
Genome BBiioollooggyy  2008, 99::328

Meeting report
CCoommppuuttaattiioonnaall  mmooddeellss  iinn  ssyysstteemmss  bbiioollooggyy
Laurence Loewe* and Jane Hillston†

Addresses: *Centre for Systems Biology at Edinburgh, School of Biological Sciences, The University of Edinburgh, Kings Buildings, Mayfield
Road, Edinburgh EH9 3JU, Scotland, UK. †Laboratory for the Foundations of Computer Science, School of Informatics, The University of
Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK.

Correspondence: Laurence Loewe. Email: Laurence.Loewe@ed.ac.uk

Published: 10 December 2008

Genome BBiioollooggyy 2008, 99::328 (doi:10.1186/gb-2008-9-12-328)

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2008/9/12/328

© 2008 BioMed Central Ltd 

A report of the 6th International Conference on Compu-
tational Methods in Systems Biology, Rostock, Germany,
12-15 October 2008.

One of the chief goals of systems biology is to build

mechanistic mathematical models of biological systems to

further the understanding of biological detail. Such models

often aim at predicting the outcome of potentially interest-

ing biological experiments, and if such predictions are con-

firmed by wet-lab observations, an important step forward is

made. How exactly such models are constructed and how

predictions are computed were at the core of a recent

conference on Computational Methods in Systems Biology

that brought 80 participants to Rostock, Germany (for con-

ference proceedings see volume 5307 of Lecture Notes in Bio-

informatics [http://dx.doi.org/10.1007/978-3-540-88562-7]).

A simplistic approach to model construction might be to

capture everything that is known about a system and

simulate it in supercomputers. While this is appropriate for

some systems, it is impossible or highly impracticable for

many others. This is mostly due to the complexity of bio-

logical systems, which demand simplification to make them

amenable to modeling. Such simplifications have to capture

the essence of the processes of interest, while neglecting as

many of the less important details as possible. Thus, one can

consider model building in systems biology as the art of

building caricatures of life: capture the essence, ignore the rest.

CCoonnssttrruuccttiinngg  ssyysstteemmss  bbiioollooggyy  mmooddeellss
Two formalisms called process algebras and Petri nets offer

alternative ways of constructing computational systems

biology models. Both are concerned with how to specify

(mostly quantitative) models of molecular reaction networks

in an abstract way that is independent of particular mathe-

matical techniques of analysis. Access to techniques such as

differential equations or stochastic simulations is then

facilitated automatically by software tools that translate the

abstract model into a concrete model that is ready for

computation. The advantage of this approach is that one

needs to describe the model only once in order to access a

variety of analytical techniques, which reduces implemen-

tation time and errors.

Corrado Priami (COSBI, Trento University, Italy) gave an

overview of the development of the new BlenX programming

language, which is based on a process algebraic core, and

can be used for modeling biochemical reaction networks that

change their topology over evolutionary time. It aims to be

more accessible to biologists than process algebras and is

supported by a range of software tools. Process algebras rely

on abstract formal (textual) notations that describe a bio-

chemical network as a concurrent system, using approaches

that were first developed to describe communicating

processes in computer science (a concurrent system consists

of a number of entities all of which can act simultaneously).

The stochastic pi calculus is another process algebra widely

used for modeling cellular systems. Andrew Phillips (Micro-

soft Research, Cambridge, UK), described a visualizer he has

developed to facilitate the understanding of stochastic pi

calculus models. He has applied this to the modeling of actin

polymerization. Matthias John (University of Rostock,

Germany) presented the attributed pi calculus, an extension

of the pi calculus that is parameterized with a special lan-

guage for the definition of the characteristics of interest. In

this approach, developed by Uhrmacher’s group in Rostock,

‘attributes’ capture additional information about the entities

being represented and allow the simulation models derived

to be more faithful to biological reality. This approach can be

used to model the phototaxis of Euglena. Marek Kwiatkowski



(University of Edinburgh, UK) introduced the continuous pi

calculus, which he has been developing. It provides a means of

describing a biological system as a set of ordinary differential

equations and has been applied to a circadian clock.

One of us (JH) gave an overview of Bio-PEPA, a stochastic

process algebra newly developed by Hillston’s group that is

designed for analyzing biochemical networks using a wide

range of mathematical techniques. It has been applied to a

number of biochemical pathways, including cyclin

regulation in the cell cycle.

Like process algebras, Petri nets also describe a biochemical

network as a concurrent system, but primarily use graphical

diagrams (‘nets’) to represent it. They support the abstract

theory behind applied methods such as flux-balance analy-

sis, and feature particularly well developed structural

analysis techniques, which give insight into how the topology

of the network influences the behavior.

Michael Pedersen (University of Edinburgh, UK) introduced

compositional definitions of minimal flows in Petri nets and

applied them to examples in the Petri-net-based ‘Calculus of

Biochemical Systems’. Being able to carry out analyses in a

compositional way allows much larger models to be handled

efficiently. Annegret Wagler (University of Magdeburg, Ger-

many) presented a combinatorial approach to reconstruct all

possible Petri nets that could explain a given set of experi-

mental data. Such work is important as it underlies the

development of methods for understanding flows through

metabolic networks.

Nonlinear kinetic models are often excessively complex to

analyze and Hidde de Jong (INRIA, Grenoble, France)

presented one approach to make their qualitative analysis

easier. He described how on some occasions they can be

simplified to piecewise linear differential equation models.

This makes it much faster to compute an overview of all

possible outcomes, as linear differential equations are easy

to solve and a corresponding tool, the Genetic Network

Analyzer (GNA) [http://www-helix.inrialpes.fr/gna], is avail-

able online.

A method widely used in computational systems biology is

the stochastic simulation of molecular systems. Matthias

Jeschke (University of Rostock, Germany) has compared the

performance of various simulation algorithms and found

that the underlying data structures used to implement an

algorithm can have a substantial impact on computing time.

MMooddeell  cchheecckkiinngg
Model checking is an approach that evaluates a logical

expression against a model that describes the behavior of the

system. It is used extensively to check the properties of

computer systems and is now being applied to systems

biology. In a biological context, model checking might seek

to answer the question: ‘In the model, will the concentration

of a given metabolite exceed a certain value within a certain

time?’ With the aim of exploring how model checking could

be used to estimate parameters in simulation models,

Aurélien Rizk (INRIA, Rocquencourt, France) presented a

logic language that replaces the usual yes/no satisfaction of a

condition with a measure of how close the model is to

satisfying the condition. Rizk then relies on optimization

algorithms to find sets of parameters that minimize the

distance of the model to the formal condition on the basis of

observed data and assumed algorithms. It performed well on

a MAP kinase (MAPK) signal transduction model with 22

unknowns (examples of unknowns include reaction rates).

In an independent study with the same objective, David

Gilbert (Brunel University, London, UK) also estimated

parameters in a MAPK signal transduction model. The

genetic algorithm Gilbert uses for optimization is not as fast

as the algorithms employed by Rizk, but could have other

benefits, such as being less affected by local optima. It is too

early to assess how these two approaches compare, or to

advise on which should be adopted for a particular problem.

Future work will have to show how they will compare with

established statistical methods for parameter estimation

such as maximum likelihood or Bayesian approaches.

MMooddeelliinngg  iinn  tthhrreeee  ddiimmeennssiioonnss
Substantial advances were reported in building spatial

models of intracellular processes. Robert Murphy (Carnegie

Mellon University, Pittsburgh, USA) reviewed the work of

his group in developing automated methods for determining

the intracellular location of proteins tagged with green

fluorescent protein. Traditionally, this could only be done by

expert microscopic examination. Using image-recognition

and machine-learning techniques, it is now possible to

automate the task, while retaining a degree of certainty for

each identification. The accuracy of the automated system

can now match that of human experts if sufficient certainty

is demanded for a valid match. It is hoped that such work

will help with the automated construction of spatially more

explicit models of intracellular processes.

Such models might eventually be passed on to the

impressive E-Cell simulation machinery of Koichi Takahashi

(RIKEN, Yokohama, Japan), who presented a new, highly

efficient method for simulating Brownian dynamics in cells

and reviewed the spatial modeling approaches that are

supported by the E-Cell Project [http://www.e-cell.org].

PPrraaccttiiccaall  aapppplliiccaattiioonnss
Good quantitative models have practical applications. Dieter

Oesterhelt (Max Plank Institute of Biochemistry, Martins-

ried, Germany) demonstrated the down-to-earth potential of
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models in systems biology using examples from halophilic

archaea, including a simple mechanism for regulating the

flagellar motor in a way that guarantees an optimal response

of the cell to light. He also presented a flux-balance analysis

model with about 700 reactions that is capable of predicting

growth rates in response to the addition of 16 amino acids to

the growth medium. Nicolas Le Novère (European Bioinfor-

matics Institute, Cambridge, UK) presented models of

neurological signaling at multiple scales, where lower scales

are used to build helpful abstractions at higher scales. Such

models are designed to contribute towards understanding

dopamine biochemistry and can generate up to 10 terabytes

of data for simulating 1 second in the life of a synapse.

At a simpler level, Carolyn Talcott (SRI International, Menlo

Park, USA) presented an abstract model of the central

pattern generator located in the buccal ganglia of the marine

mollusc Aplysia, a long-time model organism for neuro-

biology. Her simple model considered only a small number

of discrete levels of excitation for each neuron but was able

to faithfully reproduce the predicted behavior of a more

detailed continuous, ordinary differential equation model.

Thus, instead of the continuous-state-space approach of

differential equations, a logic-based discrete-state-space

description of the system is used. This is conceptually much

simpler.

The future is likely to see many more mechanistically under-

stood models of actual biological systems that rely on

computational methods in systems biology for their

construction. The conference showed that there is the poten-

tial to greatly enhance our understanding of life if theoretical

computer scientists, practical programmers, theoretical

biologists and experimental biologists work closely together

in order to develop the tools that are needed for constructing

and analyzing systems biological models.
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