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Detecting regions with altered expression<p>A method is presented for identifying genomic regions with altered gene expression in gene expression maps.</p>

Abstract

Genomic regions with altered gene expression are a characteristic feature of cancer cells. We
present a novel method for identifying such regions in gene expression maps. This method is based
on total variation minimization, a classical signal restoration technique. In systematic evaluations,
we show that our method combines top-notch detection performance with an ability to delineate
relevant regions without excessive over-segmentation, making it a significant advance over existing
methods. Software (Rendersome) is provided.

Background
Alterations in gene expression patterns, resulting from
acquired genetic and epigenetic changes, are a characteristic
feature of cancer cells. Recently, several studies have shown
that the expression of a considerable fraction of genes located
in regions of gains or losses of chromosomal material varies
consistently with DNA copy number, leading to altered
(biased) gene expression in such regions [1-11]. Conversely,
additional studies suggest that gene expression biases
inferred from expression maps are either caused by underly-
ing genomic imbalances [12-17] or long-range epigenetic
mechanisms, including DNA methylation or histone modifi-
cation across large chromosomal regions [18,19]. Thus, the
analysis of microarray data from tumors with respect to alter-
ations in regional gene expression is potentially useful for
studying relationships between DNA copy number and gene
expression, mining pre-existing expression array data for
imbalanced chromosomal aberrations [20] or identifying

genomic regions that are susceptible to epigenetic change
[19].

A central problem associated with the identification of
genomic regions with biased gene expression is to partition
the expression map into contiguous regions that share the
same baseline expression level (bias) on average. This proc-
ess, called segmentation, serves to reconstruct (or restore or
de-noise) the underlying expression bias profile from the pri-
mary data, and to detect relevant regions and delineate their
boundaries. In principle, segmentation of expression maps is
analogous to reconstructing DNA copy number profiles from
array comparative genome hybridization (aCGH) or single
nucleotide polymorphism (SNP) arrays. However, additional
challenges are present that make the problem harder. First,
the genomic resolution of expression arrays is coarser, that is
there are fewer probes per chromosome. Second, the signal-
to-noise ratio (SNR) is lower, in the sense that the expression
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biases we aim to detect are moderate in comparison with the
intrinsic variability in gene expression. Third, the expression
of some genes may not be influenced by the underlying
genomic change. For example, copy number gains are
unlikely to increase the expression of genes whose necessary
transcriptional activators are absent.

In the present study, we describe an improved method for
detecting and delineating genomic regions with biased gene
expression in cancer. The proposed method differs from pre-
vious proposals in two important respects. First, the method
is based on total variation (TV) minimization, a classical
approach for recovering signals or images corrupted by noise
[21]. Second, whereas existing segmentation methods target
aCGH and SNP data, our method is optimized for expression
microarray data. We show how to adapt the TV minimization
technique for the segmentation of gene expression maps and
derive efficient algorithms for its computation. In systematic
evaluations, we show that segmentation by TV minimization
combines enhanced detection performance with an enhanced
ability to delineate relevant regions, making it a significant
advance over existing segmentation techniques. We also ver-
ify that our method is capable of identifying regions with
expected increases/decreases in the average level of gene
expression, in this case on the basis of known imbalanced
chromosomal aberrations in childhood acute lymphoblastic
leukemia (ALL). Finally, we provide a software package,
Rendersome, which is publicly available.

Results
Evaluation by simulation
We first performed a series of simulations, which were
designed to assess the ability of the proposed method to iden-
tify genomic regions with biased gene expression under vary-
ing conditions. As described in detail in Materials and
methods, we repeatedly simulated artificial 'chromosomes'
containing a centrally located biased region (a square wave
step), mixed with a randomly generated high-frequency sig-
nal corresponding to noise plus the intrinsic variability in
expression between genes (Figure 1). The type of expression
profiles generated by this model is controlled by four param-
eters: the length of the chromosome, the width of the biased
region in the center, the SNR and the proportion of genes (π)
that are not influenced by the underlying genomic alteration.
By varying these parameters, we could artificially recreate
gene expression maps with a wide variety of signal
characteristics.

To ensure comprehensive testing, we selected parameter
combinations from broad and relevant intervals (Materials
and methods). For each set of parameters, we generated a
series of artificial chromosomes and assessed the detection
performance, delineation performance and the visual per-
formance of the proposed method plus a control method. As
control methods, we considered CGHseg by Picard et al [22]
and DNAcopy by Olshen et al [23]. These methods have been
evaluated recently by extensive simulation and by application
to real data [24,25] and were found to compare favorably to

Simulation modelFigure 1
Simulation model. Blue solid: Original gene expression bias profile containing a centrally located region with increased expression. Black dotted: 
Corresponding gene scores, generated by mixing a high-frequency signal component into the original bias profile (details in Materials and methods). Left: 
Example signal generated with 40-probe step with SNR 2.0, and no non-influenced genes (π = 0.0). Right: Corresponding signal with a higher proportion of 
non-influenced genes (π = 0.3).
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other segmentation techniques. In particular, Lai et al [24]
noted that CGHseg, followed by DNAcopy, performed con-
sistently well for a broad range of conditions, including low
SNRs which is the most relevant case here. In agreement with
[24], we found CGHseg to perform better than, or on par with,
DNAcopy (data not shown). Hence, we selected a CGHseg as
a state-of-the-art method to compare our results with.

Detection performance
We first computed the receiver operating characteristics
(ROC) curves for each segmentation technique to assess the
detection performance (that is, the trade-off between sensi-
tivity and specificity for detecting relevant regions) in each
case. To generate ROC curves for specific combinations of
simulation parameters, we calculated the true positive rates
(TPRs) and false positive rates (FPRs) across 200 simulated
100-probe chromosomes as we varied the threshold for call-
ing probes relevant (Materials and methods). This approach
has been previously established as an appropriate way to eval-
uate segmentation methods [24,25].

As shown in Figure 2 and Additional file 1, the proposed
method exhibited considerably stronger ROC curves. The dif-
ference was present throughout, and was particularly pro-
nounced for low to intermediate SNRs (the most expression
data-like conditions). The proposed method also displayed
the best performance when the proportion of 'non-influenced
genes' was high. We conclude that the proposed algorithm
offers an improved trade-off between sensitivity and specifi-
city when determining aberration, especially under condi-
tions that are likely to apply in real gene expression maps.

Delineation performance
We next assessed the ability to delineate the boundaries of
relevant regions. To achieve this, we generated and seg-
mented 10,000 artificial chromosomes for each set of simula-
tion parameters. Based on the segmentation results across all
chromosomes, we computed the relative breakpoint fre-
quency at each chromosomal position. In doing this, we
obtain a set of 'breakpoint maps' that reveal how often, and
how precisely, a segmentation method identifies the true
breakpoints (Materials and methods).

As shown in Figure 3 and Additional file 2, the breakpoint dis-
tributions of the TV-based segmentation scheme stand out in
two important respects. First, the proposed algorithm yielded
higher histogram peaks at, or near, the true breakpoints (in
our case, the edges of the centrally located biased region).
Thus, given that the algorithm reports a breakpoint, the prob-
ability that it is located at, or near, a true breakpoint is higher.
Second, the breakpoint distributions of the proposed algo-
rithm display a markedly 'scooped' center, that is there is little
distributional mass (fewer breakpoints) inside the relevant
region.

Interestingly, this finding signifies that the TV-based scheme,
to a great extent, manages to avoid reporting false break-
points inside relevant regions. This improvement is a result of
the fact that the proposed method explicitly seeks to segment
relevant regions 'in one piece' (Materials and methods). The
differences in breakpoint distribution could be observed
throughout but were particularly pronounced for low and
intermediate SNRs (Additional file 2). We conclude that, in
addition to stronger ROC curves, the proposed algorithm
identifies the correct region breakpoints with higher proba-
bility and detects relevant regions without excessive over-seg-
mentation.

Visual performance
As the third and final part of the performance comparison, we
decided to examine segmentation results obtained on simu-
lated examples. As before, we mixed a piece-wise constant
expression bias profile into a randomly generated high-fre-
quency component (as described in the Simulation model
section). In this case, however, we placed five biased regions
of varying widths (10, 20, 30, 40 and 50 probes) along the
same chromosome (Figure 4). For each combination of SNR
and proportion of non-influenced genes, we generated and
inspected 10 examples visually. Throughout, the TV-based
scheme generally produced segmentation results that more
closely resembled the original (uncorrupted) signal. Admit-
tedly, visual evaluations of this type are prone to subjectivity
and should be interpreted with caution. Still, the results
obtained were consistent with, and partially explain, the
improvements observed in the first two experiments.

Application to real data
We proceeded to apply TV minimization-based segmentation
to real expression microarray data to verify its ability to iden-
tify regions with expected increases/decreases in average
gene expression. To achieve this, we used the data set gener-
ated by Ross et al [26], consisting of expression profiles of
childhood ALLs, classified by genetic subtype (Table 1). This
disease subclassification builds on cytogenetic and molecular
genetic criteria, and is instrumental for the diagnostic, prog-
nostic and therapeutic stratification of ALL patients in clini-
cal practice [27]. Of interest here is that each genetic subtype
is characterized by recurrent, well-defined chromosomal
aberrations [28]. Some of these aberrations are balanced
translocations whereas some are imbalanced aberrations
(gains or losses of chromosomal material). The latter type of
aberration alter the DNA copy number (the 'gene dose') and
hence can be expected to cause increased/decreased gene
expression across the engaged chromosome or chromosomal
segment. We seek to test whether the proposed method suc-
ceeds in identifying regions that correspond to common
imbalanced chromosomal aberrations in specific leukemic
subtypes.

The technical details are given in Materials and methods. In
short, all expression data were converted to a log-scale,
Genome Biology 2008, 9:R13
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normalized with respect to out-of-class cases and then seg-
mented. The original and segmented data were plotted, both
case-by-case and class-by-class. The class-by-class plots rep-
resent the average segmentation result across all cases of each
leukemic subtype, and hence emphasize recurrent alterations
in expression while suppressing sporadic changes and noise.
To provide a map of frequent imbalanced chromosomal aber-
rations in ALL we overlaid average DNA copy number profiles
for each leukemic subtype, as computed from high-resolution
SNP array data by Mullighan et al [29]. The copy number pro-
files indicate which regions that can be expected to show
increased/decreases in expression on the basis of common

gains or losses of chromosomal material, but do not indicate
regional biases that have other causes.

As illustrated in Figure 5 and Additional file 3, the TV method
was able to identify numerous regions with biased expression
in the specific leukemic subtypes. In broad outline, the key
observations were as follows. In hyperdiploid ALL, each case
exhibited elevated gene expression across one or more of the
chromosomes 4, 6, 10, 14, 17, 18, 21 and X. This observation
is consistent with the well-known fact that hyperdiploid ALL
is characterized by extra copies of these chromosomes, and
generally exhibits a total of more than 50 chromosomes

Receiver operating characteristicsFigure 2
Receiver operating characteristics. To assess the ability of the proposed method to detect genomic regions with biased gene expression, we 
determined its ROC curve for different SNRs, aberration sizes and proportions of non-influenced genes (Materials and methods and also Figure 1). This 
figure (π = 0.1) represents an excerpt from the full set of results (Additional file 1). Key observations: (1) the proposed method exhibits stronger detection 
performance than the control method (CGHseg); (2) the improvement is present throughout, but is particularly pronounced for low to intermediate 
SNRs. We conclude that the proposed method exhibits a better trade-off between sensitivity and specificity, especially under expression data-like 
conditions.
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(median 55). The finding is also consistent with previous
studies indicating that a substantial proportion of the genes
located on the gained chromosomes exhibit higher-than-
expected expression levels on average [2,26]. In TCF3/PBX1-
positive ALL, the most striking finding was that, in the major-
ity of cases, a large region on 1q distal to the PBX1 locus was
over-expressed whereas a small region (~1.6 Mb) on 19p dis-
tal to the TCF3 locus was under-expressed (Figure 6). These
observations are in accordance with the fact that the TCF3/
PBX1 fusion oncogene is the result a reciprocal translocation
between chromosomes 1 and 19, where the translocated chro-

mosome 19 is retained whereas the rearranged chromosome
1 is lost, followed by a reduplication of the normal chromo-
some 1 homologue [30]. In other words, the leukemic cells
will exhibit a gain of 1q material and a loss of 19p material,
where the latter aberration is usually cytogenetically invisi-
ble. In ETV6/RUNX1-positive ALL, recurrent changes in
expression were observed in 6p22, 18q12, 21q22 and Xq25-
28. Out of these, the over-expression over Xq25-28 was found
to be particularly striking (Figure 7). Interestingly, this region
was not known to be recurrently gained in ETV6/RUNX1-
positive ALL until recently when, following more detailed

Breakpoint distributionsFigure 3
Breakpoint distributions. To assess the ability of the proposed method to delineate relevant regions, determined its breakpoint distributions for 
different simulation parameters (Materials and methods). This figure (π = 0.1) represents an excerpt from the full set of results (Additional file 2). Key 
observations are as follows. (1) The distributions of the proposed method exhibit significantly higher 'peaks' around the true breakpoints (vertical dotted 
lines). This signifies that, given that the proposed method detects a breakpoint, the probability that it is a true breakpoint is higher. (2) The distributions for 
the proposed methods exhibit markedly 'scooped' centers, that is, there is less distributional mass (fewer breakpoints) inside the relevant segment. Thus, 
the method detects fewer false breakpoints inside relevant regions, even when the region is large. This improvement is a result of the use of multiple 
regularization parameter values (Materials and methods). (3) As in Figure 2, the improvements were particularly pronounced under expression data-like 
conditions. In this test, Tμ = 0.5·SNR (similar results for other reasonable values).
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aCGH-based investigations by us, the region was shown to be
frequently duplicated [20]. In MLL-rearranged and BCR/
ABL1-positive ALL, no convincing recurrent changes were
found. Finally, in T-ALL, we observed numerous differen-
tially expressed regions. The degree of differential expression
in these regions was generally very high, suggesting that the
underlying mechanism is regulatory rather than a gene-dose
effect on the basis of underlying DNA copy number aberra-
tions. Taken together, these results support that the described
method is capable of identifying genomic regions with expect-
edly increased/decreased average gene expression, in the
cases shown on the basis of imbalanced chromosomal aberra-

tions (including examples of cytogenetically invisible
changes).

For completeness, we note that detected segments corre-
sponding to duplications and deletions display step heights
around 0.5 to 1.0. Given that the variance of the gene scores is
approximately one, this indicates that the SNRs used in the
simulations are adequate (Materials and methods). We also
note that the widths and heights of the smaller segments
detected were in line with the resolutions predicted by Equa-
tion 7, supporting that this way of calculating the regulariza-
tion parameters is reasonable. Finally, we remark that

Application to synthetic dataFigure 4
Application to synthetic data. For illustration, we applied the different methods to a large set of synthetic examples. Left: Original gene expression bias 
profile. Middle: Results for proposed method. Right: Results for CGHseg. As evident, the proposed method better succeeds in recovering the true 
expression bias profile, especially under rough conditions. The example shown was generated using π = 0.2, but agreeing results were obtained for π = 0.0 
to 0.5. In this test, Tμ = 0.5·SNR (similar results for other reasonable values).
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segmentation without prior normalization (except log-scale
conversion) yielded poor results, verifying the necessity of
using appropriately normalized gene scores (Materials and
methods).

Discussion
Genomic regions with altered gene expression arise in cancer
cells because of acquired gains or losses of chromosomal
material or epigenetic changes. The detection and delineation
of such regions in gene expression maps relies on the availa-
bility of specialized segmentation techniques.

We have described a novel segmentation method based on TV
minimization. The value of this method lies in that it com-
bines significantly improved detection performance with an
enhanced ability to delineate relevant regions. The explana-
tion for these improvements is two-fold. First, adopting the
TV norm as a regularity measure makes the segmentation
procedure more robust under low SNRs. Previously, the TV
norm has been successfully applied to numerous restoration
problems in signal and image processing, including problems
in bioinformatics [31]. Second, to extend further the perform-
ance of TV minimization, we have introduced a novel strategy
for using multiple regularization parameters simultaneously.
This feature allows for improved detection of regions with
widely varying characteristics, while still allowing large
regions to be detected without excessive over-segmentation.

Previously, other segmentation methods have been proposed.
In contrast to our method, these are primarily tuned for
aCGH or SNP array data, and perform less well under expres-
sion data-like conditions [24,25]. Similar to our method, a
common theme is to fit piece-wise constant solutions to the
data by dynamic programming under various goodness crite-
ria, including penalized likelihood [22], penalized least

squares [32], Bayesian posterior probability [33], edit dis-
tances [34] or hidden Markov models [35-37]. However, pre-
vious methods regularize the solution using a constant step
penalty, impeding their performance on expression data.
Other methods that are not based on dynamic programming
but with similar behavior have been proposed [23,38-40], as
have various smoothing methods [13,41-48]. The latter do not
produce a segmentation, but, in some cases, tend to blur the
edges between regions.

Using childhood ALL as an example, we have verified that our
method is capable of identifying regions with increased/
decreased expression on the basis of known chromosomal
imbalances (including gross abnormalities as well as cytoge-
netically invisible aberrations). Previously, Callegaro et al
[41] analyzed the Ross et al data set using an adaptive filtering
approach. These authors found a differentially expressed
region around the PBX1 locus on chromosome 1 in TCF3/
PBX1-positive ALL, but did not report the footprints in
expression of chromosomal imbalances revealed here. The
Ross et al data were also studied by Hertzberg et al [2] who
demonstrated the predictability of whole-chromosome gains
in hyperdiploid ALL, but did not analyze the data at the sub-
chromosomal level.

Technically, our scheme differs from the original TV scheme
[21] in that we require the solution to be piece-wise constant
instead of piece-wise continuous. The motivation for this
restriction is four-fold. First, the piece-wise continuous
model is less well suited for noisy conditions, partly because
of its higher flexibility [49]. Second, a piece-wise constant sig-
nal model is natural in our application. Third, we achieve
simultaneous de-noising and segmentation. Fourth, the
globally optimal solution to the piece-wise constant TV mini-
mization problem can be rapidly computed by dynamic
programming.

Table 1

Characteristics of the test data. Contents of the Ross data set [26] of expression profiles of childhood acute lymphoblastic leukemias 
(ALL). The elements indicate the numbers of cases of each leukemic subtype, as defined by cytogenetic and molecular genetic criteria 
according to the World Health Organization (WHO) classification system [27]. Also outlined are the clinical characteristics and defin-
ing genetic change of each leukemic subtype.

Leukemic subtype Number of cases Clinical characteristics

B-cell ALL, Hyperdiploid (> 50 chromosomes) 17 Around 25% of childhood ALL cases, favor-able prognosis, gains of 
chromosomes X, 4, 6, 8, 10, 14, 17, 18 or 21.

B-cell ALL, TCF3/PBX1 gene fusion 18 Around 5% of cases, poor prognosis without intensive treatment, gene fusion 
corresponds to a balanced translocation between chromo- somes 1 and 19.

B-cell ALL, ETV6/RUNX1 gene fusion 20 Around 25% of cases, favorable prognosis, gene fusion corresponds to a 
balanced trans- location between chromosomes 12 and 21.

B-cell ALL, BCR/ABL1 gene fusion 15 Around 3% of cases, unfavorable prognosis, gene fusion corresponds to a 
balanced trans- location between chromosomes 9 and 22.

B-cell ALL, MLL fusions 20 Around 80% of cases in infants, about 5% of older children, unfavorable 
prognosis, gene fusions correspond to various structural re- arrangements of 
chromosome band 11q23.

T-cell ALL 14 Unfavorable prognosis.
Genome Biology 2008, 9:R13
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Application to childhood ALL dataFigure 5
Application to childhood ALL data. To verify the ability of the proposed method to identify genomic regions with expected increases/decreases in 
average gene expression, we applied it to the data set by Ross et al [26] (Affymetrix U133A+B arrays). Each case was normalized and segmented as 
described in Materials and methods. Blue solid: Average segmentation result across all cases of each leukemic subtype (Table 1). Orange: Average DNA 
copy number profile across within each class, as determined from the Mullighan et al data set [29] (Affymetrix 250 k SNP arrays). Key observation: The 
method successfully identified several regions with altered gene expression (details in Results). The case-specific segmentations are provided in Additional 
file 3. In this example, Tμ = 0.25 (similar results for other reasonable values).
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Application to childhood ALL with TCF3/PBX1 gene fusionFigure 6
Application to childhood ALL with TCF3/PBX1 gene fusion. Segmentations of the expression maps of chromosomes 1 and 19 in 18 cases of ALL 
exhibiting the TCF3/PBX1 fusion oncogene (Ross et al data set) using different method parameters. Light grey: original gene scores. Dark blue: 
reconstructed expression bias profile. Top: λN = 2/5. Middle: λN = 2/15 Bottom: λN = 2/30. Key observations are as follows. (1) Most cases display over-
expression in 1q distal to the PBX1 locus and under-expression over a ~1.6 Mb region on 19p distal to the TCF3 locus (translocation breakpoints indicated 
by vertical bars). The explanation for this finding is discussed in the Results section. (2) Reducing λN allows the algorithm to emphasize on larger regions, 
while suppressing smaller regions.
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The behavior of our method is controlled by the set of λ and
the relevance threshold. Of note, we provide theory to calcu-
late suitable λ, which hence can be regarded as more or less
'fixed'. Thus, the only parameter the user has to select is the
relevance threshold. This parameter is easy to interpret.

Regarding possible improvements, we note that estimating μi

as the average of f over Ii is reasonable when πi is near zero,
but does not compensate for the fact that 'non-influenced
genes' pull the estimate towards zero when πi is large. In prin-
ciple, this artifact could be avoided by estimating μi and πi

using more advanced techniques, such as mixture-fitting. We
have refrained from such extensions because of the
anticipated computational overhead, and leave improve-
ments in this direction as an open problem.

Conclusion
In conclusion, we have described an enhanced methodology
for identifying genomic regions with altered gene expression
in cancer. Hence, this work, along with other efforts, should
facilitate the search for genetic and epigenetic changes
involved in cancer development.

Materials and methods
Problem definition

Let f (x) : I → R be the gene expression score at chromosomal

position x in some interval I (one such score is discussed

below). This expression map can be regarded as a mixture of

two signal components: a high-frequency component v(x)

that corresponds to noise plus intrinsic variability in gene

expression, and a low-frequency component u(x) that repre-

sents a more slowly varying gene expression bias profile. The

segmentation problem can be formulated as the reconstruc-

tion of u(x) from f (x) subject to the constraint that u(x) is

piece-wise constant, that is u(x) = μi, x ∈ Ii for some plateau

levels μi ∈  and some set of ordered intervals I1, I2, ..., IM

representing a disjoint partitioning covering I with a varying

number of segments M (true number unknown a priori).

Segmentation by piece-wise constant TV minimization
We propose to reconstruct u from f by solving the variational
problem

Application to childhood ALL with ETV6/RUNX1 gene fusionFigure 7
Application to childhood ALL with ETV6/RUNX1 gene fusion. Segmentations of the expression map of the X chromosome in 20 cases of ALL 
harboring the ETV6/RUNX1 fusion. Light grey: original gene scores. Dark blue: reconstructed expression bias profile. Top: λN = 2/5. Middle: λN = 2/15 
Bottom: λN = 2/30. Key observations are as follows. (1) Several cases exhibited over-expression in Xq25-28, a chromosomal region that was not known to 
be recurrently gained in ETV6/RUNX1-positive ALL until recently. Following more detailed investigations at our lab using aCGH, the region was shown to 
be frequently duplicated in this leukemic subtype [20]. Thus, this finding further supports that the proposed method is able to detect genomic regions 
which expected biases in gene expression, in this case on the basis of a cytogenetically invisible chromosomal aberration. (2) As in Figure 6, reducing λN 
allows the algorithm to emphasize on larger regions, while suppressing smaller regions.

B

u u u f dx
I

∗ = ′ + −∫min ( ) ,λ 2 (1)
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where u is piece-wise constant. In the integrand, the first term
is the L1 norm of u', also known as the TV norm of u. In this
application, we interpret the TV norm literally, meaning that
it is equal to the sum of the magnitudes of the steps in u
(because u' is Dirac at the change points). Thus, it is clear that
the role of the first term is to regularize the solution and pre-
vent over-segmentation. By contrast, the second term is an L2

fidelity term, or fitting term, serving to impose consistency
with the original data and to counteract under-segmentation.
The relative impact of the two competing terms is determined
by the regularization parameter λ > 0. Trivially, λ = 0 pro-
duces the constant solution u = Average {fj}i ∈ I (the most rigid
model), whereas λ → ∞ implies u* → f (the most flexible
model). The choice of regularization parameter is discussed
in detail in the following.

For computational tractability, we restrict the set of feasible

solutions to the set of u such that  is equal to the

means of f over . The benefit of this maneuver is that u

will be uniquely defined for any partitioning, meaning that

finding u* is reduced to finding an optimal partitioning of I

which can be performed efficiently. The limitation is that we

no longer account for the fact that the optimal μi can be differ-

ent from the mean over Ii and there is strain on the solution.

To find the optimal solution to the restricted version of the
problem, we convert from continuous to discrete form, adopt-
ing the notation fj = f (xj) where xj are the positions of probe
j = 1, ..., N in ascending order along the chromosome. We
obtain the discrete-form objective

where equal probe spacing has been assumed when discretiz-
ing the integral. The calculations can be modified to accom-
modate for unequally spaced probes if needed (not shown).

Next, we let n be an integer such that 1 ≤ n = N and  the

value of the objective function for the optimal segmentation

of the (closed) integer interval [1, n]. Further, we let n', 1 ≤ n'

≤ n be the starting point for the last segment in that segmen-

tation, and n" be the starting point of the last interval of the

optimal segmentation of [1, n']. Finally, we let the functions

μ(a, b) and ν (a, b) denote the average and sum-of-squares

about the average, respectively, of f over [a, b]. In this nota-

tion, Equation 2 reads

Thus, given the optimal values of the objective function for
the intervals [1, 1], [1, 2], ..., [1, n - 1], the optimal value of the
objective for the next interval [1, n] can be computed explic-
itly. In other words, the problem satisfies the Bellman condi-
tion of optimality [50], and the inductive solution given by
Equation 3 represents the forward pass of a dynamic pro-
gramming scheme. For clarity, we give the details of the algo-
rithm in pseudocode (Additional file 4). In its basic form, the
algorithm is O(N3) in time and O(N) in memory. However, the
time complexity can be reduced to O(N2) by loop unfolding
(Additional file 4).

Selection of regularization parameter

The traditional way to select λ in TV minimization is as fol-

lows. Let (x, λ) denote the u(x) estimate for a specific value

of λ. If we assume for a while that the signal is purely additive

(that is, f (x) = u(x) + v(x)), then the difference f (x) - (x, λ)

will represent an estimate of the high-frequency component

v(x) if λ has been chosen correctly. If, in addition, v(x) is inde-

pendently and identically distributed with variance σ2, a nat-

ural constraint on λ is

This constraint is often used as a 'rule-of-thumb' stating that

λ should be selected such that the variance of the residual

(x, λ) is on par with σ2, which, in turn, can be estimated

from the data or is known a priori.

While straightforward, the traditional way of selecting λ is
inappropriate in our application. First, a purely additive sig-
nal model is too simplistic as some genes may not be
influenced by the underlying genomic change. This under-
mines the validity of Equation 4. Second, it is diffcult to find
a single λ that suits all region sizes simultaneously. Small λ
allow the baseline to 'break up', and hence allow small regions
to be detected. At the same time, however, relevant regions
will become over-segmented (fragmented), which is undesir-
able. Conversely, large λ values will keep large regions intact,
whereas small regions cannot be identified.

To alleviate this issue, we developed an extended TV minimi-
zation-based scheme that allows a range of λ values to be used
simultaneously, as opposed to relying on a single value. We
proceeded as follows. First, let λ1 <λ2 < � <λN be an increasing
sequence of λ values, and Tμ a threshold that specifies the
smallest plateau level |μi| that is required for a segment to be
called 'relevant'. Second, segment I using λ1 as regularity
parameter (most rigid model). Third, mark all segments that
satisfy μi > Tμ as finished and exclude them from further
processing. Fourth, the subintervals that are 'non-relevant',
that is whose |μi| do not exceed Tμ are re-segmented using λ2

(slightly less rigid model). The process is repeated with λ3, λ4,
and so on until λN is reached, or no more 'non-relevant'
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regions remain. In other words, the segmentation scheme
first searches for large, relevant regions and then proceeds to
search for successively smaller regions in a recursive manner.
Thus, the algorithm allows large relevant regions to be
detected without excessive over-segmentation, while still
allowing smaller regions to be detected.

To obtain guidance for the selection of the λ series, we consid-

ered the following hypothetical case. Assume that the gene

expression map of I is non-biased everywhere, except in a

contiguous region I' ⊂ I where gene expression is biased (that

is, the mean gene score is non-zero). Let  denote the value

of the total variation functional (Equation 1) for the one-seg-

ment solution u(x) = 0 for all x ∈ I, including I'.

Similarly, let  denote the value of the functional for a

three-segment solution where u(x) is zero when x ∈ I\I' but

the average of fj over I when x ∈ I '. By Equation 1, we have

where N' is the number of genes in I'. The right-hand side
simplifies to

which is positive if and only if

This inequality provides a criterion for determining when the
(more correct) three-segment solution will be preferred over
the (too rigid) one-segment solution. The inequality states
that, for the three-segment solution to be selectable, λ must
exceed a bound that is inversely proportional to the sum of
the fj in I'. The latter in turn is approximately proportional to
the width of I' and the expectancy of fj (assuming that the fj are
similarly distributed in I') on average.

This criterion can be used to identify reasonable λ values.
First, the simplest segmentation result is a one-segment solu-
tion that spans the entire chromosome. This solution will be
guaranteed to be tested for if λ1 = 0. Second, λN specifies the
most flexible model used. For this parameter, we used the
value 2/5. This choice allows for the resolution of segments
with |∑fj| around 5, a level that corresponds to, for example,
a 5-probe segment with plateau level around 1.0, or a 10-

probe segments with a plateau level around 0.5. Given the
characteristics of the data (noisy, low genomic resolution and
the presence of 'non-influenced' genes), we cannot hope to
detect segments with very few probes, making this choice of
λN reasonable. In this context, we remark that if the aim is to
detect individual differentially expressed genes, several dedi-
cated methods are available for this purpose (for example, t
statistic-based approaches). Third, it remains to select λ val-
ues between λ1 and λN. It seems natural to select λ that corre-
spond to equally, and sufficiently densely, spaced ∑fj . Taken
together, these considerations motivate the series λ1 = 0,
λ2 = 2/100, λ3 = 2/99, ..., λN = 2/5, which was used both in the
simulations and on real data.

Apparently, this series can be altered by changing λN and the
density of in-between values. We illustrate the effect of chang-
ing λN by using two truncated series (λN = 2/30 and λN = 2/15)
in the Results section. We also repeated the experiments with
twice as dense and twice as sparse λ, yielding results in broad
agreement with those presented (data not shown). The choice
λ1 = 0 is not subject to tweaking, as we will always be inter-
ested in knowing whether the one-segment (whole-chromo-
some) solution is relevant.

Simulation model
In the simulation study, we generated artificial chromosomes

by mixing known, piece-wise constant expression bias

profiles with a randomly generated high-frequency signal

component (corresponding to noise plus inherent variability

in gene expression). Within the ith segment, we regard the fj

as following the mixture distribution

, where μi is the plateau

level, σ2 variance of the noise and variability in expression

around the baseline and πi is the proportion of non-influenced

genes, that is, the percentage of genes whose expression is not

altered by the underlying genetic alteration. The reason for

using a mixture distribution is to allow the model to accom-

modate for genes that are completely transcriptionally inac-

tive or are targeted by 'bad' probes.

In the first two simulation experiments (ROC and breakpoint
distributions), we used expression profiles with central
square-wave step of varying width and height. In this case, the
simulation model has four parameters: the chromosome
length, the aberration width, the SNR and the proportion of
non-influenced genes (π). For tractability, we assume the
same proportion of non-influenced genes in all segments.

The parameter values were as follows. The chromosome
length was fixed to 100. However, to verify robustness, the
experiments were repeated with numerous other values,
yielding results in agreement with those presented (data not
shown). The aberration widths were 10, 20 or 40. The SNRs
were 0.5, 1.0 and 2.0. Roughly, the first two values corre-
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spond to expression data-like conditions, whereas the last
value corresponds to aCGH data-like conditions. The propor-
tions of non-influenced genes were 0.0, 0.1, ..., 0.5, ranging
from regions with few non-influenced genes to regions with
large proportions of non-influenced genes. When π = 0.0, our
simulation model is identical to that used in [24].

Performance assessment measures
To assess the performance of the different algorithms, we cal-
culated ROC curves and breakpoint maps for all combina-
tions of aberration widths, SNRs, and proportions of non-
influenced genes. To generate ROC curves, we calculated the
TPRs and the FPRs across 200 simulated chromosomes as we
varied the threshold for determining the relevance of an aber-
ration. TPRs were calculated as the number of genes inside
the central (biased) region whose segmented values are above
the threshold level divided by the number of genes in the
aberration. FPRs were defined as the number of genes outside
the central region whose segmented values are above the
threshold level divided by the total number of genes outside
the aberration. To compute the ROC and false discovery rate
curves, we varied the threshold for calling regions relevant
from zero to the maximum gene score. Each threshold value
yields a TPR and a FPR, represented by a point on the ROC
curve. As noted in [24], TPR and FPR are informative in
understanding how an algorithm performs in estimating the
boundary of the altered region: when the algorithm over-esti-
mates the boundary, FPR increases while TPR remains fixed;
when it under-estimates the boundary, TPR decreases while
FPR remains fixed.

To generate breakpoint maps, we simulated and segmented
10,000 chromosomes. We then counted the number of break-
points identified at each chromosomal position and, finally,
normalized the resulting histogram by dividing the value in
each bin by the total number of breakpoints.

Selection of parameter values in the control methods
When running the control methods DNAcopy and CGHseg,
we used the default method parameters suggested in the orig-
inal publications [22,23]. The motivation for this decision is
three-fold. First, the use of default parameters is in agree-
ment with previous comparative reviews, in which default
parameters are used throughout [24]. Second, it can be
argued that default parameters produce a realistic test sce-
nario, as these are the parameters many users would use in
practice [24]. Third, and finally, it appears reasonable to
expect that default parameters have been made default
because they produce good results in many cases. For com-
pleteness, however, we performed complementary experi-
ments in which we used a broad range of other method
parameter values, distinct from the default settings. These
experiments support that the default parameters are in fact
an appropriate choice (exemplified in Additional file 5).

Microarray data and preprocessing
For testing, we used the data set by Ross et al [26] (obtained
from [51]) containing expression profiles (Affymetrix
U133A+B arrays) from patients with childhood ALL of differ-
ent subtypes (Table 1). The expression values (log-scale) of
each case were converted to z-scores with respect to all out-
of-class cases, that is, for gene j in a given case, we let fj = (yj-
mj)/sj, where yj is the expression value, mj the average expres-
sion value across cases whose classes differ from that of the
case being analyzed and sj is the pooled within-class standard
error given by Smyth's robust empirical Bayes estimator [52].
In principle, this type of data normalization is largely similar
to the normalization performed when extracting lists of
differentially expressed genes (by the use of t-statistics),
although, in our case, we perform the normalization on a
case-versus-group, rather than group-versus-group, basis.

The advantage of computing differential expression with
respect to a pool of expression profiles from multiple tumor
classes is that class-specific changes in expression will be
diluted. In particular, we obtain a reference group that is
approximately euploid on average, except in (hopefully
uncommon) regions sharing copy number changes shared by
all leukemic subtypes. We note that in cases when other
tumor types are unavailable as controls, other relevant con-
trol samples can be used in their place. For instance, it may
sometimes be natural to use expression profiles of normal tis-
sue as reference profiles. We also note that σ2 ≈ 1 for all genes
because of the definition of the z-score and the fact that most
genes are non-differentially expressed between classes. This
motivates the use of normal distributions with unit variance
in the simulations.

In the experiments, we included the data set by Mullighan et
al [29], consisting of DNA copy number profiles (Affymetrix
250 k SNP arrays) from the same types of tumors as those
covered in the Ross et al data set. While the two data sets were
produced by the same research group, the annotation
provided does not allow copy number profiles to be paired
with their corresponding expression profiles. Hence, the Mul-
lighan et al and Ross et al data cannot be correlated case-by-
case. However, by computing the average DNA copy number
profile across each leukemic subtype, the Mullighan et al data
could be used to obtain a map of common gains and losses of
chromosomal material in specific ALL subtypes (see Results
and Figure 5).

Software availability
The described method has been implemented as a software
package (Rendersome), which is freely available on request
from the authors.
Genome Biology 2008, 9:R13
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Additional data file 1 is a complete set of ROC curves from the
simulation study.

Additional data file 2 is a complete set of breakpoint distribu-
tion plots from the simulation study.

Additional data file 3 is a high-resolution versions of the
expression maps for each of the ALL cases in the Ross et al
data set, as reconstructed by the proposed algorithm.

Additional data file 4 contains additional information about
the proposed segmentation algorithms, including pseudoc-
ode. 

Additional data file 5 contains additional data illustrating that
the use of the default method parameters for CGHseg is
appropriate.
Additional file 1Complete set of ROC curves from the simulation studyComplete set of ROC curves from the simulation studyClick here for fileAdditional file 2Complete set of breakpoint distribution plots from the simulation studyComplete set of breakpoint distribution plots from the simulation studyClick here for fileAdditional file 3High-resolution versions of the expression maps for each of the ALL cases in the Ross et al data set, as reconstructed by the pro-posed algorithmHigh-resolution versions of the expression maps for each of the ALL cases in the Ross et al data set, as reconstructed by the pro-posed algorithm. Gray: Original gene scores from the Ross data set. Blue solid: Segmented gene scores. Each row represents one case, except for the bottom row which displays the average segmentation result and DNA copy number profiles (orange) across each leuke-mic subtype.Click here for fileAdditional file 4Additional information about the proposed segmentation algo-rithms, including pseudocodeAdditional information about the proposed segmentation algo-rithms, including pseudocode.Click here for fileAdditional file 5Additional data illustrating that the use of the default method parameters for CGHseg is appropriateAdditional data illustrating that the use of the default method parameters for CGHseg is appropriate.Click here for file
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