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Lateral gene transfer and protein complexity<p>Laterally transferred genes are shown to be less involved in protein-protein interactions, and essential genes that exhibit low duplica-bility and high connectivity do exhibit mostly vertical descent.</p>

Abstract

Background: Lateral gene transfer is a major force in microbial evolution and a great source of
genetic innovation in prokaryotes. Protein complexity has been claimed to be a barrier for gene
transfer, due to either the inability of a new gene's encoded protein to become a subunit of an
existing complex (lack of positive selection), or from a harmful effect exerted by the newcomer on
native protein assemblages (negative selection).

Results: We tested these scenarios using data from the model prokaryote Escherichia coli.
Surprisingly, the data did not support an inverse link between membership in protein complexes
and gene transfer. As the complexity hypothesis, in its strictest sense, seemed valid only to essential
complexes, we broadened its scope to include connectivity in general. Transferred genes are found
to be less involved in protein-protein interactions, outside stable complexes, and this is especially
true for genes recently transferred to the E. coli genome. Thus, subsequent to transfer, new genes
probably integrate slowly into existing protein-interaction networks. We show that a low
duplicability of a gene is linked to a lower chance of being horizontally transferred. Notably, many
essential genes in E. coli are conserved as singletons across multiple related genomes, have high
connectivity and a highly vertical phylogenetic signal.

Conclusion: High complexity and connectivity generally do not impede gene transfer. However,
essential genes that exhibit low duplicability and high connectivity do exhibit mostly vertical
descent.

Background
Lateral gene transfer (LGT) is a major force in microbial evo-
lution, driving bacterial genetic innovation and speciation
[1,2]. The common intuitive notion of a lateral transfer event
is an acquisition of a locus or allele with a new and potentially
useful function. Indeed, it has been claimed that laterally
acquired genes may only be fixed in a population if they are

under strong positive selection [3]. The scarcity of transfer of
genes involved in informational processes ('informational
genes') such as transcription and translation was, therefore,
attributed to lack of positive selection due to the inability of
newly acquired proteins to interact with their pre-existing
native counterparts [4]. According to this concept, designated
'the complexity hypothesis' [4], the chances of a gene to be
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beneficial to a new host are greatly influenced by the number
of its interactions with its new neighbors - implying a direct
link between complexity and LGT (Figure 1a, solid arrow).

An alternative explanation for the paucity of transfer of infor-
mational genes may be negative (purifying) selection operat-
ing against gene acquisition. For many major cellular
functions, in particular essential ones, there is likely to be a
homologous ancestral gene already present when a foreign
ortholog is acquired. In these cases, the laterally acquired
gene will have to coexist alongside its native homolog before
orthologous replacement (also called xenologous gene dis-
placement) can occur. If the foreign gene is expressed, the
chances that this coexistence will be deleterious to the host is
especially high when the gene's encoded protein is involved in
protein-protein interactions, and even more so when it is a
subunit of a protein complex. This is because the increase in
concentration of one component (that is, the effect of gene
dosage resulting from a single gene duplication) can either

inhibit complex assembly, or form undesirable toxic interac-
tions, as described in 'the balance hypothesis' [5]. The authors
showed that genes encoding protein complex subunits have
lower duplicability, that is, are less likely to have multiple par-
alogs in a genome. We propose that a horizontally acquired
homolog can exert an even more profound negative influence,
compared with a duplication product, even at low expression
levels. This is because it could be similar enough to interact
with a native protein and yet sufficiently different so that an
aberrant interaction is formed, destabilizing a native complex
in what is often called a 'dominant negative' effect. This situ-
ation will result in an indirect effect of complexity on LGT
mediated through gene duplicability (Figure 1a, dotted
arrows).

Here we perform several analyses aimed at testing the com-
patibility of the complexity hypothesis and the balance
hypothesis with existing protein interaction data, using
Escherichia coli as a model for prokaryotic evolution.

Results and discussion
Protein complexity and duplicability in E. coli
Previous work in the yeast Saccharomyces cerevisiae demon-
strated that protein complexity (number of subunits in a pro-
tein) and gene duplicability are inversely correlated, which
was attributed to the effects of gene dosage [5]. Accordingly,
members of large gene families (having at least three para-
logs) were shown to be significantly under-represented in
yeast protein complexes when compared to singletons [5]. We
tested whether a similar trend exists in the model prokaryote
E. coli, which is somewhat less complex than yeast on the
organismal level. All available subunit data for E. coli were
retrieved from SwissProt [6], and family membership for
each gene was obtained from the EMU server (see Materials
and methods). The comparison showed that, in E. coli, gene
families with three or more paralogs are in fact under-repre-
sented in monomers (20.44%) and not, as expected, in het-
ero-oligomeric protein complexes, where their fraction
(29.98%) is very similar to that of the whole genome
(31.24%). Furthermore, the data indicated that unlike yeast
[7], a group composed of characterized monomers and homo-
oligomers had a similar fraction of singletons (Q) to that of
the whole E. coli proteome, and monomers of E. coli even
have a higher Q value than the genomic fraction (Table 1).
Notably, whereas in Saccharomyces the Q value for hetero-
oligomeric proteins of medium size and above (having at least
three subunits of more than one type of polypeptide) was very
high, the corresponding Q value in E. coli was not higher than
that observed for monomers in the latter organism. Thus, cur-
rent E. coli protein data do not support a link between gene
duplicability and membership in protein complexes.

The lack of correlation between protein complexity and dupli-
cability in E. coli does not support the balance hypothesis for
this organism, which may hint at different selective forces on

Alternative scenarios for the effect of complexity and duplicability on lateral gene transferFigure 1
Alternative scenarios for the effect of complexity and duplicability on 
lateral gene transfer. (a) Complexity could be operating directly (solid 
line) on LGT or indirectly (dotted line) through its effect on duplicability; 
(b) Complexity and duplicability are correlated (dotted line), and each is 
effecting LGT independently.
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complexity in prokaryotic genomes to those operating in
eukaryotes. This finding is in agreement with recent findings
by Ochman and colleagues [8], demonstrating differences in
protein interaction network evolution between eukaryotes
and prokaryotes.

Protein-protein interactions outside multimeric proteins also
contribute greatly to the complexity of an organism. How-
ever, unlike subunits in a protein complex, external interac-
tions usually do not require precise stoichiometry and may,
consequently, be less sensitive to dosage effects. Therefore,
one would expect these interactions not to be linked to dupli-
cability. Indeed, there was no significant difference in Q for
proteins having a single interaction versus those with multi-
ple interactions in E. coli (p = 0.21). Recently, a high-through-
put analysis of protein-protein interactions in E. coli has been
carried out using a His-tagged clone library pull-down [9]
that is more sensitive than the TAP- or SPA-tagged bait pro-
tein approach used previously [10] and thus provides interac-
tion data for most E. coli proteins. High-throughput methods
cannot distinguish between interactions of subunits within a
stable protein complex and those that are external to the com-
plex. Therefore, the data include the cumulative contribution
of both types of interaction to complexity. This category of
combined interactions will henceforth be referred to as con-
nectivity. In agreement with the SwissProt data, the Q value
of proteins with more than one interaction in the pull-down
study (Table 1) was not significantly higher than that of pro-
teins with a single interaction (p = 0.71). Nevertheless, an
analysis of the number of interacting partners of these pro-
teins showed that, in E. coli, singletons have significantly
more partners (a higher connectivity) than do proteins with
paralogs (4.474 versus 4.095, p = 0.01), so some correlation
between connectivity and duplicability does exist.

Characterized protein complexes are not resistant to 
transfer
Correlating complexity or duplicability with LGT on a
genomic scale is complicated by the fact that different LGT
detection methods often identify different subsets of genes
[11,12]. Therefore, for our analysis we relied on two different
datasets: genes identified as being acquired by LGT by Baye-
sian phylogenetic analysis [12,13] and genes identified as
transferred due to atypical nucleotide composition [11,14].
This last group of genes is thought to represent relatively
recent transfer events [11,12]. In order to address general
'transferability' of genes in microbial evolution, rather than
just specific origin of genes in E. coli, we used an established
global estimator, the 'phylogenetically discordant sequence'
(PDS) metric. This parameter measures the extent to which a
protein's phylogenetic signal matches most other proteins'
phylogenetic signals in a genome by examining its similarity
to its reciprocal best matches in other genomes [15,16]. Val-
ues range from 0 to 1, where a totally concordant sequence
has a score of 1, and a highly discordant protein has a score of
0. It is important to note that a gene that is vertically derived
in E. coli but has been involved in many LGT events in other
taxa could have a low PDS score, due to its irregular pattern,
which is appropriate for global assessment of a gene's propen-
sity for LGT. Also, transfers within closely related organisms
will generally affect PDS to a lesser extent than transfers
between remote taxa [15].

Having a foreign variant of a protein could have a destabiliz-
ing effect on a complex, even a homo-oligomeric one, result-
ing in a dominant negative phenotype. If selection against
LGT is mediated by such a dominant negative mechanism,
one would expect to observe a difference between the LGT
propensity of monomers, which should be free of such

Table 1

Fraction of singletons (Q) for various subsets of protein-encoding E. coli genes

Source Protein subset Number of proteins Number of singletons Q

SwissProt Monomers 137 87 0.6350

Homo-oligomers + 
monomers

596 333 0.5587

Hetero-oligomers 407 228 0.5602

Mid-to-large complexes 
(homotrimer and above)

334 197 0.5898

1 external interaction 641 342 0.5335

>1 external interaction 125 75 0.5000

Arifuzzaman et al. 2006 [9] 1 external interaction 371 193 0.5202

>1 external interaction 1,916 1,049 0.5475

Ragan 2001 [11] LGT due to atypical 
nucleotide composition

568 339 0.5968

Beiko et al. 2005 [13] LGT by Bayesian 
phylogenetic analysis

987 607 0.6150

PEC database Essential genes 233 173 0.7425

E. coli average 4,308 2,382 0.5529
Genome Biology 2007, 8:R156
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selection, and oligomeric complexes, such as homodimers or
homotetramers. When comparing E. coli proteins (Table 2)
with SwissProt subunit data (see Materials and methods) we
observed no significant difference in PDS between monomers
and other homo-oligomers (p = 0.056), indicating no support
for such a role in bacterial protein evolution. When a protein
complex involves more than one type of polypeptide, the
chance for a negative influence of a foreign homolog may
increase due to the effect of gene dosage - the requirement of
a precise molar ratio between subunits in order to guarantee
a functional complex [5]. However, comparing PDS values
between hetero-oligomeric complexes and the group contain-
ing monomers/homo-oligomers showed only an insignificant
increase in the average PDS value (p = 0.16). It appears,
therefore, that protein complexes are seldom a major barrier
to transfer, unless essential complexes are involved (see
below). A possible explanation for this observation is that
genes encoding complex components tend to be located adja-
cent to each other in prokaryotes. Thus, a lateral transfer
event can, in principle, transfer the whole complex as a unit
[17], be it on a plasmid or genomic island. A good example of
an extremely large and complex structure that has been fre-
quently transferred is the virulence-associated bacterial type
III secretion systems [18]. Similarly, a global survey of LGT
across microbial genomes has shown microbial surface struc-
tures such as pili, which are often multimeric, to be frequent
products of transfer [19]. Pili-encoding genes are nearly
always found in operons, so the combination of a function
that improves fitness in a niche and location appears to be
more potent than the negative effects of complexity, if any, in
determining transferability.

Frequently transferred genes have fewer external 
interaction partners
Although the original complexity hypothesis was mostly
focused on protein complexes, the authors nevertheless left
room for other interactions. Indeed, Jain and colleagues [4]
stated that "... the probability of a successful horizontal trans-

fer will be strongly affected by the number of interactions that
a protein must make with its neighbors." Thus, we suggest
that the scope of the complexity hypothesis should be
expanded to include all connectivity, rather than complexity.
Characterized E. coli proteins that were found to be involved
in a single interaction were, therefore, compared to proteins
with multiple interactions (Table 2). Notably, proteins with
multiple interactions have a higher average PDS value
(0.845) than proteins with a single interaction (0.766), and
the difference is significant (p = 0.00005). A similar trend
was observed for the pull-down data, but was not significant
(PDS scores of 0.732 and 0.711, respectively, p = 0.086).
Thus, genes that are more frequently transferred in evolution
tend to have lower connectivity, in agreement with our
broader definition of the complexity hypothesis. The fractions
of laterally transferred interacting genes (one interaction or
more) in E. coli, identified by either composition or Bayesian
phylogeny, were not significantly different from the average
for E. coli. However, high-throughput interaction data (that
includes interactions within a protein complex, see above)
indicate that although transferred genes identified by Baye-
sian phylogeny have a higher connectivity average that is not
significant (4.495 versus the E. coli average of 4.305, p =
0.311), the acquired genes with atypical composition,
assumed to be more recent arrivals in the genome, have a sig-
nificantly lower number of interactions (3.9922, p = 0.049).
It therefore appears that genes that are more recent arrivals
in a genome have lower connectivity than the rest of the genes
and probably have not integrated fully into the genome's
interaction network. Thus, the broader sense of the
complexity hypothesis is again in agreement with the data.
The evolutionary mechanism behind our observation
remains unclear - is it that genes that have to interact with
multiple partners are seldom retained or do transferred genes
just gradually adapt to the new network? We feel our findings
regarding recently transferred genes support the latter
explanation, but the former alternative cannot altogether be
rejected.

Table 2

Mean phylogenetic discordant sequence score for different subsets of E. coli proteins

Group Number of proteins Mean PDS (SEM) Pair-wise significance of 
comparison (p)

Monomers 137 0.807 (0.028) 0.056

Homo-oligomers 459 0.758 (0.017)

Monomers + homo-oligomers 596 0.769 (0.015) 0.164

Hetero-oligomers 407 0.794 (0.018)

Singletons 2,382 0.739 (0.007) <0.00001

Non-singletons 1,920 0.678 (0.009)

1 interaction (SP*) 150 0.766 (0.029) 0.00005

>1 interaction (SP) 641 0.845 (0.013)

1 interaction (PD†) 368 0.732 (0.02) 0.086

>1 interaction (PD) 1,897 0.711 (0.009) 0.086

* Interaction subsets based on SwissProt data. †Interaction subsets based on pull-down data. SEM, standard error of the mean.
Genome Biology 2007, 8:R156
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Conclusion
Our findings shed new light on current paradigms on trans-
ferability and duplicability of genes in prokaryotes. We pro-
pose that duplicability and, to a lesser degree, connectivity,
can directly affect the fixation of laterally transferred genes in
prokaryotic genomes (Figure 1b). We expand the complexity
hypothesis to include general connectivity and show that, in
its strictest sense, it applies mostly to essential complexes.

Many phylogenetic studies base their analysis on single copy
genes to avoid problems in discerning orthology. Based on the
findings presented here it is likely that this practice in fact fil-
ters out many laterally transferred genes. While this may be
desirable when reconstructing organismal phylogenies ('trees
of life') based on a non-transferred core [23], it is highly inap-
propriate when assessing the impact of LGT on different
genomes.

Materials and methods
Identification of singletons and gene families
A dataset of all 4,302 E. coli K12 MG 1655 proteins was
retrieved from the EMU web service [24]. We identified 480
gene families using the 'Genome query for gene families'
query with a BLAST threshold of e-10; 1,920 genes were
obtained that belonged to gene families. Subtraction of these
genes from the dataset of all protein-coding genes resulted in
2,382 singletons.

Identification of subunits of protein complexes and 
external interactions
Protein complex and protein interaction data were automati-
cally retrieved from SwissProt/TrEMBL and manually sorted.
Complex subunit information (SwissProt field 'Subunit') was
obtained for 1,003 genes, out of which 137 genes could une-
quivocally be classified as monomers, 459 as homo-oligomers
and 407 as hetero-oligomers. In addition, all homo-oligomers
that formed a homotrimer or more complex structure were
grouped as mid-to-large complexes. External protein interac-
tion data (SwissProt field 'Interaction') were similarly
retrieved from SwissProt. High-throughput interaction data
were retrieved from a recent E. coli pull-down study [9].

Identification of essential genes
We obtained 232 protein-coding essential genes for E. coli K-
12 from the PEC (profiling of the E. coli chromosome) website
[25].

Phylogenetically discordant sequences determination
The PDS metric for E. coli proteins [15] was determined using
the 'Sorted lists of ORF characteristics' query of the EMU web
service. PDS values are based on the data from 352 microbial
genomes available in EMU in September 2006 (Additional
data file 1).

Statistical analysis
The SPSS statistics package version 12 (SPSS Inc., Chicago,
IL, USA) was used. Significance scores for comparisons of
fractions of singletons were determined using the chi-square
test. Significance for comparisons of PDS values and interac-
tion partner numbers were determined using the Mann-
Whitney-Wilcoxon U test.

Abbreviations
LGT = lateral gene transfer; PDS = phylogenetically discord-
ant sequence.
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