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Abstract

Although the principles governing chromosomal architecture are largely unresolved, there is
evidence that higher-order chromatin folding is mediated by the anchoring of specific DNA
sequences to the nuclear matrix. These genome anchors are also crucial regulators of gene
expression and DNA replication, and play a role in pathogenesis.

The architecture of interphase chromosomes presents a
major challenge for our understanding of the functioning of
the mammalian genome. Chromosomes are composed of
hierarchical levels of chromatin loops or folds. Several
models have attempted to describe chromatin organization
above the level of the nucleosomal fiber [1-3]. Of these, the
‘multi-loop subcompartment’ model, in which rosettes of
approximately 1-2 Mb are built up from smaller chromatin
loops of 50-200 kb, is compatible with most of the recent
experimental findings [3]. Although there is no definitive
proof so far for this or any other model of higher-order
chromatin architecture, it is clear that the folding and
looping of chromatin leads to the formation of discrete
‘territories’ for individual chromosomes in the interphase
nucleus [4]. Accumulating experimental evidence suggests
that these chromatin loops or folds are maintained by
attachments to the nuclear matrix [5].

The nuclear matrix extends throughout the nucleus and
consists of proteins that are retained after unbound chroma-
tin and soluble proteins are removed using high-strength
ionic buffers [6-9]. Although the nature of the nuclear
matrix is still under debate [7], it has achieved prominence
as many of its best-characterized components, including
lamins, topoisomerase II, special AT-rich sequence binding
protein 1 (SATB1) and scaffold attachment factor-B1
(SAFB1), are key players in fundamental nuclear processes
[10-13]. In eukaryotic organisms, chromatin is anchored to
the nuclear matrix by short DNA sequences of about

100-2,000 bp called matrix attachment regions (MARs)
[5,14]. The strong interaction between MARs and the
insoluble proteins of the nuclear matrix protects these
sequences from high-strength ionic buffers and nuclease
digestion [9]. In general, MARs are rich in AT and repetitive
sequences, and map to regions where the DNA is
intrinsically curved or kinked and has a propensity for base
unpairing [15-19]. The spacing of AT sequences is crucial for
matrix binding, but there is no consensus DNA motif for the
estimated 30,000-80,000 MARs in the human genome [6,20].

MARs are bound to the nuclear matrix either constitutively
or transiently. The higher-order chromatin structure of
interphase and metaphase chromosomes is likely to be
maintained by constitutive MARs. The dynamic associations
of transient MARs are more likely to be implicated in
genomic function, as they correlate with transcription or
replication of the genetic loci with which they are associated
[9]. In this review, we draw together evidence from higher
eukaryotes that, further to their role in chromosome
structure, MARs are key mediators of genome regulation,
and we will discuss their roles in human disease.

MARs and transcriptional regulation

The tethering of DNA to the nuclear matrix plays a vital role
in transcription [9,21,22]. Using T-cell differentiation as a
model we will describe how MARs facilitate transcription
and reveal how they shape chromatin architecture to
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insulate chromatin domains from the effects of flanking
chromatin.

Upon stimulation by antigen, naive CD4 helper T cells
differentiate into effector Th1 and Th2 cells. In mice, Ifng
(the gene for the cytokine interferon-y) is silenced in naive T
cells but transcribed in activated Th1 cells. The architecture
of the Ifng locus has been analyzed in these two cell types by
a combination of chromosome conformation capture and
microarray technology [22]. In naive T cells Ifng was found
to exist in a linear conformation, but in Th1 cells it is present
in a chromatin loop, due to tethering of DNA to the nuclear
matrix by MARs 7 kb upstream and 14 kb downstream of the
locus. The absence of this selective DNA attachment to the
nuclear matrix in naive T cells suggests that dynamic DNA
anchors mediate the formation of the looped structure and
the expression of the Ifng locus [22].

The molecular mechanisms by which MARs reorganize
higher-order chromatin structure have been investigated in
detail at the murine Th2 cytokine locus, which contains the
cluster of coordinately regulated genes Il4, Il13 and Il5 in a
region of about 120 kb [23]. These genes are expressed in
Th2 cells but are silent in naive T cells. Following Th2
activation, expression of the nuclear matrix protein SATB1 is
rapidly induced, and MARs within the locus mediate the
formation of small loops by anchoring the loops onto a
common protein core associated with SATB1 [12]. Down-
regulation of SATB1 expression by RNA interference
prevents both the formation of this looped structure and
transcriptional activation of the locus [12]. In SATB1-null
thymocytes (developing T cells) the expression of many
genes is spatially and temporally misregulated, and T-cell
development in SATBi-deficient mice is prematurely
blocked. These results indicate that the binding of SATB1 at
MARs regulates the expression of T-cell differentiation
genes by reorganizing higher-order chromatin architecture
[24,25]. A similar MAR-mediated loop-formation
mechanism regulates expression of the human B-globin gene
cluster [26,27].

Cai et al. [25] reported that SATB1 recruits several chromatin-
remodeling enzymes at MARs to activate or repress the
expression of nearby sequences. Other studies have shown
that MARs interact dynamically with basal components of
the transcription machinery and with splicing factors
[28,29]. In eukaryotic cells, mRNA synthesis is concentrated
at discrete transcription ‘factories’ or foci within the nucleus,
which contain RNA polymerases, RNA transcripts,
transcription factors and mRNA-processing factors [30].
The retention of RNA polymerase II and general
transcription factors in nuclei after extraction of soluble
proteins and nuclease digestion suggests that transcription
factories are assembled onto the nuclear matrix [31,32]. As
MARs associate with components of transcription factories
as well as the nuclear matrix, it is tempting to speculate that
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A simplified model depicting the function of matrix-attachment regions
(MARs) in gene regulation. Activation of transcription is accompanied by
the anchoring of MARs to the nuclear matrix. This results in the
formation of an anchored chromatin loop that is insulated from the
stimulatory or repressive effects of the flanking chromatin. The
transcription machinery is assembled at the site of the MAR-nuclear
matrix attachments. Interaction of MARs with the nuclear matrix brings
together gene coding sequences, regulatory DNA elements and the
transcription machinery, thus enabling specific genes to be coordinately
regulated. At the end of S phase, the replication machinery is dismantled.

dynamic interactions between MARs and the matrix bring
together proximal and distal regulatory sequences and
localize them close to transcription factories, thus promoting
efficient regulation of gene expression (Figure 1).

Many genes are known to be shielded by so-called ‘insulator’
elements from stimulatory or repressive effects attributable
to the chromatin state and regulatory elements in flanking
regions. MARs commonly map to sequences flanking genes,
and co-localize with some of the most extensively analyzed
insulator elements, including gypsy, a retrotransposon in
Drosophila melanogaster, suggesting that MARs have an
insulator function [33]. In Drosophila, the nuclear matrix
protein Su(Hw) binds to gypsy, creating chromatin loops
[34]. Certain mutations in Su(Hw) that disrupt the loop
structures render the insulator non-functional [34,35]. This
suggests that the tethering of MARs to the nuclear matrix
topologically constrains the DNA into looped structures,
protecting the intervening DNA from the influence of cis-
regulatory elements outside the loop. In vertebrates, CTCF, a
ubiquitous nuclear matrix protein, binds to insulators and
has also been shown to interact with MARs [36]. While the
precise mechanisms of CTCF insulation remain unclear, the
binding of CTCF to MARs might block interactions between
promoters and unrelated enhancers and create looped
structures that delimit different chromosomal domains [37].
Experiments in a wide variety of higher eukaryotes have
shown that in stably transfected cells, MAR-containing

Genome Biology 2008, 9:201

Ottaviani et al. 201.2



http://genomebiology.com/2008/9/1/201

transgenes were expressed at higher levels compared with
transgenes lacking MARs, indicating that the MARs shield
the transgenes from the effects of the neighboring host
chromatin [38,39].

Taken together, the experimental evidence described above
supports the view that MARs function as landing platforms
for a wide range of matrix proteins. Such interactions form
complex higher-order nucleoprotein structures, which
insulate chromatin domains and also control gene expres-
sion by forming bridges between components of the basal
transcription machinery and distal and proximal regulatory
elements. MARs can thus be defined as cis-acting elements
constituting a critical layer of transcriptional regulation.

MARSs and DNA replication

To ensure that the genome is copied accurately, and only
once per cell cycle, eukaryotes have evolved intricate
mechanisms to regulate DNA replication. Some of the best-
characterized origins of replication (ORIs) have been
mapped to AT-rich genomic regions with base-unpairing
elements. Futhermore, sequences at or near the ORIs for
the human lamin B2 gene, the Chinese hamster
dihydrofolate reductase § and ’ genes, the human B-globin
gene, the chicken o-globin and lysozyme genes, and the
Xenopus and mouse c-myc genes, function as dynamic
MARSs during the cell cycle [40-46].

These findings are in agreement with observations that DNA
replication is temporally and spatially ordered in the nuclei
of animal cells. Several replicons are coordinately replicated
at foci in the S-phase nucleus [47,48]. Evidence that
replication foci are associated with the nuclear matrix came
first from electron microscopy [49]. Further support came
from a study of nuclear matrix structures where DNA
synthesis occurred at replication sites that were indistin-
guishable from those found in intact cells [50]. Radichev and
colleagues [51] found that DNA replication initiates at
discrete chromosomal sites attached to the nuclear matrix.

At replication foci, the nuclear matrix houses factors
necessary for DNA replication, such as DNA polymerases,
the sliding clamp (PCNA) and single-strand binding protein
(RPA), and provides structural support throughout the
replication process. Wu and Gilbert [52] proposed that
origins are selected and replicon size is determined in early
G1 phase of the cell cycle. Using an in vitro system, it was
subsequently shown that MCM2, a component of the pre-
replicative complex, is loaded onto chromatin gradually and
cumulatively throughout Gi, but is rapidly excluded from
active replication foci in S phase [53]. Tatsumi and
colleagues [54] reported a similar cycle of events for ORC1, a
component of the replication initiation complex at ORIs.
This coincides with recruitment of the chromatin-bound
ORC2-5 complex to a structure likely to be the nuclear
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DNA replication is organized at the nuclear matrix. (@) Replicons are
defined in early G| phase of the cell cycle by attachment of MARs to the
nuclear matrix. (b) In late G1, origins of replication (ORIs) are recruited
to the nuclear matrix and replication factors assemble at these sites,
licensing the chromatin for replication. (c) Once the appropriate
mitogenic stimuli have been received, cells enter S phase, at which ORlIs
become activated. Following initiation of replication at a particular locus,
the two identical newly replicated ORIs probably dissociate from the
nuclear matrix. Two loops of replicated DNA gradually emerge (shown in
blue), while the yet-to-be replicated DNA of the replicon moves through
the replication factory. (d) At the end of S phase, the replication
machinery is dismantled. Adapted from [71].

matrix [55], suggesting a link between the accumulation of
ORC1 and the assembly of the replication complex in human
nuclei.

These observations fit a model in which MARs stably
anchor the replicon ends and, during G1, small-scale sub-
chromosomal chromatin refolding recruits ORIs to the
nuclear matrix, where factors accumulate to form the pre-
replicative complexes (Figure 2). Subsequently, as ORIs
begin to replicate in S phase, certain protein factors
dissociate from the chromatin and undergo proteolysis - as
part of a control mechanism to prevent re-replication - thus
releasing the ORIs from the nuclear matrix. In the
meantime, replication continues at the initial location as
DNA is reeled through the replication machinery or
replication factory [49]. At the ends of replicons, stable
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Figure 3

Schematic representation of viral genome integration. Tumor viruses and
HIV-I integrate near MARs attached to the nuclear matrix, where the
transcription and DNA replication machinery is assembled. The viral
genome is thus integrated near the machinery required for its
transcription and replication. Adapted from [56].

MARs could act as barriers between adjacent replicons by
preventing the accumulation of supercoiled DNA structures,
while providing binding sites for topoisomerase II, which can
resolve replication intermediates.

Genome anchoring and disease

Integration of retroviral DNA into the host genome is
essential for viral replication. Although retroviral integration
sites lack a consensus sequence, they are often AT-rich with
base unpairing and DNA-bending and unwinding elements
[56,57]. DNA sequence analysis indicates that both DNA
tumor viruses and retroviruses integrate within or close to
MARs (Figure 3) [58,59]. Furthermore, the efficiency of
transcription of the retrovirus HIV-1 is determined by the
proximity of its integration to MARs [57]. As SATB1 binds to
MARs flanking HIV-1 integration sites and silencing of
SATB1 gene expression alters the pattern of integration sites,
it has been suggested that retroviruses use MARs to form
viral pre-integration complexes [60].

MARs also appear to play a role in some cancers. Chromo-
some rearrangements are hallmarks of certain malignancies
and inherited genetic disorders. The breakpoints of recur-
rent translocations in leukemia as well as deletions involving
the breast-cancer susceptibility genes BRCA1 and BRCA2
occur at MARs, indicating that the bringing together of these
sequences at the nuclear matrix facilitates their illegitimate
recombination [61,62]. Patients who develop leukemia
following treatment of a primary tumor with inhibitors of
topoisomerase II often have specific chromosome trans-
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Figure 4

Proposed mechanism for the cytotoxic action of AT-specific drugs. The
drugs bind to AT-rich MARs in chromatin, crosslinking the two strands of
the DNA. This leads to the disruption of processes such as transcription
and DNA replication that are initiated at or in the vicinity of MARs.

locations in their cancer cells whose breakpoints contain
MARs, emphasizing the importance of the chromatin
environment in the generation of chromosome aberrations
[63,64].

Fragile sites are hypervariable regions that generate genomic
instability in tumors. Certain fragile sites contain long AT-
rich minisatellites, called AT-islands, which function as
MARs [65]. AT-islands are susceptible to considerable
repeat expansion, which, in the fragile site FRA16B associa-
ted with leukemia, appears to strengthen their attachment to
the nuclear matrix [65]. The presence of abnormal trans-
cripts of the tumor suppressor gene WWOX (which spans
FRA16B) in the absence of detectable mutations or deletions
may be caused by aberrant chromatin architecture due to
enhanced MAR anchoring by expanded AT-islands [66].

Identification of AT-islands has led to the emergence of a
new class of drugs that specifically alkylate them [67]. These
drugs exhibit an extraordinary cytotoxicity, which is likely to
be due to their disruption of replication and transcription,
the two essential nuclear processes organized at MARs
(Figure 4). One of these drugs, bizelesin, binds specifically to
the minor groove of DNA at AT-rich regions and generates
interstrand crosslinks. It has high cytotoxic activity in vitro
towards a broad spectrum of human cancer cell lines and,
more importantly, high activity against various tumors
engrafted in mice [68,69]. While extensive development will
be needed to make these compounds safe anti-cancer drugs
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for clinical use, their DNA-sequence specificity might offer a
novel approach for targeting tumor cells containing expan-
ded AT-repeat sequences.

Our understanding of how the genome functions in the
context of the nucleus has been propelled by indisputable
evidence that distinct genomic sites bind to regulatory
proteins at the nuclear matrix. The emerging picture is that
these genomic anchors regulate transcription and replica-
tion by dynamically organizing chromatin in three-
dimensional space. The recognition that these essential
nuclear processes are compartmentalized into microenviron-
ments that are compromised in diseases such as cancer [70]
emphasizes the need to define chromatin architecture more
accurately in relation to the various nuclear domains. In
reaching beyond the linear genome, we will approach a more
comprehensive view of genomic function and are likely to
identify truly novel targets for therapy.
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