities between various
cell states. Since metabolic processes are at the heart of the
cell, they are often subjected to variations in disease cell
states. Complete understanding of metabolism variations can
give clues to possible metabolism-related treatment of the
studied cell disorders. As has been demonstrated, KEGG spi-
der provides a comprehensive interpretation of genomics
data related to metabolism variations. In addition, the KEGG
spider network models incorporate not only genomics infor-
mation, but also specify small molecules whose metabolism
might be affected. This feature provides a link between
genomics and rapidly developing high-throughput metabo-
lomics technologies. It is obvious that experimental studies
utilizing both techniques in parallel will become popular in
the near future. For such studies, the interpretational models
provided by KEGG spider are a useful link between genomics
and metabolomics data.

We would like to point out that the idea to infer the network
model from a gene list based on external knowledge is not
completely new; for example, there are commercial packages
available, such as Ingenuity Pathway Analysis software [38],
which transforms a list of genes into a set of networks accord-
ing to internal database information of gene pairwise rela-
tionships. As we already mentioned, some free online tools
exist [18-21] that allow one to visualize several metabolic
pathways together that are related to the input gene list. How-
ever, visual analyses of graphical representations of genes on
metabolic pathways gives only an intuitive feeling that discov-
ered genes are related. Taking into account the density of the
global gene metabolic network, one must not underestimate
the value of the statistical treatment. Even for randomly gen-
erated gene lists, it is possible to connect many of genes into
a subnetwork through one or two intermediate partners. A
beautiful looking figure may have low scientific value without
statistical treatment of the presented network model.

To our knowledge not one of the currently existing tools that
infer network models from gene lists provides robust statisti-
cal treatment of the inferred network models. For example,
the statistical scores provided by Ingenuity Pathway Analysis
do not take into account the topology of the reference network
and provide statistically significant scores even for random
gene lists. In contrast, KEGG spider implements a robust sta-
tistical treatment of the inferred network models, based on

the topology of the global metabolic network, and provides a
valid estimate of the p-values by a Monte Carlo simulation
procedure. The p-values provided by KEGG spider actually
reflect the probability of getting the same size network model
for a random gene list.

Examples of analysis of disease-specific genes by KEGG spi-
der suggest that the separation of metabolic reactions into
canonical pathways is, to some degree, artificial. In most
cases, metabolism-related genes were from several KEGG
canonical pathways. However, the analysis with KEGG spider
reveals that, if one considers the topology of the global gene
metabolic network, these genes form a non-interrupted (a
maximum of one or two genes are missing) disease-specific
pathway that runs through several canonical pathways. These
results also support a hypothesis that disease-specific metab-
olism variations in most cases are not independent, for exam-
ple, deregulated genes from different pathways are linked to
each other via consecutive one- or two-step metabolic reac-
tions. The examples of analysis of disease-specific genes by
KEGG spider presented in Table 3 may serve as support for
this hypothesis.

Finally, we would like to summarize the power and limita-
tions of KEGG spider. In comparison to other tools, KEGG
spider provides a robust analytical framework for interpreta-
tion of gene lists in the context of a global gene metabolic net-
work. The information of gene pairwise relationships is
widely exploited (gene A is related to gene B via metabolite C)
and the inferred network model is not limited to the size of
one metabolic pathway. In the current form, KEGG spider
computes the minimal distance between any two genes as a
minimal number of steps required to get from one gene to
another. A more realistic way to model distance between
genes will be a weighted approach where one would consider
not only the number of steps but also the impact of each step.
This methodological extension can be considered as a possi-
bility for future improvement of KEGG spider. We also would
like to point out that the produced output models are limited
by the available information on cell metabolism from the
KEGG database.

Materials and methods
A global gene metabolic network
The KEGG REACTION database is a collection of chemical
structure transformation patterns for substrate-product pairs
(reactant pairs). We can build a global 'reaction network'
(reactions are nodes, compounds are edges) by connecting
with edges reactions that share the same compounds. In gen-
eral, a reaction consists of multiple reactant pairs, and the one
that appears on the KEGG metabolic pathway is called the
main pair. To build a global reaction network, we used only
compounds classified as main reaction pairs. Otherwise,
many reactions will be connected only because they use or
produce such compounds as H2O, CO2, and so on.
Genome Biology 2008, 9:R179
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In KEGG, reactions are linked to orthologous groups of
enzymes (KEGG ORTHOLOGY database) and orthologous
groups are mapped to the genes (in most cases each ortholo-
gous group corresponds to ortholog genes from different
genomes). Thus, reactions can be mapped to genes from a
given genome, and the reaction network can be transformed
into a global organism-specific gene metabolic network,
where genes are nodes and compounds are edges, respec-
tively. Some reactions are organism specific or are not anno-
tated by an orthologous group. In this case, they are not
present in the corresponding organism-specific gene net-
work. Therefore, the resulting global gene metabolic network
links by edges any two genes that are associated with reac-
tions sharing common compounds (from the main reaction
pair).

Network inference procedure
The distance between two arbitrary genes is computed as the
minimum number of consecutive steps required to get from
one gene to another by working through existing paths on the
global gene metabolic network. Distance 1 means that two
genes are directly connected. Distance 2 means that two
genes are connected via one intermediate gene, distance 3
means that two genes are connected via two intermediate
genes, and so on. Given a gene list, our purpose is to infer the
network model that minimizes the distance between each
connected gene pair according to pairwise distances between
genes.

Initially, we map genes from the input list onto the global
gene metabolic network. At this point all genes from the input
list are disconnected. In the first step, we connect by edges
gene pairs with distance 1 and look for connected subnet-
works. The subnetwork with the maximal number of genes is
referred to as an inferred network model D1. We also refer to
the number of genes in the maximal subnetwork as the size of
the inferred model. In the second step, genes (from the input
list) with distance 2 are connected by edges. The subnetwork
with the maximal number of genes is inferred and is referred
to as network model D2. In a similar way, network models D3,
D4,..., are inferred. Models D2, D3,..., incorporate genes that
are not from the input list but are added to connect input
genes in the network model. We refer to these added genes as
intermediate genes.

Statistical treatment
The null hypothesis is that the input gene list has no bias in
relation to the topology of the global gene metabolic network.
A quality measure of the inferred network model can be its
size, that is, the number of genes from the input list in the
model. We have to estimate the probability to infer models
with the same or bigger size from randomly generated gene
lists of size N, where N is the number of input genes.

Let us assume that we have N genes in the input list. Using the
network inference procedure described above, we infer the

network models D1, D2, D3. Let us denote S1, S2, S3 to be the
number of input genes in the inferred network models D1, D2,
D3. The values S1, S2, S3 are used as statistics. To estimate the
significance of the inferred model D1, we compare the value S1

with a distribution R1j. In the same way, we estimate the sig-
nificance of the inferred models D2, D3 by comparing the val-
ues S2, S3with distributions R2j, R3j, respectively.

The distributions R1j, R2j, R3j are computed by a random sim-
ulation procedure [39]. To generate the background distribu-
tions R1j, R2j, R3j, we repeat the following simulation
procedure k times. Index j = 1..k specifies the random simula-
tion. Each time the random gene list Bj of size N (equal to the
size of the input list) is generated. The network inference pro-
cedure described above is applied to the list Bj and the net-
work models D1j, D2j, D3j are inferred. Let us denote the
number of genes from the random list Bj in the inferred net-
work models D1j, D2j, D3j as R1j, R2j, R3j. Thus, after repeating
k times the simulation procedure, we get the background dis-
tribution R1j(j = 1..k) for model D1, the background distribu-
tion R2j(j = 1..k) for model D2 and the background
distribution R3j(j = 1..k) for model D3.

To estimate the significance of the inferred network model D1

for the input gene list, the value S1 is compared to the distri-
bution R1j. Let n be the number of values from the distribution
R1j that are equal or greater than S1. The estimate of the p-
value p of the inferred network model D1 is computed as p =
(n + 1)/k. In the same way, the p-values for models D2 and D3

are computed using values S2 and S3 and background distri-
butions R2j and R3j. In other words, the p-value is estimated
as a share of random simulations where the size of the
inferred models for a random gene list (size N) are equal to or
greater than the size (S1, S2, S3) of the inferred models for
input gene list (size N).
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