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Abstract

The explosive growth of genomic data provides an opportunity to make increased use of protein
markers for phylogenetic inference. We have developed an automated pipeline for phylogenomic
analysis (AMPHORA) that overcomes the existing bottlenecks limiting large-scale protein
phylogenetic inference. We demonstrated its high throughput capabilities and high quality results
by constructing a genome tree of 578 bacterial species and by assigning phylotypes to 18,607
protein markers identified in metagenomic data collected from the Sargasso Sea.

Background

Since the 1970s the use of small subunit (SSU) rRNA (SSU
rRNA) sequences has revolutionized microbial classification,
systematics, and ecology. The SSU rRNA gene has become the
most sequenced gene, with hundreds of thousands of its
sequences now deposited in public databases. It has become
the current 'gold standard' in microbial diversity studies, and
for good reasons. For one, it is present in all microbial organ-
isms. For another, the gene sequence is highly conserved at
both ends. This enables one to obtain nearly full-length SSU
rRNA gene sequences by polymerase chain reaction amplifi-
cation using 'universal' primers and without having to isolate
and culture the organism in question. Until very recently, the
vast majority of microbes were identified and classified only
by recovering and sequencing their SSU rRNA genes. This
single sequence of approximately 1.5 kilobases is often the
only information we have about the organism from which it
came - the only way we know that it exists in the natural
environment.

Although the SSU rRNA gene has been extremely valuable for
phylogenetic studies, it has its limitations. For example, it has

been well documented that evolutionarily distant SSU rRNA
genes that are similar in nucleotide composition have been
consistently - but nevertheless incorrectly - placed close
together in phylogenetic trees [1,2,1]. Furthermore, inferring
the phylogeny of organisms from any single gene carries some
risks and must be corroborated by the use of other phyloge-
netic markers. Many researchers turned to protein encoding
genes such as EF-Tu, rpoB, recA, and HSP70 [3]. Because
protein sequences are conserved at the amino acid level
instead of at the nucleotide level, phylogenetic analyses of
protein sequences are in general less prone to the nucleotide
compositional bias seen in SSU rRNA [2,4-6]. In addition, the
less constrained variation at the third codon position allows
these genes to be used in studies of more closely related
organisms. However, because of difficulties in cloning protein
encoding genes from diverse species, SSU rRNA remained the
gold standard.

The situation changed with the advent of genomic sequenc-
ing. Each complete genome sequence brings with it the
sequences for all protein encoding genes in that organism.
Now, not only can one build gene trees based on a favorite
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protein encoding gene, but also one has the option to concate-
nate multiple gene sequences to construct trees on the
'genome level'. Possessing more phylogenetic signals, such
'genome trees' or 'super-matrix trees' are less susceptible to
the stochastic errors than those built from a single gene [7].
Recent studies attempting to reconstruct the tree of life have
demonstrated the power of this approach [8,9] (for review
[10]). Likewise, genome trees have also been used success-
fully to reassess the phylogenetic positions of individual spe-
cies [11,12]. It is worth pointing out, however, that the
genome trees are still susceptible to systematic errors caused
by compositional biases, unrealistic evolutionary models, and
inadequate taxonomic sampling [7,13,14].

Despite its demonstrated usefulness, phylogenetic inference
based on protein markers has been limited in application,
mainly because of the formidable technical difficulties inher-
ent in this approach. Typically, molecular phylogenetic infer-
ence involves three steps: retrieval of homologous sequences,
creation of multiple sequence alignments, and phylogenetic
tree construction. Because only characters of common ances-
try can be used to infer the evolutionary history, the most crit-
ical step is sequence alignment, in which sequences are
overlaid horizontally on each other in such a way that, ideally,
each column in the alignment would only contain homolo-
gous characters (amino acids or nucleotides). To ensure this
positional homology, the alignments must be curated - a
process that evaluates the probable homology of each column
or position in the alignments.

Positions for which the assignment of homology is uncertain
are then excluded from further analysis by masking [15].
Judicious masking increases the signal-to-noise ratio and
often improves the discriminatory power of the phylogenetic
methods [16]. Unfortunately, curation requires skilled man-
ual intervention, thus making it impractical to process suita-
bly the massive amount of genome sequence data now
available. Frequently, masking is simply ignored. Automated
masking to remove alignment positions that contain gaps or
that have a low degree of conservation has not been satisfac-
tory. For example, using these criteria and given a set of ad
hoc parameters such as the minimum block length,
GBLOCKS automatically selects conserved blocks from mul-
tiple sequence alignments for phylogenetic analysis. How-
ever, trees constructed using GBLOCKS-treated alignments
have been found to have dramatically weaker support, possi-
bly because of excessive removal of informative sites by the
program [17]. In addition, although many programs are avail-
able to automate the creation of multiple sequence align-
ments, their use for the de novo alignment of a large protein
family is still fairly time consuming.

To overcome these problems, we have developed an auto-
mated pipeline for building concatenated genome trees using
multiple protein markers, thus making this powerful method
applicable on a larger scale. Our pipeline can rapidly and
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accurately generate highly reproducible multiple sequence
alignments for a set of selected phylogenetic markers. More
importantly, unlike previous automated methods [9] it can
mask the alignments with quality equivalent to that of cura-
tion by humans.

The same pipeline can also be applied to metagenomic data
analyses. In metagenomics or environmental genomics, nat-
ural populations of microbes are collected from the environ-
ment; their DNAs are cloned and directly sequenced. One
fundamental goal of metagenomics is to determine who is
present in the community and what they are doing. Phyloge-
netic analysis of markers present in these collected samples
can be very informative in revealing who is there. If the
marker happens to be part of a larger assembled sequence
fragment, then the entire fragment can be anchored by that
marker to a specific taxonomic clade. In this way, environ-
mental shotgun sequences can be sorted into taxon-specific
'bins' in silico, thereby allowing us to determine who is doing
what.

The most striking finding to date from this approach was the
discovery of a proteorhodopsin gene in bacteria, a homolog of
the bacteriorhodopsin gene previously found only in some
archaea. In this case, the gene could be anchored within the
bacteria because it was found to be associated with a bacterial
SSU rRNA gene [18]. However, because the SSU rRNA gene
constitutes only a tiny fraction of any genome, the probability
that any given sequence fragment can be anchored to a spe-
cific taxonomic clade by using this one gene is small. Thus,
phylotyping of metagenomic data can greatly benefit from the
use of alternative phylogenetic markers such as the multiple
protein markers described below.

In this paper, we introduce AMPHORA (a pipeline for Auto-
Mated PHylogenOmic infeRence) and demonstrate two sig-
nificant applications: building a genome tree from 578
complete bacterial genomes that are available at the time of
the study and identifying bacterial phylotypes from metagen-
omic data collected from the Sargasso Sea.

Results and discussion

The AMPHORA pipeline

Introduction

With the rapid increase in available genomic sequence data,
there is an ever-urgent need for automated phylogenetic anal-
yses using protein sequences. However, automation is fre-
quently accompanied by reduced quality. We introduce here
a fully automated method that is not only fast but also is of
high quality. The main components of our approach are
shown in Figure 1, and their implementation is described in
detail in the Material and methods section (below). Designed
to align and trim protein sequences rapidly, reliably, and
reproducibly, AMPHORA eliminates one of the tightest bot-
tlenecks in large-scale protein phylogenetic inference. It can
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A flowchart illustrating the major components of AMPHORA. The marker protein sequences from representative genomes are retrieved, aligned, and
masked. Profile hidden Markov models (HMMs) are then built from those 'seed' alignments. New sequences of interest are rapidly and accurately aligned
to the trusted seed alignments through HMMs. Predefined masks embedded within the 'seed' alignment are then applied to trim off regions of ambiguity
before phylogenetic inference. Alignment columns marked with 'l" or '0" were included or excluded, respectively, during further phylogenetic analysis.

be used for phylogenetic analyses of single genes or whole  Protein phylogenetic marker database

genomes.

The core of AMPHORA is a protein phylogenetic marker
database that contains curated protein sequence alignments
with trimming masks and corresponding profile hidden
Markov models (HMMs). Thirty-one protein encoding
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phylogenetic marker genes (dnaG, frr, infC, nusA, pgk, pyrG,
rplA, rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN,
rplP, rplS, rplT, rpmA, rpoB, rpsB, rpsC, rpsE, rpsl, rpsJ,
rpsK, rpsM, rpsS, smpB, and tsf) from representatives of
complete bacterial genomes were individually aligned using
CLUSTALW. The alignments were curated and trimming
masks were added manually by visually inspecting the align-
ments. We selected these proteins because they are univer-
sally distributed in bacteria; the vast majority of them exist as
single copy genes within each genome; and they are house-
keeping genes that are involved in information processing
(replication, transcription, and translation) or central metab-
olism, and thus are thought to be relatively recalcitrant to lat-
eral gene transfer [19].

High quality and highly reproducible sequence alignments
Molecular phylogenetic inference assumes common ancestry,
or homology, for every single column of a multiple sequence
alignment. When this assumption is violated, phylogenetic
signal can be obscured by noise. It has been shown that align-
ment quality can have greater impact on the final tree than
does the tree building method employed [20]. Therefore, pre-
paring high quality sequence alignments is a most critical part
of any molecular phylogenetic analysis. This preparation typ-
ically involves careful but tedious manual editing and trim-
ming of the generated alignments, and thus remains the
greatest challenge to automation. When scaling up this proc-
ess, the trimming step is often simply ignored. Automated
trimming based on the number of gaps in each column or
each column's conservation score can be used to select con-
served blocks, but this still is not satisfactory when a high
quality tree is required [17].

We overcame this problem by taking advantage of a unique
feature of profile HMM-based multiple sequence alignments.
When using HMMs to align sequences, new sequences can be
mapped back, residue by residue, onto the 'seed' alignment
from which that HMM originated. When the seed alignment
includes an accurate human curated mask, the newly gener-
ated alignments can be automatically trimmed accordingly,
thus producing high quality alignments without requiring
further human intervention. In addition, the HMM model is
the only variable in this automated alignment and trimming.
When the same model is used, the alignments generated
thereby are completely additive and reproducible, thus ena-
bling meaningful comparison of the results from different
phylogenetic studies or different researchers.

Speed

Another big advantage of using an HMM-based approach is
speed. For example, AMPHORA needs only 0.5 minutes on
an average desktop computer (Intel Pentium CPU 3.2 GHz) to
align 340 sequences of the rpoB family. In comparison, the
same job takes de novo pair-wise alignment methods such as
CLUSTALW and MUSCLE 120 and 12 minutes, respectively.
This is because our HMM-based method aligns sequences by

Genome Biology 2008,

Volume 9, Issue 10, Article RI51 Wou and Eisen

comparing them only once each to the HMM model. As a
result, the computational cost increases linearly with the
number of sequences to be aligned. In contrast, the computa-
tional cost of a pair-wise alignment approach increases poly-
nomially and can soon become prohibitively expensive.

Application I: Bacterial genome trees

Constructing a 'genome' tree

We downloaded 578 complete bacterial genomes available at
the time of our study from the National Center for Biotechnol-
ogy Information (NCBI) RefSeq collections (Additional data
file 1). Protein marker sequences for 31 proteins were
retrieved, aligned, trimmed, and concatenated as described in
the Materials and methods section (see below). This resulted
in a mega-alignment of 5,591 good amino acid positions (col-
umns) by 578 species (rows). A maximum likelihood genome
tree was constructed from this mega-alignment (Additional
data file 2). A bootstrapped maximum likelihood genome tree
of 310 representatives is shown in Figure 2.

As with trees built from SSU rRNA data, all of the major bac-
terial phyla are well separated into their own monophyletic
groups, even though the relationships among some of them
remain unclear. Strikingly, unlike the SSU rRNA tree, the
bushy area (intermediate levels) of our tree is highly resolved.
In the y-proteobacteria, for example, the nodes separating
taxa into different orders, families, and genera receive gener-
ally excellent bootstrapping support, whereas uncertainty is
high in the corresponding regions of the SSU rRNA tree
(Additional data file 3). Highly robust organismal phyloge-
nies of y-proteobacteria and a-proteobacteria have been
inferred previously using hundreds of commonly shared
genes [21,22] and are congruent to our genome tree. This
reflects the much-reduced stochastic noise present in the con-
catenated protein sequences compared with that of a single,
slowly evolving SSU rRNA gene. This uncertainty in the SSU
rRNA tree - the backbone of modern microbial systematics -
often prevents microbial taxonomists from placing new spe-
cies or genera within higher taxa, particularly at these inter-
mediate levels [23]. When such assignments were
nevertheless made for these problematic taxa, inconsistency
was introduced into the taxonomic nomenclature. For exam-
ple, taxa assigned to the orders Alteromondales, Pseudomon-
adales, and Oceanospirillales in Bergey's Taxonomic Outline
of Prokaryotes [23] are intermingled and paraphyletic in our
genome tree. It is our view that the taxonomy needs to be
revisited and possibly revised in such cases.

Genome-based microbial taxonomy

Although use of SSU rRNA was a landmark advancement in
molecular microbial systematics, genome sequences provide
an important alternative and complement [11,12]. Phyloge-
netic trees built from multiple genes are more robust in
resolving taxonomic relationships below the phylum level
and hence provide an excellent alternative phylogenetic
framework for microbial systematics. Until many more
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Figure 2

An unrooted maximum likelihood bacterial genome tree. The tree was constructed from concatenated protein sequence alignments derived from 31
housekeeping genes. All major phyla are separated into their monophyletic groups and are highlighted by color. The branches with bootstrap support of
over 80 (out of 100 replicates) are indicated with black dots. Although the relationships among the phyla are not strongly supported, those below the

phylum level show very respectable support. The radial tree was generated using iTOL [42].

genomes have been sequenced, however, a hybrid approach  full genome sequences can be placed by comparing their SSU

may be most fruitful. A genome tree built from sequenced  rRNA sequences with those of sequenced species.
genomes can be used as a scaffold; species for which we lack
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Average rate of protein evolution in bacterial genomes

The average rates of protein evolution are proportional to the
branch lengths of our genome tree. The branch length varies
widely among different lineages. For example, as has been
previously reported, bacteria that have adopted an intracellu-
lar lifestyle have, in general, evolved more rapidly [24], with
Wigglesworthia glossinidia (the endosymbiont of Glossina
brevipalpis) and Neorickettsia sennetsu str. Miyayama
evolving at the fastest pace. The slowest rates are found in a
group of spore forming bacteria such as Carboxydothermus
hydrogenoformans, Moorella thermoacetica, Clostridium
spp., and Bacillus spp. These slow rates are of particular
interest because it has been suggested that they might be
related to the longer generation times for organisms that
spend a significant fraction of their time as dormant spores.
Our data for spore forming bacteria are consistent with that
hypothesis and differ strikingly from the findings of a recent
study [25], which identified no generation time effect in these
organisms.

Application Il: metagenomic phylotyping

Reanalysis of the phylotypes reported in the Sargasso Sea

We used our automated pipeline to reanalyze the environ-
mental shotgun sequencing data collected from the Sargasso
Sea and phylotyped in a previous study [26]. The approxi-
mately 1.1 million predicted genes yielded a total of 18,607
genes that corresponded to our 31 protein markers and that
were long enough for phylogenetic analysis. Figure 3 illus-
trates the distribution of each of the 31 protein markers
among the major phylotypes. Our analysis identifies the a-
proteobacteria as the most abundant group, because more
than half of the marker sequences were assigned to this
group. Notably, the various individual protein markers
present remarkably consistent microbial diversity profiles,
thus suggesting that results for different markers may be
additive.

It was noted that SSU rRNA gives significantly different esti-
mates of microbial composition than those by protein mark-
ers [26]. This is believed to be caused by large variations in
rRNA gene copy numbers among different species. The pro-
tein markers used in our study are nearly all single-copy
genes and thus should, theoretically, give a more accurate
estimation of the microbial composition. One factor affecting
our analysis is that the peptides are based on assemblies
rather than sequence reads. Therefore, our method will
underestimate those organisms that have deep coverage in
assemblies. This is one major reason why depth of coverage
should be provided with metagenomics assemblies and
annotation.

Members of the a-proteobacterial SAR11 clade are the most
dominant micro-organisms in the Sargasso Sea [27]. At the
time of the Sargasso Sea metagenomics study, there were no
complete genome sequences available for members of the
SAR11 clade, and thus many of the SAR11 sequences could not
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be anchored. The genome of one SAR11 member, namely
Candidatus Pelagibacter ubique, was subsequently
sequenced, which allows for much finer phylotyping now. In
our phylotyping analyses, 8,656 marker sequences (46.5% of
the total) form outgroups to only P. ubique. We have assigned
them to the SAR11 clade because their closest neighbor in the
tree is P. ubique and their dominance in the population is
consistent with previous quantitative estimations by fluores-
ence in situ hybridization that, on average, members of the
SAR11 clade account for one-third of the ocean surface bacte-
rioplankton communities [27].

Strategically located reference genomes

The use of metagenomics to phylotype communities has been
limited by the lack of sequenced genomes from many taxo-
nomic groups. To help fill some of these gaps, we sequenced
representatives of several phyla for which genome sequences
were not previously available. For example, we recently
sequenced the genomes of Dictyoglomus thermophilum and
Thermomicrobium roseum as part of a US National Science
Foundation (NSF) funded 'Tree of life' project (Eisen JA and
coworkers, unpublished data). To demonstrate the usefulness
of these additional genomes for improved phylotyping, we
analyzed metagenomic data from a Yellowstone hot spring
community. From the 8,341 Sanger sequence reads obtained,
we identified 59 reads that match the marker sequences
present in our database. For 20 of these reads, their closest
neighbors by phylogenetic analysis are D. thermophilum or T.
roseum (ten reads each), thus demonstrating the usefulness
of these genomes for phylotyping their close relatives in the
Yellowstone community (see Additional data file 4 for one
such example). This highlights the need to increase taxo-
nomic sampling by selecting bacteria for sequencing based on
their phylogenetic positions.

Selecting reference sequences

For best phylotyping results, the more reference sequences
the better. Therefore, theoretically, the greater number of
marker sequences identifiable from a more comprehensive
database such as the NCBI nonredundant protein sequence
(nr) database would be preferable to the lesser number
obtainable from complete genomes. However, taxonomic
sampling bias of the reference sequences has a great impact
on the resulting phylotype assignments (see below). To be
able to make meaningful comparisons among the results
obtained using different markers, the taxonomic sampling
must be controlled. In this regard, a complete genome data-
base, in which every marker was sampled equally, would be
preferable to the NCBI nr database, in which each marker was
sampled to a different extent.

With very few exceptions such as gyrB [28], the protein
marker sequences with species information in the nr database
were mostly derived from genome sequencing projects. This
is because it is very difficult to obtain protein encoding genes
by polymerase chain reaction amplification because their
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Figure 3

Major phylotypes identified in Sargasso Sea metagenomic data. The metagenomic data previously obtained from the Sargasso Sea was reanalyzed using
AMPHORA and the 31| protein phylogenetic markers. The microbial diversity profiles obtained from individual markers are remarkably consistent. The
breakdown of the phylotyping assignments by markers and major taxonomic groups is listed in Additional data file 5.

sequences are not conserved at the nucleotide level [29]. As a
result, the nr database does not actually contain many more
protein marker sequences that can be used as references than
those available from complete genome sequences.

Comparison of phylogeny-based and similarity-based phylotyping

Although our phylogeny-based phylotyping is fully auto-
mated, it still requires many more steps than, and is slower
than, similarity based phylotyping methods such as a
MEGAN [30]. Is it worth the trouble? Similarity based phylo-
typing works by searching a query sequence against a refer-
ence database such as NCBI nr and deriving taxonomic
information from the best matches or 'hits'. When species
that are closely related to the query sequence exist in the ref-
erence database, similarity-based phylotyping can work well.
However, if the reference database is a biased sample or if it
contains no closely related species to the query, then the top
hits returned could be misleading [31]. Furthermore, similar-
ity-based methods require an arbitrary similarity cut-off

value to define the top hits. Because individual bacterial
genomes and proteins can evolve at very different rates, a uni-
versal cut-off that works under all conditions does not exist.
As a result, the final results can be very subjective.

In contrast, our tree-based bracketing algorithm places the
query sequence within the context of a phylogenetic tree and
only assigns it to a taxonomic level if that level has adequate
sampling (see Materials and methods [below] for details of
the algorithm). With the well sampled species Prochlorococ-
cus marinus, for example, our method can distinguish closely
related organisms and make taxonomic identifications at the
species level. Our reanalysis of the Sargasso Sea data placed
672 sequences (3.6% of the total) within a P. marinus clade.
On the other hand, for sparsely sampled clades such as
Aquifex, assignments will be made only at the phylum level.
Thus, our phylogeny-based analysis is less susceptible to data
sampling bias than a similarity based approach, and it makes
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Figure 4

Comparison of the phylotyping performance by AMPHORA and MEGAN. The sensitivity and specificity of the phylotyping methods were measured across
taxonomic ranks using simulated Sanger shotgun sequences of 3| genes from 100 representative bacterial genomes. The figure shows that AMPHORA

significantly outperforms MEGAN in sensitivity without sacrificing specificity.

sequence assignments only at the taxonomic levels that are
supported by the available data.

To compare quantitatively the performance of the phylogeny
based and the similarity based phylotyping, we carried out a
simulation study. We determined the sensitivity and specifi-
city of the taxonomic assignments made by AMPHORA and
MEGAN using 3,088 simulated shotgun sequences of 31 phy-
logenetic marker genes identified from 100 known bacterial
genomes as benchmarks. The 100 genomes were chosen in
such a way that maximizes their representation of the phylo-
genetic diversity and thus decreases the impact of the data
sampling bias of current genome sequencing efforts on our
results. Figure 4 compares the sensitivity and specificity of
the phylotyping assignments at the phylum, class, order, fam-
ily, and genus level using AMPHORA and MEGAN. The gen-
eral trend toward decreasing sensitivity seen in the figure
from the phylum to the species level simply reflects the fact
that the amount of reference data available for taxonomic
assignment is decreasing. However, AMPHORA significantly
outperformed MEGAN in sensitivity at all taxonomic ranks.
Both methods performed extremely well in specificity at all
levels (>0.97) except at the species level, where AMPHORA
(0.63) outperformed MEGAN (0.43) by a large margin.

Future issues

Additional markers

We are in the process of adding more proteins to our initial
database of 31 markers, including the commonly used protein
markers RecA, HSP70, and EF-Tu. Ideally, a probability
based method that evaluates the positional homology of the
multiple sequence alignment could be developed to automate
fully the process of masking. Major expansion will also
require systematic assessment of many other protein families
for their suitability as phylogenetic markers. For metagen-

omic phylotyping, the marker genes do not have to be single-
copy or universal, but they must have been reasonably well
sampled, have sufficient phylogenetic signal, and not be fre-
quently exchanged between distantly related lineages. Until
we learn more about the extent of lateral gene transfer in nat-
ural microbial communities, we caution against using every
protein sequence collected in metagenomics studies for
microbial diversity study.

More reference genomes

We have shown that adding representatives of novel phyla
can facilitate metagenomic phylotyping. More reference
genomes are needed for optimal performance. Although the
sequencing of thousands of microbial genomes is underway,
the organisms chosen are a biased sample and thus are not
truly representative of the total microbial diversity. We see a
need to select microbes systematically for sequencing based
mainly on their phylogenetic positions, thus maximizing their
value for comparative genomics and phylogenomic studies.

Conclusion

Currently, SSU rRNA is still the most powerful phylogenetic
marker because of the number of sequences available and the
scope of taxonomic coverage. However, the imminent arrival
of thousands of microbial genome sequences will vastly
expand the amount of data available for alternative protein
phylogenetic markers, thus presenting us with both a chal-
lenge and an opportunity. We have developed AMPHORA, a
fully automated method for phylogenetic inference using
multiple protein markers. AMPHORA offers speed, reliabil-
ity, and high quality analyses. By eliminating the need for
time consuming manual curation of sequence alignments, it
removes one of the tightest bottlenecks in large-scale protein
phylogenetic inference. We demonstrated its usefulness for
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automating both the construction of genome trees and the
assignment of phylotypes to environmental metagenomic
data. We believe such a phylogenomic approach will be
valuable in helping us to make sense of rapidly accumulating
microbial genomic data.

Materials and methods

Protein phylogenetic marker database

For each marker, we first identified their protein sequences
from representative bacterial genomes. The amino acid
sequences were aligned using CLUSTALW [32] and then
manually edited and masked using the GDE package [33].
The mask is a text string of '1' and '0', where reliably aligned
columns were labeled '1' and ambiguous columns were
labeled '0'. Next, we used HMMer [34] to make local profile
HMDMs from these 'seed' alignments (Figure 1).

Automated sequence alignment and trimming
Subsequent steps are carried out by a Perl script joining mul-
tiple automated processes (Figure 1). First, HMMer effi-
ciently aligns the query amino acid sequences onto the
trusted and fixed seed alignments. The Perl script then reads
the masks embedded in the seed alignments and automati-
cally trims the query alignments accordingly.

Bacterial genome tree construction

Homologs of each of the 31 phylogenetic marker genes were
identified from the 578 complete bacterial genomes by
BLASTP searches (using marker sequences of Escherichia
coli as query sequences and a cut-off E-value of 0.1) followed
by HMMer searches (cut-off E-value 1 x e10). The corre-
sponding protein sequences were retrieved, aligned, and
trimmed as described above, and then concatenated by spe-
cies into a mega-alignment. A maximum likelihood tree was
then constructed from the mega-alignment using PHYML
[35]. The model selected based on the likelihood ratio test was
the WAG model of amino acid substitution with y-distributed
rate variation (five categories) and a proportion of invariable
sites. The shape of the y-distribution and the proportion of the
invariable sites were estimated by the program.

To speed up bootstrapping analyses, very closely related taxa
were removed from the original mega-alignment, which left
us with 310 taxa. Maximum likelihood trees were made from
100 bootstrapped replicates of this reduced dataset using
PHYML with the same parameters described above.

With very few exceptions, the marker genes are single-copy
genes in all of the bacterial genomes analyzed. In those rare
cases in which two or more homologs were identified within a
single species, a tree-guided approach was used to resolve the
redundancy. If the redundancy resulted from a species-spe-
cific duplication event, then one homolog was randomly cho-
sen as the representative. In all other cases, to avoid potential
complications such as lateral gene transfer, we excluded that
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marker and treated it as 'missing’ in that particular genome.
It has been shown that as long as there is sufficient data, a few
'holes' in the dataset will not compromise the resulting tree
[36].

Phylotyping by phylogenetic analyses (AMPHORA)
The protein markers used to construct the bacterial genome
tree (see above) and the resultant genome tree were used as
the reference sequences and the reference tree for phylotyp-
ing metagenomic data from the Sargasso Sea or the simulated
sequences described below. Each marker sequence identified
from the metagenomic data or simulated sequences was indi-
vidually aligned to its corresponding reference sequences and
trimmed using the method described above. Then it was
inserted into the reference tree using a maximum parsimony
method of RAXML [37], constraining the topology of the tree
to that of the genome tree. This tree construction procedure
was extremely fast, and 100 bootstrap replicates were run for
each query sequence to assess the confidence of the branching
orders. The trees were rooted arbitrarily using Deinococcus
radiodurans as the outgroup. Tree branch lengths were cal-
culated using the neighbor joining algorithm with a fixed tree
topology.

A tree-based bracketing algorithm was then employed to
assign a phylotype to the query sequence (Figure 5), as fol-
lows. Starting from the immediate ancestor n, of the query
sequence and moving toward the root of the tree, the first
internal node n, whose bootstrap support exceeded a cut-off
(for example, 70%) was identified. The common NCBI taxon-
omy t, that was shared by all descendants of the node n, rep-
resented the most conservative taxonomic prediction for the
query sequence. Using the branch length information, finer
scale phylotyping was carried out by comparing the normal-
ized branch length from n, to n, with these between taxo-
nomic ranks that had been tallied from the bacterial genome
tree. Based on this comparison, a taxonomic rank below or
equal to t, was assigned to the node n,. The taxonomy of the
sister node of the query at this rank was then assigned to the
query. All tree branch lengths were normalized by dividing
them by the lengths of the root-to-tip branches of their partic-
ular lineages. This was done to make the tree more clock-like,
and therefore the branch lengths would be much more
informative in inferring the time of evolution. In the simula-
tion study, the query sequence itself was removed from the
reference dataset before the analyses.

Phylotyping by similarity-based analyses (MEGAN)

A total of 3,088 simulated phylogenetic marker gene
sequences described below were searched against a database
of complete bacterial genomes using BLASTX. The query
sequence itself was discarded from the BLAST hits before
feeding the BLAST results into the software MEGAN [30] for
similarity-based phylotyping. A top per cent cut-off of 20%
was used to retain only those hits whose matching scores are
at least 80% of the best matching score. This cut-off was
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Figure 5

A tree based bracketing algorithm for phylotyping a query sequence. To
assign a phylotype to the query sequence, its immediate ancestor nyand
the first internal node n, with >70% bootstrapping support were identified.
The known descendant leaf nodes of n|, namely A through D, are used to
infer the taxonomy of the query, in conjunction with the normalized
branch length information. The dashed timelines delimiting various
taxonomic ranks were inferred from a clock that had been calibrated from
the bacterial genome tree.

chosen to match the one used in a similar phylotyping simu-
lation study described in the original MEGAN report [30]. All
other parameters of MEGAN were set as default values except
that the min-support (the minimum number of sequence
reads that must be assigned to a taxon) is set to 1, because in
our simulation study each query sequence was assigned a
phylotype independently.

Phylotyping simulation study

To assess the performance of the phylotyping methods, a sim-
ulation study was carried out. One hundred representative
genomes maximizing the phylogenetic diversity of the 578
complete bacterial genomes were selected using the genome
tree and an algorithm described in the report by Steel [38].
From each of the 31 phylogenetic marker genes identified
from the 100 bacterial genomes, a DNA sequence fragment of
300 to 900 base pairs in length was randomly chosen, which
resulted in a total of 3,088 simulated shotgun sequences that
were used as benchmark query sequences in phylotyping
(some markers are missing in some of the genomes). By com-
paring the predicted taxa with the known taxa, the sensitivity
and specificity of phylotyping methods were calculated as
described in the report by Krause and coworkers [39]. Briefly,
for a taxon i, let P;be the number of query sequences from i,
TP;be the number of sequences that are correctly assigned to
1, and FP; be the number of sequences that are incorrectly
assigned to i. The sensitivity TP,/ P; measures the proportion
of query sequences that are correctly classified. The specifi-
city TP;/(TP; + FP;) measures the reliability of the phylotyping
assignments.

Genome Biology 2008,
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SSU rRNA tree construction

SSU rDNA sequences were extracted from complete
genomes, aligned, and trimmed using an online tool MyRDP
[40]. When multiple copies of SSU rRNA genes were present
within a single genome, one representative was randomly
chosen. Maximum likelihood tree was constructed using
PHYML [35], applying the GTR model of substitution, with a
y-distribution (a estimated by the program) of rates of five
categories of variable sites and a proportion of invariable sites
(proportion estimated by the program).

Availability
The AMPHORA package and the simulation study data can be
downloaded from [41].

Abbreviations

AMPHORA: AutoMated PHylogenOmic infeRence; HMM:
hidden Markov model; NCBI: National Center for Biotech-
nology Information; nr: nonredundant protein sequence;
SSU: small subunit NSF: US National Science Foundation.

Authors' contributions

MW designed the study, developed the method, and per-
formed the analyses. JAE advised on method design and test-
ing. MW and JAE wrote the paper.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing the
578 complete bacterial genomes downloaded from the NCBI
RefSeq database for this study. Additional data file 2 is a fig-
ure of a maximum likelihood genome tree of 578 bacterial
species; major taxonomic groups are highlighted by color.
Additional data file 3 provides a figure that compares y-pro-
teobacterial phylogenetic trees made from a super-matrix of
31 protein phylogenetic markers and from the SSU rDNA;
bootstrap support values are shown along their correspond-
ing branches. Additional data file 4 is a figure of a maximum
likelihood tree of rpoB; adding a novel genome (Thermomi-
crobium roseum) to the reference tree helped anchor a
sequence read (ZAVAM73TF) from a Yellowstone hotspring
metagenomic study. Additional data file 5 is a table listing
phylotypes breakdown of the Sargasso Sea metagenomic
sequence data by phylogenetic markers and major taxonomic
groups.

Acknowledgements

The initial development of this work was supported in part by NSF grant
DEB-0228651 to JAE. The final development and testing was funded by the
Gordon and Betty Moore Foundation (grant #1660 to JAE).

Genome Biology 2008, 9:R151

RI5I.10



http://genomebiology.com/2008/9/10/R151

References

20.

21.

22.

23.

24.

25.

Woese CR, Achenbach L, Rouviere P, Mandelco L: Archaeal phyl-
ogeny: reexamination of the phylogenetic position of Archae-
oglobus fulgidus in light of certain composition-induced
artifacts. Syst Appl Microbiol 1991, 14:364-371.

Hasegawa M, Hashimoto T: Ribosomal RNA trees misleading?
Nature 1993, 361:23.

Ludwig W, Klenk H-P: Overview: A phylogenetic backbone and
taxonomic framework for procaryotic systematics. In Bergey's
Manual of Systematic Bacteriology Volume |. 2nd edition. Edited by:
Boone DR, Castenholz RW, Garrity GM. New York, NY: Springer-
Verlag; 2000:49-65.

Loomis WF, Smith DW: Molecular phylogeny of Dictyostelium
discoideum by protein sequence comparison. Proc Natl Acad Sci
USA 1990, 87:9093-9097.

Lockhart P}, Howe CJ, Bryant DA, Beanland T}, Larkum AW: Substi-
tutional bias confounds inference of cyanelle origins from
sequence data. | Mol Evol 1992, 34:153-162.

Baldauf SL, Roger AJ, Wenk-Siefert |, Doolittle WF: A kingdom-
level phylogeny of eukaryotes based on combined protein
data. Science 2000, 290:972-977.

Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the
beginning of incongruence? Trends Genet 2006, 22:225-231.
Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope M]: Univer-
sal trees based on large combined protein sequence data
sets. Nat Genet 2001, 28:281-285.

Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P:
Toward automatic reconstruction of a highly resolved tree
of life. Science 2006, 311:1283-1287.

Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the
reconstruction of the tree of life. Nat Rev Genet 2005, 6:361-375.
Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson R|,
Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ,
Jones KM, Ulrich LE, Gonzalez JM, Zhulin 1B, Robb FT, Eisen JA: Life
in hot carbon monoxide: the complete genome sequence of
Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 2005,
l:e65.

Badger JH, Eisen JA, Ward NL: Genomic analysis of Hyphomonas
neptunium contradicts 16S rRNA gene-based phylogenetic
analysis: implications for the taxonomy of the orders 'Rhodo-
bacterales' and Caulobacterales. Int | Syst Evol Microbiol 2005,
55:1021-1026.

Brocchieri L: Phylogenetic inferences from molecular
sequences: review and critique. Theor Popul Biol 2001, 59:27-40.
Foster PG, Hickey DA: Compositional bias may affect both
DNA-based and protein-based phylogenetic
reconstructions. | Mol Evol 1999, 48:284-290.

Gatesy ], DeSalle R, Wheeler W: Alignment-ambiguous nucle-
otide sites and the exclusion of systematic data. Mol Phylogenet
Evol 1993, 2:152-157.

Eisen JA: Phylogenomics: improving functional predictions for
uncharacterized genes by evolutionary analysis. Genome Res
1998, 8:163-167.

Castresana J: Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol Biol Evol
2000, 17:540-552.

Béja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP,
Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN,
Delong EF: Bacterial rhodopsin: evidence for a new type of
phototrophy in the sea. Science 2000, 289:1902-1906.

Jain R, Rivera MC, Lake JA: Horizontal gene transfer among
genomes: the complexity hypothesis. Proc Natl Acad Sci USA
1999, 96:3801-3806.

Morrison DA, Ellis JT: Effects of nucleotide sequence alignment
on phylogeny estimation: a case study of 18S rDNAs of
apicomplexa. Mol Biol Evol 1997, 14:428-441.

Williams KP, Sobral BW, Dickerman AW: A robust species tree
for the alphaproteobacteria. | Bacteriol 2007, 189:4578-4586.
Lerat E, Daubin V, Moran NA: From gene trees to organismal
phylogeny in prokaryotes: the case of the gamma-proteo-
bacteria. PLoS Biol 2003, 1:EI9.

Taxonomic outline of the prokaryotes. [http://141.150.157.80/
bergeysoutline/main.htm]

Moran NA: Accelerated evolution and Muller's rachet in
endosymbiotic bacteria.  Proc Natl Acad Sci USA 1996,
93:2873-2878.

Maughan H: Rates of molecular evolution in bacteria are rela-

Genome Biology 2008,

26.

27.

28.

29.

30.

31

32.

33.

34.
35.

36.
37.

38.
39.

40.

41.

42.

Volume 9, Issue 10, Article RI51 Wou and Eisen

tively constant despite spore dormancy. Evolution 2007,
61:280-288.

Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen
JA, Wu D, Paulsen |, Nelson KE, Nelson W, Fouts DE, Levy S, Knap
AH, Lomas MW, Nealson K, White O, Peterson |, Hoffman J, Parsons
R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environ-
mental genome shotgun sequencing of the Sargasso Sea. Sci-
ence 2004, 304:66-74.

Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson
CA, Giovannoni S): SARI | clade dominates ocean surface bac-
terioplankton communities. Nature 2002, 420:806-810.

Kasai H, Watanabe K, Gasteiger E, Bairoch A, Isono K, Yamamoto S,
Harayama S: Construction of the gyrB database for the identi-
fication and classification of bacteria. Genome Inform Ser Work-
shop Genome Inform 1998, 9:13-21.

Santos SR, Ochman H: Identification and phylogenetic sorting
of bacterial lineages with universally conserved genes and
proteins. Environ Microbiol 2004, 6:754-759.

Huson DH, Auch AF, Qi |, Schuster SC: MEGAN analysis of
metagenomic data. Genome Res 2007, 17:377-386.

Koski LB, Golding GB: The closest BLAST hit is often not the
nearest neighbor. | Mol Evol 2001, 52:540-542.

Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM: The
genetic data environment: an expandable GUI for multiple
sequence analysis. Comput Appl Biosci 1994, 10:671-675.

Eddy SR: Profile hidden Markov models. Bioinformatics 1998,
14:755-763.

Guindon S, Gascuel O: A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood. Syst
Biol 2003, 52:696-704.

Wiens JJ: Missing data, incomplete taxa, and phylogenetic
accuracy. Syst Biol 2003, 52:528-538.

Stamatakis A: RAxXML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed
models. Bioinformatics 2006, 22:2688-2690.

Steel M: Phylogenetic diversity and the greedy algorithm. Syst
Biol 2005, 54:527-529.

Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer
F, Edwards RA, Stoye |: Phylogenetic classification of short envi-
ronmental DNA fragments. Nucleic Acids Res 2008,
36:2230-2239.

Cole JR, Chai B, Farris R}, Wang Q, Kulam SA, McGarrell DM, Garrity
GM, Tiedje JM: The Ribosomal Database Project (RDP-II):
sequences and tools for high-throughput rRNA analysis.
Nucleic Acids Res 2005, 33:D0294-D296.

AMPHORA [http://bobcat.genomecenter.ucdavis.edu/
AMPHORA]

Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online
tool for phylogenetic tree display and annotation. Bioinformat-
ics 2007, 23:127-128.

Genome Biology 2008, 9:R151

RISI.T1


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11540072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11540072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8421491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2251251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1556750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1556750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1556750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16490279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16490279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11431701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11431701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11431701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16513982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16513982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16513982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15861208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15861208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16311624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11243926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11243926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10093217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10093217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10093217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8025721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8025721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10988064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10988064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10097118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9100373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9100373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9100373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17483224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12975657
http://141.150.157.80/bergeysoutline/main.htm
http://141.150.157.80/bergeysoutline/main.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8610134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8610134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17348939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17348939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15186354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12857643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12857643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16051588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608200
http://bobcat.genomecenter.ucdavis.edu/AMPHORA
http://bobcat.genomecenter.ucdavis.edu/AMPHORA
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17050570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17050570

	Abstract
	Background
	Results and discussion
	The AMPHORA pipeline
	Introduction
	Protein phylogenetic marker database
	High quality and highly reproducible sequence alignments
	Speed

	Application I: Bacterial genome trees
	Constructing a 'genome' tree
	Genome-based microbial taxonomy
	Average rate of protein evolution in bacterial genomes

	Application II: metagenomic phylotyping
	Reanalysis of the phylotypes reported in the Sargasso Sea
	Strategically located reference genomes
	Selecting reference sequences
	Comparison of phylogeny-based and similarity-based phylotyping

	Future issues
	Additional markers
	More reference genomes


	Conclusion
	Materials and methods
	Protein phylogenetic marker database
	Automated sequence alignment and trimming
	Bacterial genome tree construction
	Phylotyping by phylogenetic analyses (AMPHORA)
	Phylotyping by similarity-based analyses (MEGAN)
	Phylotyping simulation study
	SSU rRNA tree construction

	Availability
	Abbreviations
	Authors' contributions
	Additional data files
	Acknowledgements
	References

