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Prioritizing functional modules<p>A strategy is presented to prioritize the functional modules that mediate genetic perturbations and their phenotypic effects among can-didate modules.</p>

Abstract

We have developed a global strategy based on the Bayesian network framework to prioritize the
functional modules mediating genetic perturbations and their phenotypic effects among a set of
overlapping candidate modules. We take lethality in Saccharomyces cerevisiae and human cancer as
two examples to show the effectiveness of this approach. We discovered that lethality is more
conserved at the module level than at the gene level and we identified several potentially 'new'
cancer-related biological processes.

Background
How to interpret the nature of biological processes, which,
when perturbed, cause certain phenotypes, such as human
disease, is a major challenge. The completion of sequencing of
many model organisms has made 'reverse genetic
approaches' [1] efficient and comprehensive ways to identify
causal genes for a given phenotype under investigation. For
instance, genome-wide knockout strains are now available for
Saccharomyces cerevisiae [2,3], and diverse high throughput
RNA interference knockdown experiments have been per-
formed, or are under development, for higher organisms,
including C. elegans [4], D. melanogaster [5] and mammals
[6,7].

Compared to the direct genotype-phenotype correlation
observed in the above experiments, what is less obvious is
how genetic perturbation leads to the change of phenotypes in
the complex of biological systems. That is, we might perceive
the cell or organism as a dynamic system composed of inter-
acting functional modules that are defined as discrete entities
whose functions are separable from those of other modules

[8]. For example, protein complexes and pathways are two
types of functional modules. Using this concept as a basis for
hypothesis, it is tempting to conclude that it is the perturba-
tion of individual genes that leads to the perturbation of cer-
tain functional modules and that this, in turn, causes the
observed phenotype. Previous studies have reported this type
of module-based interpretation of phenotypic effects [9-11].
For example, Hart and colleagues [12] showed the distribu-
tion of gene essentiality among protein complexes in S. cere-
visiae and suggested that essentiality is the product of protein
complexes rather than individual genes. Other studies have
made use of the modular nature of phenotypes to predict
unknown causal genes [13]. In a recent study, Lage and col-
leagues [14] mapped diverse human diseases to their corre-
sponding protein complexes and used such mapping to
prioritize unknown disease genes within linkage intervals of
association studies.

Despite these successful studies, the task of computationally
inferring the functional modules that mediate genetic pertur-
bations and their phenotypic effects might not be as easy as it
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appears. On the one hand, different modules could share
common components. On the other hand, modules are
believed to be hierarchically organized in biological systems
[15] such that smaller modules combine to form larger mod-
ules, as shown in Gene Ontology (GO) annotations [16]. All
these overlapping structures among modules make it difficult
to accurately identify causal modules, the term we will use in
this paper to indicate functional modules that mediate
genetic perturbations and their phenotypic effects. To be
more specific, since the protein products of a single gene
could be associated with multiple modules, the phenotypic
effects observed by perturbation of that gene could be attrib-
uted to the perturbation of any one of these modules, or their
subsets. In other words, some modules, which are otherwise
independent of a phenotype, but share members with actual
causal modules of the phenotype, could be mistakenly priori-
tized as causal modules when traditional strategies, such as
the hypergeometric (HG) enrichment test, are applied. This
results from the fact that HG associates a module to the phe-
notype based merely on the phenotypic effects of its own com-
ponents. In this paper, we refer to methods with the above
characteristics as local strategies. We are therefore motivated
to develop a global strategy, specifically, a Bayesian network
(BN) model [17], to distinguish modules that are most likely
to be actual causal modules from the other overlapping mod-
ules that are likely to be independent of the phenotype. We
refer to this strategy as global since, in contrast to local strat-
egy, it associates a module with a given phenotype based not
only on its own components, but also on its overlapping struc-
ture with other modules. We applied the BN model to priori-
tize casual modules for two phenotypes: lethality in S.
cerevisiae and human cancer. In both cases, as summarized
below, we provide evidence indicating that the causal mod-
ules prioritized by the BN model are more accurate than those
prioritized by such local strategies as the HG enrichment test.
With lethality and human cancers as two illustrating exam-
ples, we aim to provide a general framework for module-
based decoding of phenotypic variation caused by genetic
perturbation, which could be applied to the understanding of
diverse phenotypes in various organisms.

In the first case, we used gene lethality data observed from a
genome-wide gene deletion study in S. cerevisiae [2]. Using
the BN model, we then prioritized causal modules for which
perturbation is the underlying cause of the inviable pheno-
type observed. For simplicity, we termed them as lethal mod-
ules, that is, lethal protein complexes or lethal biological
processes. First, analysis of lethality of ortholog genes indi-
cates that the BN model is superior to the HG enrichment test
in distinguishing lethal protein complexes from non-lethal
protein complexes. Moreover, in the course of the above anal-
ysis, we found that lethality is more conserved at the module
level than at the gene level. Second, the module lethality
inferred from the BN model is superior to the results obtained
by the local strategy in predicting unknown lethal genes as
evaluated through cross-validation.

In the second case, we applied our strategy to the study of
human cancer. Human cancer is believed to be caused by the
accumulation of mutations in cancer genes, for example,
oncogenes and tumor suppressor genes. It has been sug-
gested that a limited number of biological pathways might
include most cancer genes [18]. Based on cancer genes docu-
mented in 'cancer-gene census' [19], we prioritized GO bio-
logical processes (BPs) causally implicated in cancers (CAN-
processes). First, as indicated by their positions in the GO
hierarchical structure and the conditional HG enrichment
test, those GO BP nodes prioritized by the BN model are more
likely to represent actual CAN-processes than those obtained
by the HG enrichment test. Second, the results obtained from
implementing the BN model are more consistent with previ-
ous knowledge of cancer-related processes than results
obtained through the HG enrichment test. Third, similar to
the case of lethality, the CAN-processes inferred from the BN
model are superior to the results obtained by the local strat-
egy in predicting unknown cancer genes as evaluated by
cross-validation. Forth, by comparing the CAN-processes pri-
oritized in 'cancer-gene census' to a recent set of cancer genes
identified through systematic sequencing [20], we show that
the results of our BN model, in contrast to the conditional HG
enrichment test, are more consistent, even when different
datasets of cancer genes are used. We also discuss the reasons
that plausibly underlie the discrepancy between the results
from the two datasets and identify and describe several
potentially 'new' CAN-processes identified in the recent set of
cancer genes, specifically, cytoskeleton anchoring and lipid
transport.

Results and discussion
Prioritizing lethal modules in S. cerevisiae
We prioritized lethal modules from the gene lethality data in
S. cerevisiae obtained from a genome-wide gene deletion
study [2] (see Materials and methods). We provide evidence
from two aspects indicating that the lethal modules priori-
tized by the BN model are more accurate than those priori-
tized by either the HG enrichment test or the local Bayesian
(LM) model.

Superiority of the BN model indicated by analysis of lethality of 
ortholog genes
Compared with the HG enrichment test, our analysis of
lethality of ortholog genes in the context of protein complexes
indicates that the BN model is superior in distinguishing
lethal from non-lethal protein complexes. It is difficult to
directly measure the accuracy of the prioritized lethal protein
complexes without a direct benchmark for lethal and non-
lethal protein complexes. However, we expect that genes
involved in lethal protein complexes will show some charac-
teristics that distinguish them from genes that do not possess
such characteristics. These characteristics could therefore
serve as indicators of lethality of protein complexes and,
hence, could be used to measure the quality of the prioritized
Genome Biology 2008, 9:R174
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data. Here, we consider one such potential characteristic, as
described below.

We can categorize non-lethal genes into two classes according
to the lethality of protein complexes in which they participate.
For simplicity, we refer to non-lethal genes whose protein
products have been involved in certain lethal protein com-
plexes as NLGLCs, and we refer to non-lethal genes whose
protein products have not been involved in any lethal protein
complexes as NLGNLCs. A key computational measurement
we use is termed 'ortholog lethal ratio,' which refers to the
proportion of genes in species A, specifically S. cerevisiae,
whose ortholog genes in species B, specifically C. elegans, are
lethal. Thus, we hypothesize that NLGLC has a higher
'ortholog lethal ratio' than NLGNLC. An intuitive argument
supporting this theory is that, in order for those NLGNLCs in
S. cerevisiae to evolve into lethal genes in C. elegans, they
must undergo some extra evolutionary events that associate
their protein products with certain lethal modules, which
would be a prerequisite for genes showing inviable phenotype
when perturbed under a module-based explanation of
lethality. On the other hand, since NLGLCs by definition
already meet this requirement, and assuming module
lethality and composition are relatively conserved across spe-
cies, it might be easier for them to evolve into lethal genes in
C. elegans, for instance, by losing their functional backup
within lethal modules. Here, we only focus on non-lethal
genes, either NLGLC or NLGNLC, but not lethal genes
because, according to the module-based explanation of gene
lethality, all lethal genes must have been involved in certain
lethal modules, and there is no such classification in the case
of non-lethal genes. Nevertheless, in the following analysis,
we also categorized lethal genes into two classes in a manner
similar to non-lethal genes, namely, lethal genes whose pro-
tein products have been involved in certain lethal protein
complexes (referred to as LGLCs for simplicity) and lethal
genes whose protein products have not been involved in any
lethal protein complexes (referred to as LGNLCs for simplic-
ity). It should be noted that such classification is simply for
the purpose of elucidation. Not all lethal modules are
included in our dataset. Thus, the existence of LGNLCs that
have not been associated with any lethal modules in our data-
set largely results from data incompleteness.

Since we are able to distinguish lethal from non-lethal protein
complexes based on the 'ortholog lethal ratio' of their associ-
ated non-lethal genes, we could expect that a list of protein
complexes with a higher enrichment of lethal protein com-
plexes will show a higher 'ortholog lethal ratio' of non-lethal
genes than otherwise. We therefore carried out the following
analysis to compare the capacity of the HG enrichment test
with the BN model in distinguishing lethal from non-lethal
protein complexes. To determine the lethality of protein com-
plexes, we first employed the HG enrichment test to evaluate
the enrichment of lethal genes in 390 curated protein com-
plexes in S. cerevisiae. More specifically, we assume each pro-

tein complex as a random sample from a set of 5,916 genes,
1,105 of which are lethal. We called a complex with Nc genes
and Lc lethal genes lethal if the probability of having at least
Lc lethal genes out of Nc genes is less than 0.05 based on the
hypergeometric distribution. We obtained a total of 149 lethal
protein complexes in this way. We then classified genes into
four groups according to their gene lethality and the lethality
of protein complexes in which they participate: LGLC,
LGNLC, NLGLC and NLGNLC. To estimate the 'ortholog
lethal ratio' for each group of genes, we calculated the propor-
tion of genes whose orthologs in C. elegans are lethal among
all the genes whose orthologs in C. elegans exist with known
lethality (see Materials and methods for details of gene
lethality data in C. elegans). As shown in Figure 1a, there
appears to be no significant difference between NLGLCs and
NLGNLCs derived in this way (lower left and right cells,
respectively), as indicated by the 'ortholog lethal ratio' (p-
value of chi-square test between the two groups > 0.1). How-
ever, as discussed in the Background, the above HG method
might overestimate the number of lethal complexes by
including 'overlapping protein complexes' whose enrichment
of lethal genes would most likely result from the sharing of
gene members with actual lethal protein complexes. Thus, we
then used the BN model to filter out those 'overlapping pro-
tein complexes'. Out of the above 149 protein complexes with
an HG p-value < 0.05, we filtered out 55 protein complexes
whose probability of being lethal, as derived from the BN
model, was < 0.7 and treated them as non-lethal protein com-
plexes. In this case, the 'ortholog lethal ratio' is significantly
higher for NLGLCs than for NLGNLCs after filtering out the
'overlapping protein complexes' (lower left and right cells,
respectively, of Figure 1b; p-value of chi-square test between
the two groups < 0.05). It has to be mentioned that those pro-
tein complexes that are not significantly enriched with lethal
genes (p-value of HG enrichment test > 0.05) are not consid-
ered as candidate lethal protein complexes in the BN model to
speed up the algorithm, since those HG insignificant com-
plexes are of less practical use and could add a substantial
amount of computational burden to the BN model, particu-
larly when GO BPs are considered in later analysis. Other pre-
processing strategies to speed up the algorithm might work as
well, for instance, removing protein complexes with the
number of lethal genes less than a threshold.

Based on the results of the above analysis, we conclude that
the BN model is superior to the HG enrichment test in distin-
guishing lethal protein complexes from non-lethal protein
complexes as indicated by the following four findings. First,
as indicated by the 'ortholog lethal ratio,' those 'overlapping
protein complexes' filtered out by the BN model are very
likely to be non-lethal protein complexes. To be more specific,
the 'ortholog lethal ratio' for non-lethal genes only involved in
the 'overlapping protein complexes' was not found to be sig-
nificantly different (20%) from that of NLGNLCs before fil-
tering (39.4%; lower right cell in Figure 1a). However, it was
found to be significantly lower than that of NLGLCs after fil-
Genome Biology 2008, 9:R174
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tering (63.6%; lower left cell in Figure 1b; p-value of chi-
square test < 0.05). In other words, by successfully filtering
out these 'overlapping protein complexes,' the resulting list of
lethal protein complexes becomes more enriched when quan-
tified by the 'ortholog lethal ratio'. Second, in the absence of
the BN model, it is unlikely that those 'overlapping protein
complexes' could have been effectively filtered out by the HG
enrichment test, even by setting a more stringent p-value cut-
off, since, based on the Wilcoxon rank-sum test, there is no
significant difference between the HG p-value of those 'over-
lapping protein complexes' filtered out by the BN model and
the HG p-value of the remaining lethal protein complexes.
Third, the coverage of lethal genes by lethal protein com-
plexes remains similar, both before and after filtering out
'overlapping protein complexes'. Because the 'overlapping
protein complexes' filtered out by the BN model are those
sharing lethal gene members with the remaining lethal pro-
tein complexes, it can be seen from the data in Figure 1 that
the number of distinct lethal genes covered by lethal protein

complexes after filtering (140 + 92; upper left cell in Figure
1b) is only marginally smaller than before filtering (142 + 96;
upper left cell in Figure 1a). If, however, a more stringent cut-
off p-value is set for the HG enrichment test, the coverage of
lethal genes by lethal protein complexes will be dramatically
decreased (data not shown). Fourth, even when the coverage
of lethal genes is not considered, the BN model still performs
better than the HG enrichment test in distinguishing lethal
protein complexes from non-lethal protein complexes as
measured by the 'ortholog lethal ratio' of non-lethal genes.
Figure 2 shows the 'ortholog lethal ratio' for NLGLCs and
NLGNLCs (lower left and right cells, respectively, in Figure 1a
or 1b) when different thresholds for either the p-value of the
HG enrichment test or the probability of being lethal protein
complexes derived from the BN model are used. Compared to
the HG enrichment test, it can clearly be seen that the
'ortholog lethal ratio' shows more striking differences
between NLGLCs and NLGNLCs when the BN model is used.

Genes in S. cerevisiae are classified into four groups according to their lethality and the lethality of protein complexes to which they belongFigure 1
Genes in S. cerevisiae are classified into four groups according to their lethality and the lethality of protein complexes to which they 
belong. Within each group, the pie chart represents the distribution of genes with respect to the lethality of their orthologs in C. elegans. (a) The lethal 
protein complexes were identified using the HG enrichment test (p-value < 0.05). (b) 'Overlapping protein complexes' (the probability of being lethal 
inferred by the BN model < 0.7) were filtered out from those identified in (a).
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The analysis of the lethality of ortholog genes in the context of
protein complexes also reveals that lethality is more con-
served at the module level than at the gene level. In other
words, compared with the lethality of a gene itself, the
lethality of the protein complexes in which that gene partici-
pates appears to be a more relevant predictor for the lethality
of its orthologs in other organisms. It can be seen that both
LGLCs and NLGLCs show a similar 'ortholog lethal ratio'
(upper and lower left cells in Figure 1b), which is significantly
higher than that of NLGNLCs (lower right cell in Figure 1b).
It should be noted that a similar pattern could be observed
when the 'ortholog lethal ratio' is calculated based on essen-
tial genes in D. melanogaster instead of C. elegans (Figure S1
in Additional data file 1). This indicates that our observations
here are not restricted to one dataset or one species. Since the
genome-wide whole organism screening is not available for
D. melanogaster, the gene lethality in D. melanogaster is
defined based on cell-based RNA interference screening [21].
The ortholog lethal ratio might be underestimated in this way
because genes that are lethal to the whole organism might not
display any phenotype when tested in certain types of cells. It
may be recalled from our discussion above that LGNLCs
(upper right cell in Figure 1b) may theoretically belong to
some other lethal modules, thus showing a high 'ortholog
lethal ratio' comparable to LGLCs.

Our finding that lethality is more conserved at the module
level than at the gene level has several important implica-
tions. First, it could serve as a piece of evolutionary evidence
supporting the modular nature of lethality. Second, to supple-
ment traditional gene-based mapping, it suggests that a mod-
ule-based mapping strategy might be employed in
transferring phenotypic knowledge across species where it is
the phenotypic effects of the associated modules, rather than
the phenotypic effects of individual genes, that are believed to
be conserved across species. For example, we want to predict
ortholog lethality in C. elegans from lethality data in yeast.
According to the traditional sequence-similarity mapping,
the orthologs of LGLCs and NLGLCs are predicted as lethal
and non-lethal, respectively. However, according to our anal-
ysis (Figure 1b), NLGLCs show a similar 'ortholog lethal ratio'
to that of LGLCs. Thus, it might be useful to predict the
orthologs of NLGLCs as lethal instead of non-lethal. By doing
so, more lethal genes can be predicted, but the accuracy
(defined as the fraction of true lethal genes among all the pre-
dicted lethal genes) remains similar, which is around 60% in
the case of C. elegans.

Analysis of the proportion of lethal genes in each of the 94
curated lethal protein complexes identified by the BN model
reveals a high modularity of lethality. As shown in Table S1 in
Additional data file 1, all the members of about 63.8% (60 out
of 94) of them are lethal; more than half of the members are
lethal in all except for one of them. In addition, the proportion
of lethal genes in a lethal complex appears to differ based on
their functions. For example, as listed in Table S1, lethal com-
plexes related to chromatin remodeling, such as the RSC
complex and the INO80 complex, or protein transport and
translocation, such as the mitochondrial outer membrane
translocase complex, nuclear pore complex, and ER protein-
translocation complex, have a relatively low proportion of
lethal genes. The relatively low proportion of lethal genes
indicates functional redundancy within those complexes. For
example, the nuclear pore complex has the principal function
of regulating the high throughput of nucleocytoplasmic trans-
port in a highly selective manner [22]. The fact that over half
the total mass of FG domains could be deleted without loss of
viability or the nuclear pore complexe's normal permeability
barrier suggests the existence of multiple translocation path-
ways and partial redundancy among them [23].

Superiority of the BN model revealed by cross-validation
Besides the above ortholog lethality analysis, we also com-
pared the power of the BN model with the local strategy in
predicting unknown lethal genes. The module lethality
inferred from the BN model is superior to the results obtained
by the local strategy in predicting unknown lethal genes as
evaluated by cross-validation. As mentioned before, one of
the applications of identifying causal modules is the predic-
tion of unknown causal genes. However, for gene lethality in
S. cerevisiae, this is not necessary since the lethality of almost
all the genes is known. Nonetheless, S. cerevisiae does pro-

The 'ortholog lethal ratio' for NLGLC and NLGNLC when a more stringent cutoff of p-value (<0.05) of the HG enrichment test is used to identify lethal protein complexes (blue), or a different cutoff of the probability of being lethal inferred by the BN model (red) is used to filter out 'overlapping protein complexes'Figure 2
The 'ortholog lethal ratio' for NLGLC and NLGNLC when a 
more stringent cutoff of p-value (<0.05) of the HG enrichment 
test is used to identify lethal protein complexes (blue), or a 
different cutoff of the probability of being lethal inferred by the 
BN model (red) is used to filter out 'overlapping protein 
complexes'.
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vide a good system for evaluating prediction accuracy of gene
lethality through cross-validation. In the context of our study,
if, by such evaluation, we assume that more accurate predic-
tion of gene lethality is a consequence of more accurate infer-
ence of module lethality, then prediction accuracy of the
former could reflect prediction accuracy of the latter.

To evaluate prediction accuracy of gene lethality through
cross-validation, we randomly chose part of the gene lethality
data (training data) as a known to estimate module lethality.
The estimation results were then used to infer the probability
of being lethal for the remaining genes (testing data; see
Materials and methods for details). In the step where the
lethality of each candidate module is inferred, we employed
the BN model as our global strategy and the LM model as our
local strategy with the purpose of comparing how the results
of these two methods could affect prediction accuracy of gene
lethality. The LM model differs from the BN model only in
that only the subnetwork for a candidate module is consid-
ered as if none of its components participates in other mod-
ules (see Materials and methods for details). In this sense, the
probability of being lethal for each protein complex inferred
by the LM model is similar to the p-value of the HG enrich-
ment test in prioritizing lethal protein complexes. In this case,
we chose to compare the BN model with the LM model
instead of the HG enrichment test. Compared with the p-
value derived from the HG enrichment test, the output of the
LM model is more like the BN model and, therefore, it is eas-
ier to infer gene lethality with it. We used the receiver operat-
ing characteristic (ROC) curve [24] and the area under the
ROC curve (AUC) of 100-fold cross-validation as measure-
ments of the prediction accuracy of unknown lethal genes. We
calculated both standard AUC and partial AUC (pAUC) [25]
at a false positive rate of 0.2 (denoted as pAUC.2). Because
the BN model is primarily designed to remove potential false

positives that are overestimated by the HG/LM method, we
are predominantly concerned with the prediction accuracy of
our models at low false positive rates [26], which are pre-
ferred in practice. The results are shown in Figure 3.

When the candidate modules consist of only curated protein
complexes, the pAUC.2 of our BN model increases by 8.5%
compared with that of the LM (Figure 3a). The relatively
smaller improvement in this case might be a result of the fact
that the AUC is already very high with curated protein com-
plex data. As a matter of fact, when the HTP protein complex
data are added to the candidate modules, the pAUC.2
increases by 17.9%, which is more visible (Figure 3b). The
pAUC.2 increases by 46.9% when GO BPs are considered as
candidate modules (Figure 3c). Since the BN model is
designed to accommodate the overlapping structures among
functional modules, such a striking improvement is consist-
ent with the more complicated overlapping structures among
GO BPs. Our simulation results (Additional data file 1) also
show that the amount of improvement of the BN model over
the HG method in identifying causal modules increases as the
degree of overlap among modules increases (Figure S2 in
Additional data file 1). Since both methods perform similarly
at high false positive rates, the average improvement over the
whole range of false positive rates is relatively small. The
standard AUC of the BN model increases by 1%, 2.4% and
7.6% for the three cases (Figure 3abc), respectively. There-
fore, our results show that the module lethality inferred by the
BN model is superior to the results obtained by the LM model
in predicting unknown lethal genes. Overall, therefore, to the
extent that prediction accuracy of gene lethality reflects pre-
diction accuracy of module lethality, our results also indicate
that the lethal modules identified by the BN model are more
accurate than those identified by the local strategy.

The ROC curve, AUC and pAUC.2 of 100-fold cross-validation in predicting lethality of genes in S. cerevisiae using (a) curated protein complexes, (b) curated and HTP protein complexes and (c) GO biological processFigure 3
The ROC curve, AUC and pAUC.2 of 100-fold cross-validation in predicting lethality of genes in S. cerevisiae using (a) curated protein 
complexes, (b) curated and HTP protein complexes and (c) GO biological process. BN represents the BN model, and LM represents the local 
Bayesian model.
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Prioritizing GO biological processes causally 
implicated in human cancer
In order to show how the BN model could be applied to more
complicated phenotypes, such as human diseases, we priori-
tized GO BPs that are causally implicated in human cancers
(CAN-processes) based on cancer genes documented in 'can-
cer-gene census', a curated cancer gene database assembled
from previous studies [19]. Compared with protein com-
plexes, BPs are more conceptually defined modules whose
interrelationships appear to be more complicated. For exam-
ple, the GO BPs [16] are organized into a directed acyclic
structure, where children nodes representing BPs with more
specific definition are pointed into parent nodes representing
BPs with broader definition. Such a hierarchical organization
makes it possible to investigate the biological system with
varied specificity, but also brings in some difficulties. For
example, if one GO BP node is enriched for lethal genes based
on the HG enrichment test, it is very likely that many of its off-
spring nodes and ancestor nodes are also enriched, as well as
some nodes that share members with it. However, since our
BN model is a global strategy sensitive to the interrelation-
ship among modules, it might be more useful than the HG
enrichment test (local strategy) in distinguishing GO BP
nodes that are most likely to represent actual CAN-processes
from those whose enrichment of cancer genes is more periph-
eral, either from sharing members with them or being their
ancestor or offspring nodes. For simplicity, we refer to the lat-
ter as 'overlapping GO BP nodes'. Using measurement
parameters similar to those of our gene lethality model, only
GO BP nodes with a HG enrichment test p-value < 0.05 are
treated as candidate modules in the BN model, and the same
empirical cutoff was used to filter out 'overlapping GO BP
nodes'. Table 1 lists the resulting GO BP nodes and the same
number of GO BP nodes prioritized by the HG enrichment
test. Our results show that the GO BP nodes identified by the
BN model are likely to be better representatives of CAN-proc-
esses than those identified by the HG enrichment test in three
different respects.

First, as indicated by their positions in the GO hierarchical
structure and the conditional HG enrichment test, those GO
BP nodes prioritized by the BN model are more likely to rep-
resent actual CAN-processes than those obtained by the HG
enrichment test. We plotted the 27 BP nodes prioritized by
the BN model (as listed in Table 1) together with all their off-
spring and ancestor nodes in the directed acyclic structure
(Additional data file 2). It can be seen that most of the nodes
in this subgraph are significantly enriched with cancer genes
(The node size in Additional data file 2 corresponds to the
minus log p-value of the HG enrichment test.) As noted
above, if one GO node is enriched with cancer genes, many of
its ancestor and offspring nodes will also become enriched.
The results shown in Additional data file 2 are, therefore, con-
sistent with this observation. It can also be seen that most GO
BP nodes prioritized by the HG enrichment test (23 out of 27
GO BP nodes as listed in Table 1) are also within this sub-

graph. However, while most of the 27 GO BP nodes prioritized
by the BN model are close to the leaf nodes, those prioritized
by the HG enrichment test are close to the root.

Since most GO BP nodes prioritized by the HG enrichment
test are close to the root node, it is suspected that the enrich-
ment of cancer genes for most of them might actually result
from being ancestor nodes of actual CAN-processes. As a mat-
ter of fact, the enrichment of cancer genes for 63.0% of these
nodes (17 out of 27) becomes insignificant (p-value of the HG
enrichment test > 0.05) conditional on at least one of its child
nodes [27]. In order to calculate the p-value of the HG enrich-
ment test of node A conditional on node B, we removed genes
included in node B from node A and calculated the p-value of
the enrichment of cancer genes for the remaining genes in
node A. As a comparison, since the 27 GO BP nodes priori-
tized by the BN model are close to the leaf nodes, their enrich-
ment of cancer genes is less likely to result from being
ancestor nodes of actual CAN-processes. As a matter of fact,
out of 16 nodes that are not leaf nodes, only 12.5% (2 out of 16)
become insignificant conditional on at least one of their child
nodes. Moreover, for the two nodes that become insignificant
conditional on their child nodes, none of their child nodes is
significantly enriched with cancer genes (p-value of the HG
enrichment test > 0.05). In this sense, their child nodes are
not better representatives of actual CAN-processes than the
two nodes themselves.

On the other hand, although most GO BP nodes prioritized by
the BN model are of smaller size and close to the leaf nodes,
their enrichment of cancer genes is less likely to result from
being the offspring nodes of actual CAN-processes. This
means that only a few of their ancestor nodes will remain sig-
nificantly enriched conditional on the 27 GO BP nodes prior-
itized by the BN model. In order to demonstrate this, for each
parent node of the 27 GO BP nodes prioritized by the BN
model, we calculated the p-value of the HG enrichment test
conditional on the 27 nodes. Only 6.8% (3 out of 44) of their
parent nodes were conditionally significant (p-value < 0.05).
We then extended such a conditional HG enrichment test to
all 649 GO BP nodes that are enriched with cancer genes (p-
value of the HG enrichment test < 0.05). The distribution of
the original p-values of the HG enrichment test and the p-val-
ues of the HG enrichment test conditional on the 27 GO BP
nodes are shown in Figure 4. It can be seen that most GO BP
nodes become insignificant conditional on the 27 CAN-proc-
esses prioritized by the BN model (p-value > 0.05); only 13
have a p-value < 0.001 and none have a p-value < 1e-5. It can
also be seen in Figure 4 that the number of significantly
enriched GO BP nodes conditional on the 27 CAN-processes
is significantly smaller than the number of significantly
enriched GO BP nodes conditional on the same number of
randomly selected GO BP nodes with similar size.

Second, the results obtained from implementing the BN
model are more consistent with previous knowledge of can-
Genome Biology 2008, 9:R174
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Table 1

The 27 GO CAN-processes prioritized by the BN model or the HG enrichment test based on cancer genes from the 'cancer-gene cen-
sus' database

GO CAN-processes prioritized by the BN model GO CAN-processes prioritized by the HG enrichment test

GO CAN-process Total gene number Cancer gene number GO CAN-process Total gene number Cancer gene number

GO:0006366 transcription 
from RNA polymerase II 
promoter

541 52 GO:0050794 regulation of 
cellular process

3,958 205

GO:0045737 positive 
regulation of cyclin-
dependent protein kinase 
activity

3 3 GO:0050789 regulation of 
biological process

4,256 209

GO:0045786 negative 
regulation of progression 
through cell cycle

203 41 GO:0065007 biological 
regulation

4,648 217

GO:0007169 
transmembrane receptor 
protein tyrosine kinase 
signaling pathway

168 23 GO:0043283 biopolymer 
metabolic process

5,095 226

GO:0048268 clathrin cage 
assembly

4 2 GO:0000074 regulation of 
progression through cell 
cycle

325 53

GO:0000718 nucleotide-
excision repair, DNA 
damage removal

21 7 GO:0051726 regulation of 
cell cycle

329 53

GO:0002903 negative 
regulation of B cell apoptosis

2 2 GO:0019219 regulation of 
nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process

2,501 145

GO:0015014 heparan sulfate 
proteoglycan biosynthetic 
process, polysaccharide 
chain biosynthetic process

3 2 GO:0031323 regulation of 
cellular metabolic process

2,703 151

GO:0010225 response to 
UV-C

2 2 GO:0006350 transcription 2,540 145

GO:0006310 DNA 
recombination

92 13 GO:0019222 regulation of 
metabolic process

2,832 154

GO:0016571 histone 
methylation

6 2 GO:0006139 nucleobase, 
nucleoside, nucleotide and 
nucleic acid metabolic 
process

3,771 181

GO:0060070 Wnt receptor 
signaling pathway through 
beta-catenin

5 2 GO:0045449 regulation of 
transcription

2,448 140

GO:0016573 histone 
acetylation

10 4 GO:0006351 transcription, 
DNA-dependent

2,360 136

GO:0045429 positive 
regulation of nitric oxide 
biosynthetic process

5 3 GO:0006355 regulation of 
transcription, DNA-
dependent

2,302 134

GO:0006298 mismatch 
repair

31 7 GO:0045786 negative 
regulation of progression 
through cell cycle

203 41

GO:0009168 purine 
ribonucleoside 
monophosphate 
biosynthetic process

15 2 GO:0032774 RNA 
biosynthetic process

2,364 136

GO:0010332 response to 
gamma radiation

3 2 GO:0043170 
macromolecule metabolic 
process

6,647 244

GO:0045661 regulation of 
myoblast differentiation

6 2 GO:0022402 cell cycle 
process

606 61
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cer-related processes than the results obtained through HG
enrichment test results. As shown in Table 1, a variety of well-
known cancer-related processes have been prioritized by the
BN model. They include those directly related to cell cycle -
for example, positive regulation of cyclin-dependent protein
kinase activity and cell cycle checkpoint - and those canonical
signaling pathways regulating cell birth and death [18] - for
example, the transmembrane receptor protein tyrosine
kinase signaling pathway, the Wnt receptor signaling path-
way through beta-catenin, the phosphoinositide 3-kinase cas-
cade and the protein kinase B signaling cascade. They also
include biological processes responsible for the maintenance
of genome stability [28] - for example, nucleotide-excision
repair, DNA damage removal and mismatch repair - or epige-
netic modification [29] - for example, histone methylation
and histone acetylation. The associations of some prioritized
CAN-processes with cancers might be less apparent, but the
literature has indicated their involvement with more well-
known CAN-processes. For example, the role of clathrin cage
assembly in cancer generation might be related to its function
in controlling epidermal growth factor receptor signaling
through clathrin-mediated endocytosis [30]. Another exam-
ple is regulation of mitochondrial membrane permeability,
whose role in apoptosis has been shown before [31]. On the
other hand, the CAN-processes prioritized by the HG model
might be too generally defined to be associated with cancers.
As shown in Table 1, most of the CAN-processes prioritized by

the HG enrichment test are >2,000 in size, which renders
them less informative.

Previous knowledge also indicates that some of the 'overlap-
ping GO BPs' filtered out by the BN model might be inde-
pendent of cancer. Importantly, in the absence of such a
global approach, these 'overlapping GO BPs' are less distin-
guishable from actual CAN-processes based on the HG
enrichment test. One example is nuclear excision repair
(NER), which can be categorized into two classes: global
genome NER (GG-NER) and transcription coupled NER (TC-
NER) [32]. The two subpathways differ in the sets of proteins
involved in the distortion and recognition of the DNA dam-
age, but converge after that (Figure 5). Out of a total of 21
genes involved in GG-NER based on GO annotations, 7 have
been documented as cancer genes in 'cancer-gene census'.
Similarly, three out of six genes involved in TC-NER have
been documented as cancer genes. Based on the HG enrich-
ment test, both GG-NER and TC-NER are significantly
enriched with cancer genes, along with their parent node
NER, with p-values of 2e-07, 2e-04 and 2e-06, respectively.
However, under the BN model, only GG-NER was prioritized
among the top list, while TC-NER and NER are filtered out as
'overlapping GO BPs'. When we take a close look at the exact
position of those cancer genes in the two subpathways, it can
be seen that all three cancer genes involved in TC-NER, that
is, XPB (ERCC3), XPD (ERCC2) and XPG (ERCC5), function

GO:0030101 natural killer 
cell activation

15 3 GO:0016070 RNA 
metabolic process

2,896 143

GO:0046902 regulation of 
mitochondrial membrane 
permeability

5 2 GO:0007049 cell cycle 761 67

GO:0051353 positive 
regulation of oxidoreductase 
activity

5 2 GO:0048523 negative 
regulation of cellular 
process

917 73

GO:0051898 negative 
regulation of protein kinase 
B signaling cascade

2 2 GO:0048519 negative 
regulation of biological 
process

958 73

GO:0000910 cytokinesis 28 4 GO:0044238 primary 
metabolic process

7,595 254

GO:0000075 cell cycle 
checkpoint

58 14 GO:0048522 positive 
regulation of cellular 
process

754 63

GO:0001952 regulation of 
cell-matrix adhesion

9 6 GO:0006366 transcription 
from RNA polymerase II 
promoter

541 52

GO:0042593 glucose 
homeostasis

11 2 GO:0048518 positive 
regulation of biological 
process

840 65

GO:0014065 
phosphoinositide 3-kinase 
cascade

5 3 GO:0009719 response to 
endogenous stimulus

400 44

Median number 6 3 Median number 2,364 136

Table 1 (Continued)

The 27 GO CAN-processes prioritized by the BN model or the HG enrichment test based on cancer genes from the 'cancer-gene cen-
sus' database
Genome Biology 2008, 9:R174
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after the two subpathways converge. None of the genes
involved in the initial damage recognition, which is specific to
TC-NER, for example, CSA (ERCC8) and CSB (ERCC6), has
yet been documented as a cancer gene in 'cancer-gene cen-
sus'. On the other hand, a number of genes specific to GG-
NER, for example, XPE (DDB2) and XPC, have been docu-
mented as cancer genes. Therefore, it is speculated that TC-
NER itself might not be a CAN-process. Such a hypothesis has
been supported by previous studies. For example, it has been
shown that skin cancer is not a feature of pure Cockayne syn-
drome, a disease that could be caused by defects in gene CSA
or CSB [33]. Since, as described above, both CSA and CSB are
specific to TC-NER, such an observation indicates that pure
perturbation of TC-NER might not cause cancer. A more com-
prehensive survey regarding the relationship between GG-
NER and TC-NER can be found in [32]. Nevertheless, since
our knowledge of cancer genes is far from complete, the case
about the role of TC-NER in cancers remains to be elucidated.
In this regard, it might be more precise to treat those 'overlap-
ping modules' filtered out by the BN model as those cases
where further investigation and justification are needed.

Third, the CAN-processes inferred from the BN model are
superior to the results obtained by the local strategy in pre-
dicting unknown cancer genes as evaluated by cross-valida-

tion. Similar to the case of lethality, we employed cross-
validation to compare the BN model and the LM model in
predicting cancer genes in 'cancer-gene census'. We meas-
ured both the standard AUC and pAUC.2 as before. The
results shown in Figure 6 are consistent with the results for
lethality. The improvement of the BN model over the LM
model is more significant at a low false positive rate. The
pAUC.2 increases by 12.7%, and the standard AUC increases
by 3%. Compared with the case of lethality, the improvement
here is smaller (pAUC.2 increases by 46.9% when GO BPs are
used in the case of lethality). The reasons are that our knowl-
edge of cancer genes is far from complete, that the proportion
of cancer genes in the CAN-processes is much lower than the
proportion of lethal genes in lethal complexes, and that
human genes are not as well annotated as yeast genes. For
example, more than 50% of human genes (more than 40% of
cancer genes) are annotated only with most general GO BPs
(GO BP size >100). For those genes, it is unlikely for any
method to make an accurate prediction.

Last, but equally important, comparison of CAN-processes
prioritized in different cancer gene datasets shows that the
BN model results are more consistent with each other than
the HG enrichment test results. In order to show the consist-
ency of CAN-processes prioritized in different cancer gene
datasets, a second group of cancer genes was considered.
These cancer genes were identified recently through system-
atic sequencing of colorectal and breast cancer genomes for
somatic mutations [20] and are referred to as Wood's dataset
(see Materials and methods for details). The same process
and cutoff were used as before to generate a list of the top
CAN-processes by the BN model. These CAN-processes
together with the same number of top CAN-processes ranked
by the HG enrichment test are shown in Table 2. Between the
1,137 and 973 genes involved in the two sets of CAN-processes
prioritized by the BN model in the two datasets, respectively,
a total of 101 are common to both. The overlap is statistically
significant as measured by the HG p-value for overrepresen-
tation at 0.002. On the contrary, when the HG enrichment
test was used, genes involved in the CAN-processes priori-
tized in Wood's data are significantly underrepresented when
compared to those involved in the CAN-processes prioritized
in 'cancer gene census' (HG p-value for underrepresentation
is 1.9e-37). Therefore, the BN model results are more consist-
ent with each other than the HG enrichment test results when
different datasets are used.

Although statistically significant, the overlap between the two
sets of CAN-processes prioritized based on the two cancer
gene datasets by the BN model is only 5% (intersection/union
of genes). Since the two datasets of cancer genes differ in
many respects, such a small overlap could reflect the different
focus of the two datasets. Particularly, since the 'cancer-gene
census' is assembled from previous studies and the Wood's
dataset is derived from a recent study with new techniques,
the small overlap could indicate the discovery of potentially

The distribution of p-values for the enrichment of cancer genes for GO BP nodes, by the HG enrichment test, the HG enrichment test conditional on the 27 CAN-processes prioritized by the BN model, and the HG enrichment test conditional on the same number of randomly sampled GO BP nodes with similar sizeFigure 4
The distribution of p-values for the enrichment of cancer genes 
for GO BP nodes, by the HG enrichment test, the HG 
enrichment test conditional on the 27 CAN-processes 
prioritized by the BN model, and the HG enrichment test 
conditional on the same number of randomly sampled GO BP 
nodes with similar size. The error bars stand for the standard deviation 
of the corresponding quantities.
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Pathways of global genome nuclear excision repair (GG-NER) and transcription-coupled nuclear excision repair (TC-NER)Figure 5
Pathways of global genome nuclear excision repair (GG-NER) and transcription-coupled nuclear excision repair (TC-NER). Cancer 
genes involved in the two subpathways as documented in 'cancer gene census' are marked by red stars. In GG-NER, damage, such as ultraviolet-induced 
cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4 PP), is recognized by proteins, including the XPE (DDB2) and XPC gene products. In TC-
NER, the lesion appears to block the progress of RNA polymerase II in a process involving the CSA and CSB gene products. Following initial damage 
recognition, the two subpathways converge. The XPB (ERCC3) and XPD (ERCC2) helicases unwind the region surrounding the lesion, along with the XPA 
and XPG (ERCC5) gene products and replication protein A (RPA). (The graph was obtained from the KEGG Pathway database [52], and only part of it is 
shown here.)
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'new' CAN-processes by the Wood's study. To be more spe-
cific, while the majority of cancer genes in 'cancer-gene cen-
sus' were detected from liquid tumors such as leukemias and
lymphomas, those in Wood's dataset were identified from
colorectal and breast tumors, which are normally solid
tumors. In solid tumors, precursor cells must become mobile
and invasive in order to become malignant. Consequently,
some 'new' CAN-processes might be 'overlooked' because
their disruption is not required in liquid tumors since their
precursor cells are already mobile and invasive [18]. Alterna-
tively, but not exclusively, some CAN-processes might be
newly discovered as a consequence of the advantages of the
systematic sequencing strategy of cancer genomes, which
could be more unbiased and comprehensive than traditional
cloning techniques. It is also possible that some 'new' CAN-
processes were prioritized simply because of the incomplete
annotation of GO, and those cancer genes involved in the
'new' CAN-processes might later be found to function in some
'old' CAN-processes.

Cytoskeletal anchoring and lipid transport are two examples
of such potentially 'new' CAN-processes prioritized in the
Wood's dataset by the BN model. None of the genes associ-
ated with the two GO BPs has been documented as cancer
genes in 'cancer gene census'. Their potential roles in tumor-
igenesis or metastasis are discussed below. These findings
might give insight into further study and treatment of human
cancers.

Cytoskeletal anchoring
The involvement of cytoskeletal anchoring in cancer develop-
ment is not unexpected, especially considering that it func-
tions as a direct or indirect connection between two groups of
cancer-related molecules, for example, transmembrane or
membrane-associated proteins and cytoskeletal filaments,
both of which are actively involved in signaling transduction,
cell-cell adhesion, and other cancer-related biological proc-
esses. For example, FLNB and TLN1 are two cytoskeletal
anchoring genes detected in Wood's dataset. Both of them
have been detected to interact with integrins [34], a family of
transmembrane receptor proteins whose key roles in tumor
growth and metastasis have been explored over a long history
[35]. Thus, it is speculated that malfunction of FLNB or TLN1
could contribute to cancer development by disrupting or
improperly activating the functions of integrins or integrin-
related signaling pathways. A similar example is SHANK1;
SHANK1 has been observed to interact with Somatostatin
receptor 2 [36], which was shown to be able to sensitize
human cancer cells to death by ligand-induced apoptosis
[37].

Lipid transport
Compared to cytoskeletal anchoring, the roles of lipid trans-
port in cancers are more complicated. On the one hand, in
rapidly dividing cancer cells, the availability of cholesterol is
essential for proliferation and progression of the cancer [38].
On the other hand, lipid transport might directly or indirectly
coordinate with many signaling pathways that control cell
birth and death. For example, given that both high-density
and low-density lipoprotein receptors (or receptor-related
proteins) were found to regulate proliferation or survival of
cancer cells [39,40], it is not surprising to find HDLBP and
SORL1 in Wood's dataset. The former is a high-density lipo-
protein binding protein, and the latter has been detected to
interact with a low-density lipoprotein receptor-related pro-
tein-associated protein 1 (LRPAP1) [41]. Moreover, a number
of lipid transporters like ATP-binding cassette (ABC) trans-
porters have been implicated in tumor cell resistance to anti-
cancer therapy [42]. ABCA1 in Wood's dataset might be one
such example [43].

Conclusion
In this paper, we attempt to decode phenotypic effects caused
by genetic perturbation through known functional modules.
By decoding gene lethality through protein complexes and
investigating the conservation of gene lethality across differ-
ent species in the context of lethal and non-lethal protein
complexes, we provide evolutionary evidence supporting the
modular nature of lethality. Based on human cancer genes,
we prioritized many biological processes causally implicated
in cancers, which are consistent with previous knowledge. We
also identified some 'new' biological processes whose roles in
cancer development are less well understood: cytoskeletal
anchoring and lipid transport.

The ROC curve, AUC and pAUC.2 of 100-fold cross-validation in predicting cancer genes using GO BPsFigure 6
The ROC curve, AUC and pAUC.2 of 100-fold cross-validation in 
predicting cancer genes using GO BPs. BN represents the Bayesian 
network model, and LM represents the local Bayesian model.
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Motivated by the overlapping structure of functional modules
in biological systems, we provide a global strategy to distin-
guish functional modules that are most likely to be actual
causal modules from a large number of other 'overlapping
modules' whose only relatedness with the phenotypes most
likely results from the sharing of gene members with the
causal modules. Local strategies, such as the HG enrichment
test, ignores overlapping structures among modules and is
thus less effective in distinguishing actual causal modules
from the 'overlapping modules'. In contrast, the BN model fil-
ters out 'overlapping modules,' which generates a more accu-
rate list of causal modules. Compared to either the HG
enrichment test, or the LM model, in the case of prediction of
gene lethality, the results consistently show that the modules
prioritized by the BN model are better representatives of the
actual causal modules, even though it can never be ascer-
tained whether or not the modules prioritized by the global

strategy are, indeed, true causal modules in the absence of
any direct biological benchmark.

In summary, our results indicate that modularity, which is
believed by investigators to be a true property of biological
systems, can be applied to the interpretation of phenotypic
variations from perturbations in genetic variation. This might
shed light on the study of more complicated phenotypes, such
as human disease. With proper modeling, the global strategy
could potentially be applied to a variety of fields. For example,
it might be interesting to see how it helps identify differen-
tially expressed gene sets in microarray data analysis. More
importantly, a module-based prediction strategy will benefit
the study of human diseases by transferring phenotypic data
learned from other organisms to human beings. This has sig-
nificant implications for the treatment of human cancers.

Table 2

Top GO CAN-processes ranked by the BN model or the HG enrichment test based on cancer genes from systematic sequencing of 
colorectal and breast cancer genomes

GO CAN-processes prioritized by the BN model GO CAN-processes prioritized by the HG enrichment test

GO CAN-process Total gene number Cancer gene number GO CAN-process Total gene number Cancer gene number

GO:0007016 cytoskeletal 
anchoring

10 3 GO:0007155 cell adhesion 689 34

GO:0030198 extracellular 
matrix organization and 
biogenesis

27 6 GO:0022610 biological 
adhesion

689 34

GO:0007185 transmembrane 
receptor protein tyrosine 
phosphatase signaling 
pathway

6 2 GO:0016043 cellular 
component organization 
and biogenesis

2,325 66

GO:0007155 cell adhesion 689 34 GO:0030198 extracellular 
matrix organization and 
biogenesis

27 6

GO:0007605 sensory 
perception of sound

116 9 GO:0048856 anatomical 
structure development

1,537 47

GO:0051318 G1 phase 18 2 GO:0007275 multicellular 
organismal development

1,797 52

GO:0006869 lipid transport 100 6 GO:0048731 system 
development

1,196 38

GO:0009112 nucleobase 
metabolic process

16 2 GO:0007519 striated 
muscle development

62 7

GO:0045661 regulation of 
myoblast differentiation

6 2 GO:0007605 sensory 
perception of sound

116 9

GO:0042593 glucose 
homeostasis

11 2 GO:0050954 sensory 
perception of mechanical 
stimulus

116 9

GO:0043534 blood vessel 
endothelial cell migration

6 2 GO:0016337 cell-cell 
adhesion

239 13

GO:0007183 SMAD protein 
complex assembly

4 2 GO:0032501 multicellular 
organismal process

3,128 73

GO:0060070 Wnt receptor 
signaling pathway through 
beta-catenin

5 2 GO:0007167 enzyme 
linked receptor protein 
signaling pathway

245 13

Median number 11 2 Median number 689 34
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Materials and methods
Bayesian network model
In this section, we explain the BN model we used to prioritize
functional modules mediating genetic variation and its phe-
notypic effects. For illustration, we take single gene deletion,
lethality and protein complexes as examples of the genetic
perturbation, the phenotypic effect and the candidate func-
tional modules, respectively. Figure 7 gives an example of the
Bayesian network and the details are as follow.

G: a set of genes whose lethality is known; in Figure 7,

G = {g1, g2 ... g5}: a set of known protein complexes; in Figure
7,

M = {m1, m2, m3}.

AGM = { |gi ∈ G, mj ∈ M}: is the association matrix

between genes and complexes.

 = 1 if protein complex mj contains protein product of

gene gi, and 0 otherwise. In Figure 7, .

LG = { |gi ∈ G}: is the lethality of each gene that is observed

from genome-wide knockout experiments.  = 1 if deletion

of gene gi leads to inviable phenotype and 0 otherwise. In Fig-

ure 7, .

LM = { |mj ∈ M}: is the unknown lethality of each protein

complex.  = 1 if inactivation of protein complex mj leads

to inviable phenotype, and 0 otherwise. We refer to those pro-

tein complexes with  = 1 as lethal protein complexes,

which are the causal protein complexes mediating the gene

knockout and observed inviable phenotype. In Figure 7,

Ag mi j

Ag mi j

AGM =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1 0 0

1 1 0

0 1 0

0 1 1

0 0 1

lgi

lgi

L l l lG g g g= { }1 2 5
, ...

lm j

lm j

lm j

An example of the Bayesian networkFigure 7

An example of the Bayesian network. In this network, lethality of deletion of gene gi, denoted as , is determined by lethality of the complex-

specific inactivation of its protein products, denoted as , which in turn is determined by lethality of inactivation of protein complex mj, denoted as 

.

m1l m2l m3l
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Genome Biology 2008, 9:R174



http://genomebiology.com/2008/9/12/R174 Genome Biology 2008,     Volume 9, Issue 12, Article R174       Wang et al. R174.15
. According to the module-based

explanation of lethality, the lethality observed in gene dele-

tion is determined by the lethality of the associated protein

complex(es); thus, as shown in Figure 7, there is an edge

pointing from  and , where  = 1.

As discussed in the introduction, inference of LM from the

observed LG becomes difficult when the protein products of

gene gi participate in more than one protein complex. For

example, in Figure 1, protein products of g2 participate in

both protein complexes m1 and m2. If  = 1, it is possible

that  = 1 or  = 1 or both. In principle, such a problem

could be solved by carrying out complex-specific protein inac-

tivation experiments, that is, by designing a complex-specific

antibody that 'knocks down' protein products of gene g2 in

protein complex m1 while keeping protein products of gene g2

in protein complex m2 unchanged, and vice versa. The invia-

ble or viable phenotypes observed in such complex-specific

protein inactivation experiments could reflect the lethality of

protein complexes more directly. Motivated by this, we intro-

duce a set of hidden variables that denote the outcome of

complex-specific protein inactivation experiments and func-

tion as bridges between LM and LG.

: are the hidden

lethality data for each complex-specific protein inactivation

experiment.  = 1 if inactivation of protein products of

gene gi that participates in protein complex mj (while keeping

other protein complexes active) leads to inviable phenotype,

and 0 otherwise. In Figure 7,

.

The following explains the causality relationship among the
three sets of variables and derives the conditional probability
tables for the Bayesian network.

In reality, when gene gi is knocked out from the genome, all of

its protein products are knocked out and hence inactivated.

Thus, obviously, deletion of gene gi will lead to an inviable

phenotype if one complex-specific inactivation of its protein

products leads to an inviable phenotype. However, even when

no such complex-specific inactivation leads to an inviable

phenotype, there is still a possibility that the deletion of gene

gi will lead to an inviable phenotype. One possibility is that

there are agonistic interactions among protein products of

gene gi that participate in different protein complexes such

that simultaneous inactivation of them, which is the case in

deletion of gene gi, leads to an inviable phenotype. Other pos-

sible explanations may include protein products of gene gi

possibly acting in certain lethal modules that are not included

in our dataset of candidate modules. For simplicity, we refer

to all those other events or effects that cause an inviable phe-

notype, besides those reflected by complex-specific protein

inactivation, as 'other effects' in our paper and assign them

probability Pother. According to the above arguments, the con-

ditional probability table for each  ∈ LG can be derived as

follows:

Not all members in a complex are equally important.

Although individual inactivation of some members of a pro-

tein complex will cause that protein complex to 'break down'

or lose its function, individual inactivation of others might

not. Functional redundancy within protein complexes might

be one of many possible reasons. Thus, even for a lethal pro-

tein complex, inactivation of certain members might not lead

to an inviable phenotype. To accommodate such phenomena,

we assign a lethal probability to each protein complex mj,

denoted as , representing the probability that individ-

ual inactivation of its members will lead to an inviable pheno-

type. Needless to say, the lethality probability will be zero for

nonessential protein complexes. Thus, conditional probabil-

ity tables for each  ∈ lGM can be expressed as:

Inference of module lethality given gene lethality
Our goal is to infer each variable in LM in the above Bayesian

network, given the observed values in LG and the known net-

work structure. Since there are other unknown variables LGM

and unknown parameters  (the parameter

Pother is set to be a fixed value for simplicity), we employed an

expectation-maximization strategy with details given below.

Initiate each mj ∈ M
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E-step: estimate each variable in the set of LGM and LM by
Gibbs sampling [44], denoted as

M-step: calculate the maximum likelihood estimation of each

parameter  as the following:

Prediction of gene lethality through cross-validation
In the prediction of gene lethality through cross-validation,

we randomly chose part of the gene lethality data (training

data) as known to estimate the parameters

 of the BN model and to infer the probabil-

ity of being lethal for each module  by

the above expectation-maximization strategy. The estimation

results were used to infer the probability of being lethal for

the remaining genes (testing data) by the following formula:

Local Bayesian model
As a comparison to the BN model, we also employed the LM
model to infer the module lethality given gene lethality. The
LM model differs from the BN model only in that only the
subnetwork for a candidate module is considered as if none of
its components participate in other modules (shown by
dashed lines in Figure 7). Thus, formula 1 in the BN model has
been simplified to the following:

Formula 2 remains the same for the LM model.

Data sources
We first applied our BN model to the gene lethality data in S.
cerevisiae. These data were obtained from a genome-wide
gene deletion study [2], where, out of a total of 5,916 genes
deleted, 18.7% (1,105) are essential for growth on rich glucose
medium. In order to analyze the conservation mode of gene
lethality across different species, the lethality data in C. ele-
gans and D. melanogaster were obtained from two genome-
wide RNA interference experiments [4,21]. The ortholog
mapping data were downloaded from the Inparanoid data-
base [45].

Protein complexes were treated as one type of functional
module in the case of gene lethality. Both curated and HTP
protein complex data were used in our analysis. The manually
curated protein complex dataset was downloaded from the
ScISIC dataset in the Bioconductor [46] R package ScISI (ver-
sion 1.10.0). A detailed description can be found in [47]. It
consists of protein complexes derived from small scale exper-
iments that have been curated by GO or MIPS, and other
manually curated protein complexes obtained from IntAct
[48]. In total, the dataset consists of 390 protein complexes,
including 582 lethal genes and 794 non-lethal genes. The high
throughput (HTP) protein complex data were obtained from
a recent large-scale AP-MS (affinity purification followed by
mass spectrometry) experiment [49]. It consists of 491 pro-
tein complexes, including 577 lethal genes and 828 non-lethal
genes.

For more broadly defined functional modules, we used GO
BPs [16]. The data were downloaded from the YEASTGO
dataset in the Bioconductor [46] annotation package YEAST
(version 2.0.1) and processed with the package GOstats [27].
It was further processed such that, if one gene belonged to a
GO node, it would be included in all of its ancestor nodes. In
total, the dataset contains 2,200 GO BPs, including 1,031
lethal genes and 4,223 non-lethal genes.

We then applied our strategy to prioritize biological processes
causally implicated in human cancers. We downloaded and
retrieved GO annotations for human genes from the NCBI
website [50]. The data were further processed in a manner
similar to that for S. cerevisiae. In total, there are 14,371
human genes involved in 4,644 biological processes. Two
datasets of cancer genes were considered. The first dataset
was downloaded from the 'cancer-gene census' database, a
curated cancer gene database assembled from previous stud-
ies [19]. The second dataset was obtained from systematic
sequencing of colorectal and breast cancer genomes for
somatic mutations [20]. In this dataset, the somatic muta-
tions found in cancers were classified into either 'drivers' or
'passengers' [51] according to authors' criteria. Driver muta-
tions are causally involved in the neoplastic process and are
positively selected during tumorigenesis. Passenger muta-
tions provide no positive or negative selective advantage to
the tumor, but they are retained by chance during repeated
rounds of cell division and clonal expansion. In the second
dataset, only candidate cancer genes that are most likely to be
drivers according to authors' criteria [20] are considered in
our analysis. After mapping to the GO BPs, there are a total of
331 and 225 cancer genes in the two datasets, respectively.

Abbreviations
AUC: area under the ROC curve; BN: Bayesian network; BP:
biological process; CAN-processes: biological processes caus-
ally implicated in cancers; GG-NER: global genome NER;
GO: Gene Ontology; HG: hypergeometric; LGLC: lethal gene
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whose protein product has been involved in certain lethal
protein complexes; LGNLC: lethal gene whose protein prod-
uct has not been involved in any lethal protein complexes;
LM: local Bayesian model; NER: nuclear excision repair;
NLGLC: non-lethal gene whose protein product has been
involved in certain lethal protein complexes; NLGNLC: non-
lethal gene whose protein product has not been involved in
any lethal protein complexes; pAUC: partial AUC; ROC:
receiver operating characteristic; TC-NER: transcription-
coupled NER.
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The following additional data are available with the online
version of this paper. Additional data file 1 provides a descrip-
tion of the simulation study, Table S1, and Figures S1 and S2.
Additional data file 2 is a figure plotting the 27 GO CAN-proc-
esses prioritized by the BN model (yellow) and their offspring
and ancestor nodes (blue). The nodes with red circles repre-
sent 23 out of 27 GO CAN-processes prioritized by the HG
enrichment test. The size of the nodes is proportional to the
minus log p-value of the HG enrichment test for the cancer
genes. Those nodes with size zero are insignificant nodes by
HG enrichment test (P-value > 0.05).
Additional data file 1Description of the simulation study, Table S1, and Figures S1 and S2Table S1: 94 curated lethal protein complexes identified by the BN model. The complex ID starting with 'GO', 'MIPS' and 'EBI' repre-sents GO, MIPS and Intact ID, respectively. Total # denotes the total number of genes whose lethality is known. Lethal # denotes the number of genes that are lethal. Figure S1: genes in S. cerevisiae are classified into four groups according to their lethality and the lethality of protein complexes to which they belong. Within each group, the pie chart represents the distribution of genes with respect to the lethality of their orthologs in D. melanogaster. The lethal protein complexes were identified as in Figure 1b. Figure S2: simulation results. The performance of the BN model and the HG method in identifying lethal complexes given different degrees of overlap among protein complexes and different distributions of the proportion of lethal genes in a lethal complex.Click here for fileAdditional data file 2The 27 GO CAN-processes prioritized by the BN model and their offspring and ancestor nodesThe 27 GO CAN-processes prioritized by the BN model (yellow) and their offspring and ancestor nodes (blue). The nodes with red circles represent 23 out of 27 GO CAN-processes prioritized by the HG enrichment test. The size of the nodes is proportional to the minus log p-value of the HG enrichment test for the cancer genes. Those nodes with size zero are insignificant nodes by the HG enrichment test (p-value > 0.05).Click here for file
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