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Air pollutant effects on endothelial cells<p>Gene expression analysis of human microvascular endothelial cells exposed to diesel exhaust particles and oxidized phospholipids revealed several upregulated gene modules, including genes involved in vascular inflammatory processes such as atherosclerosis.</p>

Abstract

Background: Ambient air pollution is associated with increased cardiovascular morbidity and
mortality. We have found that exposure to ambient ultrafine particulate matter, highly enriched in
redox cycling organic chemicals, promotes atherosclerosis in mice. We hypothesize that these pro-
oxidative chemicals could synergize with oxidized lipid components generated in low-density
lipoprotein particles to enhance vascular inflammation and atherosclerosis.

Results: We have used human microvascular endothelial cells (HMEC) to study the combined
effects of a model air pollutant, diesel exhaust particles (DEP), and oxidized 1-palmitoyl-2-
arachidonyl-sn-glycero-3-phosphorylcholine (ox-PAPC) on genome-wide gene expression. We
treated the cells in triplicate wells with an organic DEP extract, ox-PAPC at various concentrations,
or combinations of both for 4 hours. Gene-expression profiling showed that both the DEP extract
and ox-PAPC co-regulated a large number of genes. Using network analysis to identify coexpressed
gene modules, we found three modules that were most highly enriched in genes that were
differentially regulated by the stimuli. These modules were also enriched in synergistically co-
regulated genes and pathways relevant to vascular inflammation. We validated this synergy in vivo
by demonstrating that hypercholesterolemic mice exposed to ambient ultrafine particles exhibited
significant upregulation of the module genes in the liver.

Conclusion: Diesel exhaust particles and oxidized phospholipids synergistically affect the
expression profile of several gene modules that correspond to pathways relevant to vascular
inflammatory processes such as atherosclerosis.
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Background
Atherosclerotic cardiovascular disease is the leading cause of
death in the Western world. In addition to the classical risk
factors such as serum lipids, smoking, hypertension, aging,
gender, family history, physical inactivity, and diet, recent
data have implicated air pollution as an important additional
risk factor for atherosclerosis [1]. The strongest and most
consistent association between air pollution and cardiovascu-
lar morbidity and mortality has been ascribed to ambient par-
ticulate matter (PM) [2-6]. Large-scale prospective
epidemiological studies have shown that residence in areas
with high ambient PM levels is associated with an increased
risk of premature cardiopulmonary death [7]. A study by the
American Cancer Society reported a 6% increase in cardiop-
ulmonary deaths for every elevation of 10 μg/m3 in PM con-
centration [8]. Although the mechanism of cardiovascular
injury by PM is poorly understood, it has been shown that the
particles are coated by a number of chemical compounds,
including organic hydrocarbons (for example, polycyclic aro-
matic hydrocarbons and quinones), transition metals, sul-
fates and nitrates. In studies looking at the effects of diesel
exhaust particles (DEP) on the lung, we and others have
shown that the redox cycling organic hydrocarbons and tran-
sition metals are capable of generating airway inflammation
through their ability to generate reactive oxygen species
(ROS) and oxidative stress [9]. Supporting proteome analyses
confirmed that organic PM extracts induce a hierarchical oxi-
dative stress response in macrophages and epithelial cells, in
which the induction of electrophile-response element (EpRE)
regulated genes (for example, heme oxygenase 1, catalase,
and superoxide dismutase) at lower levels of oxidative stress
prevented the more damaging pro-inflammatory and pro-
apoptotic effects seen at higher levels of oxidative stress [10].
It is now widely recognized that oxidant injury is one of the
principal mechanisms of PM-induced pulmonary inflamma-
tion and that this mechanism could also be applicable to the
atherogenic effects of PM [11].

Atherosclerosis is a chronic vascular inflammatory process
where lipid deposition and oxidation in the artery wall consti-
tute a hallmark of the disease [12-17]. Infiltrating lipids come
from low-density lipoprotein (LDL) particles that travel into
the arterial wall and get trapped in a three-dimensional cage-
work of extracellular fibers and fibrils in the subendothelial
space [18,19], where they are subject to oxidative modifica-
tions [20-22] leading to the generation of 'minimally modi-
fied' LDL (mm-LDL). Such oxidized LDL is capable of
activating the overlying endothelial cells to produce pro-
inflammatory molecules such as adhesion molecules, macro-
phage colony-stimulating factor (M-CSF) and monocyte
chemotactic protein-1 (MCP-1) [23-25] that contribute to
atherogenesis by recruiting additional monocytes and induc-
ing macrophage differentiation [12,13,17]. We propose that
PM-induced oxidative stress synergizes with oxidized lipid
components to enhance vascular inflammation, leading to an
increase in atherosclerotic lesions. Indeed, further LDL oxi-

dation by ROS and lipoxygenases, myeloperoxidase, and
secretory phospholipase can result in 'highly oxidized' LDL
(ox-LDL) [17], taken up by macrophage scavenger receptors
(for example, SR-A and CD36) to form foam cells [26]. Not
only are mm-LDL and ox-LDL key components in the vicious
cycle of oxidative stress and inflammation in the vascular wall
[17,27], but we have shown that phospholipid oxidation prod-
ucts such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phos-
phorylcholine (ox-PAPC) lead to the upregulation of relevant
gene clusters in human aortic endothelial cells [28]. In the
lung, DEP chemicals may similarly lead to the regulation of
gene groups in the vasculature that overlap or synergize with
genes regulated by ox-PAPC.

We have found that exposure to PM in the ultrafine size range
(particles smaller than 0.18 μm in aerodynamic diameter)
resulted in increased systemic oxidative stress and greater
atherosclerotic lesions in apoE null mice (unpublished work).
These systemic vascular effects may be the result of synergy
between oxidized phospholipids generated in circulating LDL
particles and pollutant chemical that can be translocated or
systemically absorbed from atmospheric nanoparticles
[29,30]. We have explored this possible synergy between PM-
bound chemicals and oxidized lipids by studying gene expres-
sion in human microvascular endothelial cells (HMEC).
HMEC were treated with a pro-oxidative organic extract pre-
pared from diesel exhaust particles (DEP), ox-PAPC or a com-
bination of both. To assess the gene-expression profiles, we
used Illumina microarrays. Apart from measuring differential
expression between the treatment groups, we also clustered
the genes into modules using weighted gene coexpression
network analysis. We found that DEP extracts and ox-PAPC
affected the expression of a large number of genes, and dem-
onstrated synergistic effects on genes that play a role in anti-
oxidant, inflammatory and unfolded protein response (UPR)
pathways. We also examined the synergistic effect of ambient
PM and oxidized lipids in apoE null mice fed a high-fat diet,
demonstrating that similar pathways were activated in vivo.

Results
DEP and ox-PAPC upregulate HO-1 expression 
synergistically
We have shown that treatment of human aortic endothelial
cells (HAEC) with ox-PAPC leads to the generation of reactive
oxygen species (ROS) and the activation of several molecular
pathways, including EpRE regulated genes [28]. Diesel
exhaust particles (DEP) have also been shown to elicit ROS
production in pulmonary artery endothelial cells [31] and rat
heart microvessel endothelial cells [32]. Because heme oxyge-
nase-1 (HO-1) is an important oxidative stress sensor that is
upregulated by both ox-PAPC [28,33,34] and DEP in
endothelial cells [32], we investigated whether there was any
additive or synergistic co-regulation in human microvascular
endothelial cells (HMEC). We treated HMEC with ox-PAPC at
concentrations of 10, 20, and 40 μg/ml; DEP at
Genome Biology 2007, 8:R149
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concentrations of 5, 15, and 25 μg/ml or DEP (5 μg/ml) plus
ox-PAPC at concentrations of 10 or 20 μg/ml for 4 hours.
Western blot analysis showed that induction of HO-1 expres-
sion by DEP and/or ox-PAPC was dose dependent (Figure 1a).
Furthermore, HO-1 was synergistically co-regulated, as the
co-treatment with both stimuli resulted in an expression level
that was clearly greater than each stimulus alone or the sum
of their response levels. Indeed, at a DEP dose of 5 μg/ml, the
addition of ox-PAPC 20 μg/ml induced a HO-1 protein band
density that was, respectively, 15-fold and 5-fold greater than
the protein band densities corresponding to either DEP or ox-
PAPC alone (Figure 1b).

DEP and ox-PAPC regulate a large number of genes
We evaluated the transcriptomes of DEP- and ox-PAPC-regu-
lated genes in HMEC and assessed their gene-expression pro-
files using Illumina microarray technology. The microarray
data discussed in this publication have been deposited in the
Gene Expression Omnibus [35] and are accessible through
GEO Series accession number GSE6584. HMEC were treated
in triplicate wells with DEP at concentrations of 5 and 25 μg/
ml, ox-PAPC at concentrations of 10, 20, and 40 μg/ml or
DEP at 5 μg/ml plus ox-PAPC at concentrations of 10, 20, and
40 μg/ml for 4 hours (Figure 2a). Illumina microarray analy-
ses showed that ox-PAPC regulated a large number of genes
in a dose-dependent fashion that was evident for both upreg-
ulated (Figure 2b) and downregulated genes (Additional data

file 1), consistent with our previous reports [28]. Similarly,
DEP treatment resulted in a significant and dose-dependent
upregulation or downregulation of a number of genes. Thus,
25 μg/ml of DEP extract changed the expression profile of a
significantly greater number of genes than DEP at 5 μg/ml
(data not shown). More importantly, the combined treatment
of 5 μg/ml DEP with various doses of ox-PAPC resulted in the
altered expression of a greater number of genes than each
corresponding dose of ox-PAPC alone (Figure 2b, and Addi-
tional data file 1). Altogether, 1,555 genes were significantly
upregulated (> 1.5-fold, p < 0.05) by the three DEP and ox-
PAPC treatment combinations. Notably, some genes were
uniquely regulated by ox-PAPC and not by DEP; vice versa,
some genes were regulated by DEP but not by ox-PAPC (Fig-
ure 2b).

DEP and ox-PAPC induce HO-1 expression in HMECFigure 1
DEP and ox-PAPC induce HO-1 expression in HMEC. (a) Western blot. 
HMEC were treated with DEP, ox-PAPC or a combination of both at 
various concentrations. Mouse monoclonal anti-HO-1 and anti-β-actin 
antibodies were used to detect the relevant proteins as described in 
Materials and methods. (b) Densitometric analysis. The expression level 
of HO-1 protein in optical density (OD) units is shown. Similar levels of β-
actin are shown in (a). Results are typical of one representative 
experiment (n = 4).
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DEP and ox-PAPC induce a large number of genes in HMECFigure 2
DEP and ox-PAPC induce a large number of genes in HMEC. (a) 
Experimental protocol. HMEC were treated in triplicate wells with DEP, 
ox-PAPC, or DEP + ox-PAPC at the various concentrations shown. Cells 
were harvested at 4 h and cytoplasmic RNA prepared. Illumina 
microarrays were run and the data confirmed by qPCR analysis of selected 
genes. (b) Venn diagrams of upregulated genes. The numbers of genes that 
were significantly upregulated (> 1.5-fold, p < 0.05) over controls (no 
treatment) by the various treatment are shown. The left Venn diagram 
summarizes the number of genes induced by DEP 5 μg/ml (DEP5), ox-
PAPC 10 μg/ml (ox10) and DEP5 + ox10. The middle Venn diagram shows 
the number of genes induced by DEP5, ox-PAPC 20 μg/ml (ox20) and 
DEP5 + ox20. The right Venn diagram summarizes the number of genes 
induced by DEP5, ox-PAPC 40 μg/ml (ox40) and DEP5 + ox40. The total 
number of genes induced by a particular condition can be found by adding 
all values displayed within the circle corresponding to that condition. 
Values displayed in the circle intersections indicate the number of genes 
induced in common by the intersecting conditions.
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Synergistically regulated gene modules
We used weighted gene coexpression network analysis
(WGCNA) to identify modules of highly coexpressed genes
[36]. For computational reasons, we restricted the network
analysis to the 3,600 genes that varied the most. As detailed
in Materials and methods, we used unsupervised hierchical
clustering to identify 12 modules of densely interconnected
genes (Figure 3a, panels I, II) that were given unique color
codes. Module-enrichment analysis showed that three mod-
ules (brown, green, and yellow) were significantly (p <
0.0001) enriched in genes regulated by the treatments (Fig-
ure 3a, panel III). In particular, the brown and the green mod-
ules were most highly enriched in genes that were
differentially expressed by the treatments (Figure 3a, panel
III). From the heat maps reflecting green and brown module
gene expressions (Figure 3b,c), one can see that these genes
are synergistically regulated by DEP and ox-PAPC. Remarka-
bly, the yellow module also showed similar synergistic/addi-
tive gene response (Additional data file 2).

To differentiate synergistically enhanced from additive gene
responses during co-treatment with DEP and ox-PAPC, syn-
ergy was defined as follows. First, mean gene-expression lev-
els were determined for the combination of DEP and ox-
PAPC (mean AB); DEP only (mean A); ox-PAPC only (mean
B); and the mean expression in controls (mean C). Second, we
adjusted the mean expression levels in the treatment groups
by subtracting the basal level as reflected in the control group:
that is, we defined ΔAB = mean AB minus mean C, ΔA = mean
A minus mean C, and ΔB = mean B minus mean C (Figure 4a).
Third, we defined the synergistic index (SI) as follows, SI =
ΔAB/(ΔA + ΔB). Because we were interested in positive syn-
ergistic effects, we considered a gene as synergistically
expressed if the following criteria were met in at least one
combinatorial treatment: SI > 1; AB (mean) > A (mean) (p =
0.05); and AB (mean) > B (mean) (p = 0.05) (Figure 4a).
According to these criteria, 664 out of the 1,555 genes that
were significantly upregulated (> 1.5 fold, p < 0.05) in the
three DEP and ox-PAPC combinatorial conditions exhibited a
synergistic effect. Of those 664 genes, 382 were present in the
3,600 most varying genes used for the network analysis. More

significantly, 83% of these synergistically expressed genes
were concentrated in the brown, green and yellow modules.
These three modules also exhibited the highest modular
mean SI (Figure 3a, panel IV). Thus, unsupervised clustering
found modules (pathways) of synergistically expressed genes.

Functional enrichment analysis of gene modules 
detects pathways related to vascular inflammation
To dissect the biological importance of genes upregulated
synergistically by DEP and ox-PAPC, we studied the func-
tional enrichment (using GO Ontology) of the 3,600 most
varying genes, using the EASE software program [37]. Path-
way analysis showed that the most varying genes were signif-
icantly enriched for EpRE, inflammatory response, UPR,
immune response, cell adhesion, lipid metabolism, apoptosis,
and protein folding genes (Additional data file 3). In particu-
lar, the three modules brown, green, yellow, comprising dif-
ferentially expressed genes, were particularly enriched in
these pathway genes (Figure 5, and Additional data files 4, 5).
Indeed, these three modules concentrated around 40% of the
EpRE genes, around 58% of the pro-inflammatory response
genes, around 84% of the apoptosis pathway genes, and
around 79% of the UPR genes that were present in the whole
gene coexpression network (Figure 5, and Additional data
files 4, 5). Interestingly, most of the pro-inflammatory
response genes co-localized with activating transcription fac-
tor 4 (ATF4) in the brown module, a key mediator in the UPR
signaling that we have previously reported as significantly
induced by ox-PAPC in human aortic endothelial cells [28].

We validated our gene-expression data by quantitative PCR
(qPCR) in the same set of samples analyzed by microarray
analysis and in a set of samples from an independent experi-
ment. Representative genes from various pathways were
selected including EpRE-regulated genes (for example, HO-1,
and selenoprotein S (SELS)), inflammatory response genes
(for example, interleukin 8 (IL-8), and chemokine (C-X-C
motif) ligand 1 (CXCL1)), immune-response genes (for exam-
ple, interleukin 11 (IL-11)), UPR genes (for example, ATF4,
heat-shock 70 kDa protein 8 (HSPA8), and X-box binding

Gene coexpression network analysisFigure 3 (see following page)
Gene coexpression network analysis. (a) The gene coexpression network. The 3,600 most varying genes were selected to construct a weighted gene 
coexpression network. I, The average linkage hierarchical clustering tree; II, clustered gene modules represented by different colors; III, gene significance of 
the individual modules. The green, brown and yellow modules were enriched in significant genes most highly correlated with the treatment conditions (p 
< 0.0001). Gene significance = -log (p value). IV, The synergistic gene enrichment. The mean synergistic indices (SI) of network genes that were 
upregulated by DEP, ox-PAPC and the corresponding combinatorial treatment of DEP plus ox-PAPC were calculated for each network module. The 
green, brown and yellow modules were also enriched in genes synergistically coregulated. Mean SI, mean synergistic index as defined in Materials and 
methods. (b) Heat map of the green module; (c) Heat map of the brown module. Expression levels of (b) 307 genes and (c) 426 genes are represented in 
the rows by color coding (green = low expression, red = high expression), in triplicate samples for each treatment condition (columns). Both modules 
show a clear synergistic/additive pattern where the combinatory treatments exhibited as a whole either a greater level of upregulation (towards red) in 
274 genes (b) and 335 genes (c) at the top or downregulation (towards green) in 33 genes (b) and 91 genes (c) at the bottom, compared with the 
corresponding concentrations of DEP and ox-PAPC alone. Color scale is shown at the right of both heat maps, ranging from 0 (indicated by the green 
color at the bottom) to 1.0 (indicated by the red color at the top) as a reflection of the level of mRNA expression. DEP5 and DEP25, DEP 5 and 25 μg/ml, 
respectively; ox10, ox20, ox40: ox-PAPC 10, 20 and 40 μg/ml, respectively; DEP5 + (ox10, ox20 ox40): DEP 5 μg/ml + ox-PAPC 10, 20 and 40 μg/ml 
respectively.
Genome Biology 2007, 8:R149
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Figure 3 (see legend on previous page)
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protein 1 (XBP1)), oxygen and ROS metabolism genes (for
example, dual-specificity phosphatase 1 (DUSP1), and PDZ
and LIM domain 1 (PDLIM1)). All of these genes were syner-
gistically co-regulated by DEP and ox-PAPC in at least one
combinatorial treatment (Figure 4b, and Additional data file
6). qPCR could confirm 91% of the synergistic effects that
were revealed by microarray technology.

DEP and ox-PAPC co-regulatory effects have in vivo 
correlates
We investigated whether the DEP and ox-PAPC synergistic
effects occurred in vivo by evaluating the expression of repre-
sentative genes in liver tissue homogenates of apoE-null
mice, fed a high fat diet (HFD) and exposed to PM in a mobile
animal laboratory in downtown Los Angeles. Oxidized lipids
play an important role in the generation of vascular injury in
these hypercholesterolemic animals [38]. Mice were exposed

to concentrated ultrafine particles (UFP = particles < 0.18
μm), which in an urban environment are mostly comprised of
DEP, and compared to animals exposed to concentrated
PM2.5 (particles with an aerodynamic diameter < 2.5 μm, also
known as fine particles or FP) or filtered-air (FA), or com-
pared to mice that were left unexposed. Because we have pre-
viously noted that PM induces systemic oxidative stress
effects in these animals, most noticeably in the liver, hepatic
tissue was assayed for mRNA expression of HO-1, as well as
two key UPR transcription factors, XBP1 and ATF4. UFP-
exposed animals exhibited a significant upregulation (p <
0.05) of all three genes in comparison with FP, FA, and unex-
posed mice (Figure 6). These results indicate that the syner-
gistic effects predicted by our in vitro studies have important
in vivo outcomes, in which pro-oxidative PM chemicals may
gain access to the systemic circulation from the lung and may
then be able to synergize with circulating ox-LDL.

Discussion
We have used HMEC as a representative cell type to study the
synergistic effects of DEP chemicals and ox-PAPC on inflam-
matory gene expression. We found that DEP and ox-PAPC
could co-regulate a large number of genes that are involved in
atherosclerosis and vascular injury associated with ambient
PM exposures. This includes the upregulation (> 1.5-fold, p <
0.05) of 1,555 genes by a low dose of DEP combined with
three different doses of ox-PAPC (Figure 2b). In addition, the
same treatment resulted in downregulation of 759 genes
(Additional data file 1). Remarkably, 43% of all upregulated
genes exhibited a pattern of synergy in which the combination
resulted in a bigger response than either of the individual
stimuli. By using a module enrichment analysis [36] based on
the 3,600 most varying genes, we identified three groups of
genes (modules) that were most highly correlated to the treat-
ments (p < 0.0001) and were especially enriched in synergis-
tically expressed genes. Further analysis of these three
modules demonstrated that the gene clusters belonged to
pathways relevant to vascular inflammation, including
atherosclerosis. Moreover, the synergistic upregulation of
selected EpRE, pro-inflammatory, apoptotic and UPR genes
could be confirmed by qPCR analysis. The in vivo relevance of

The distribution of genes for different pathways in the gene coexpression network modulesFigure 5
The distribution of genes for different pathways in the gene coexpression 
network modules. The 3,600 most varying genes were used for a weighted 
gene coexpression network construction and subjected to GO biological 
process pathway analysis using the EASE software [37]. Values shown are 
the percentage of pathway genes present in the coexpression network 
that are clustered in color-labeled network modules. The colors 
correspond to the color-labeled modules defined in Figure 3a.
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DEP and ox-PAPC co-regulate genes in a synergistic/additive fashionFigure 4 (see following page)
DEP and ox-PAPC co-regulate genes in a synergistic/additive fashion. (a) Synergistic index (SI). Synergy was defined as the presence of a co-regulatory 
effect by both DEP and ox-PAPC that was greater than the effects induced by either compound alone and greater than the sum of those individual effects. 
The following criteria for a synergistic effect were as follows: SI (ΔAB/(ΔA+ΔB) > 1; AB (mean) > A (mean), p ≤ 0.05; AB (mean) > B (mean), p ≤ 0.05, 
where ΔA is the difference in mean expression level between the DEP and the control samples, ΔB is the difference in mean expression level between the 
ox-PAPC and the control samples, and ΔAB is the difference in mean expression level between the DEP + ox-PAPC and the control samples. (b) mRNA 
expression levels of representative genes. Each graph displays the relative mRNA expression levels normalized by β2-microglobulin mRNA levels and 
expressed as fold control (FOC) for microarray (white bars, left-hand y-axis) and qPCR (black bars, right-hand y-axis) assessment of representative genes 
(HO-1, IL-8, ATF4, CXCL1, XBP1, IL-11). For ease of comparison, the qPCR scale was divided by factors of 3.5 (HO-1) and 3 (IL-8), respectively. In similar 
fashion, the microarray scale was divided by a factor of 4 (IL-11) to make the comparison easier. The asterisk indicates combinations of DEP + ox-PAPC 
that exhibited synergistic effects. The high consistence of microarray and qPCR analysis, conducted on triplicate samples from independent experiments, 
implies both technical and biological validation. Statistical analysis was performed by one-way ANOVA, Fisher PLSD.
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Figure 4 (see legend on previous page)
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this gene-clustering analysis was established by comparing
gene expression in livers of hypercholesterolemic mice
exposed to UFPs versus mice that were exposed to FPs or FA
or were left unexposed. UFP-exposed animals indeed exhib-
ited significantly increased expression of EpRE and UPR
genes, predicted by the in vitro synergy between DEP and ox-
PAPC in HMEC (Figure 6).

Cumulative evidence supports the association of ambient air
pollution with daily total and cardiovascular mortality
[39,40], an association best established for the level of ambi-
ent PM [41,42]. Both experimental animal [43,44] and
human epidemiological work [45] have shown that exposure
to ambient PM promotes atherosclerosis, a disease process in
which the endothelial responses are of paramount impor-
tance. Notably, small particles appear to have a bigger impact
on atherogenesis than larger particles [46]. Thus, our gene-
expression data are of considerable importance in under-
standing how ambient air pollution might contribute to
endothelial injury and to atherosclerosis. While there is still
considerable uncertainty and debate about the mechanism(s)
of cardiovascular injury by PM, it is becoming increasingly
clear that PM exerts pro-oxidative and pro-inflammatory
effects in the lung that can also spill over to the systemic cir-

culation. The systemic effects could result either from the sys-
temic release of inflammatory mediators from the lung or
from the possible direct access of particles or chemicals to the
systemic circulation. In either scenario, the interaction of PM
components with the vascular endothelium in the lung or in
the systemic circulation may be relevant in the generation of
systemic vascular effects. We propose that such vascular
effects are magnified by their interaction with oxidized phos-
pholipids generated in LDLs or in the membranes of vascular
endothelial cells. While it is not possible to reconcile the in
vitro and in vivo dosimetry in the case of endothelial cells, we
have previously reported in macrophages and bronchial epi-
thelial cells that in vitro DEP extract concentrations in the
dose range 1-100 mg/ml correspond to realistic particle con-
centrations at hotspots of deposition in the respiratory tract
[47]. Thus, it is possible to achieve particle doses at microdo-
mains that are equivalent to the particle dose range that can
be achieved if the dose is recalculated from mass/volume to
mass per unit surface area. It is possible that similar flow-
directed hotspots could exist in the cardiovascular tree, for
example the ostia of the coronary arteries.

UFPs are rich in organic chemicals such as polycyclic aro-
matic hydrocarbons (PAH) and quinones (Additional data
files 7-9). These chemicals participate in the generation of
ROS by their redox cycling as well as possibly through a per-
turbation of mitochondrial function [48]. We and others have
shown that such PM-mediated oxidative stress can trigger
cytoprotective antioxidant responses in bronchial epithelial
cells, macrophages [49], pulmonary artery endothelial cells
[31], and rat heart microvessel endothelial cells [32]. This
response may represent the first level of a hierarchical
oxidative stress response, as demonstrated in macrophages
and epithelial cells [49]. Failure of the antioxidant response
to maintain redox equilibrium could subsequently lead to
pro-inflammatory and cytotoxic/apoptotic effects at high lev-
els of oxidative stress [49]. Oxidized phospholipids such as
ox-PAPC, generated in the LDL particles or cell membranes,
also exert oxidative stress effects in human aortic endothelial
cells [34]. Here we show that oxidative stress elicited by PM
chemicals synergizes with the effect of ox-PAPC, possibly
because they target different intracellular activation
pathways.

Endothelial cell responses to oxidative stress are of funda-
mental importance in atherogenesis. It is possible that
endothelial cells also exhibit a similar hierarchical response
as described in macrophages and epithelial cells in response
to pro-oxidative DEP chemicals [49]. ROS generation may
lead to a decreased intracellular concentration of reduced glu-
tathione (GSH) and thus to a decreased ratio of GSH to GSSG
(oxidized glutathione) that can act as a sensor and trigger
additional cellular responses. One example is the initiation of
a protective cellular response by the transcription of EpRE-
regulated genes [50]. Indeed, we have shown that DEP and
ox-PAPC synergize in the induction of genes such as HO-1

Ambient ultrafine PM chemicals enhance in vivo expression of genes related to vascular inflammationFigure 6
Ambient ultrafine PM chemicals enhance in vivo expression of genes 
related to vascular inflammation. (a) Experimental protocol. Two-month-
old male apoE null mice fed a high-fat diet were exposed for a total of 120 
h (5 h/day, 3 days/week for 8 weeks) to concentrated ultrafine particles 
(UFP), concentrated PM2.5 (FP), filtered air (FA) or not exposed (NE). (b) 
Hepatic gene expression levels. Gene expression was determined by 
qPCR of mRNA prepared from liver homogenates. UFP-exposed mice 
exhibited marked upregulation of HO-1 (left), XBP1 (center) and ATF4 
(right). Values were normalized by β-actin mRNA levels and expressed as 
fold control (FOC). Five samples per group were assayed in duplicates. 
Statistical analysis was performed by one-way ANOVA, Fisher PLSD.
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(Figure 4b), SELS, NADPH quinone oxidoreductase-1 (NQO-
1) and superoxide dismutase 1 (SOD1) (Additional data file 6).
EpRE-regulated gene expression is also evident in vivo, as liv-
ers from UFP-exposed apoE null mice exhibited significantly
increased HO-1 levels in comparison with animals exposed to
FA or left unexposed (Figure 6). Interestingly, UFP was able
to trigger HO-1 expression despite the overwhelming stimu-
lus resulting from a high-fat diet in ApoE-deficient animals.

According to the hierarchical oxidative stress paradigm,
higher levels of oxidative stress may overwhelm the cytopro-
tective and antioxidant effects of the first tier of response.
This could lead to the initiation of injurious cellular effects as
a result of the activation of pro-inflammatory mitogen-acti-
vated protein kinase (MAPK) and NF-κB signaling cascades
[49]. In accordance with this concept, we show that both DEP
and ox-PAPC could induce the synergistic expression of IL-8,
CXCL1 and IL-11 mRNA (Figure 4b, and Additional data file
6), all of which are relevant to vascular inflammation [51].
Such synergistic regulation is more evident at the higher
doses of ox-PAPC, which supports the hierarchical oxidative
stress model. One possible explanation for this synergy is that
DEP and ambient PM induce MAPK and NF-κB activation
[52], whereas ox-PAPC may act through the separate, but
related, UPR pathway in endothelial cells [28]. It is interest-
ing therefore, that UPR genes such as XBP1, ATF3 and ATF4
could be seen to be synergistically upregulated by DEP plus
ox-PAPC (Figure 4b, and Additional data file 6). We and oth-
ers have previously shown that ox-PAPC upregulates UPR
genes such as ATF3 and ATF4 in HAECs with concurrent
expression in atherosclerotic lesions [28,53]. In addition,
ambient UFPs upregulate ATF4 and XBP1 expression in vivo
(Figure 6b), suggesting that the UPR pathway may play a role
in the promotion of vascular injury by PM.

An important step in understanding how ambient PM pro-
motes endothelial cell dysfunction and atherosclerosis is to
dissect the mechanisms of how DEP and ox-PAPC synergize
in the induction of relevant genes. Such synergy may be
accomplished by various mechanisms, such as recognition of
different receptors, targeting of different intracellular signal-
ing cascades, and activity on different promoter elements of
synergistic genes. The identification of such mechanisms will
help clarify the means by which ambient PM result in vascular
dysfunction.

Materials and methods
Cell cultures
A human microvascular endothelial cell (HMEC) line, origi-
nally isolated from six human foreskins, was obtained from
Francisco Candal (Centers for Disease Control and Preven-
tion, Atlanta, GA) and cultured as described previously [54].
Cells were treated in triplicate wells with DEP (5 or 25 μg/ml),
ox-PAPC (10, 20 or 40 μg/ml), or DEP 5 μg/ml + ox-PAPC
(10, 20, or 40 μg/ml) in media containing 1% FBS (Irvine Sci-

entific, Santa Ana, CA). ox-PAPC was generously provided by
Judith Berliner (University of California Los Angeles, CA),
who has described a detailed mass spectrometric analysis of
the material [55,56]. ox-PAPC consists of a mixture of oxi-
dized phospholipids that include as main components 1-
palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcho-
line (POVPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phos-
phorylcholine (PGPC), and 1-palmitoyl-2-(5,6)-
epoxyisoprostane E2-sn-glycero-3-phosphocholine (PEIPC).
Diesel exhaust particles were a gift from Masaru Sagai
(National Institute for Environmental Studies, Tsukuba,
Japan). These particles were collected from the exhaust in a
4JB1-type LD, 2.74 l, 4-cylinder Isuzu diesel engine under a
load of 10 torque onto a cyclone impactor equipped with a
dilution tunnel constant volume sampler [57,58]. DEP was
collected on high-capacity glass-fiber filters, from which the
scraped particles were stored as a powder in a glass container
under nitrogen gas. The particles consist of aggregates in
which individual particles are less than 1 μm in diameter. The
chemical composition of these particles, including PAH and
quinone analysis, as well assessment of their oxidant poten-
tial by the dithiothreitol (DTT) assay was previously
described [9,57-59]. DEP methanol extracts were prepared as
previously described [9,57,59]. Briefly, 100 mg DEP were
suspended in 25 ml methanol and sonicated for 2 min. The
DEP methanol suspension was centrifuged at 2,000 rpm for
10 min at 4°C. The methanol supernatant was transferred to
a pre-weighed polypropylene tube and dried under nitrogen
gas. The tube was re-weighed to determine the amount of
methanol extractable DEP components. Dried DEP extract
was then dissolved in DMSO at a concentration of 100 μg/μl.
The aliquots were stored at -80°C in the dark until used. DEP
components are shown in Additional data files 7-9. The chem-
ical composition of this extract, including the presence of the
redox cycling organic substances such as polycyclic aromatic
hydrocarbons and quinones, has been previously described
by us [58].

Western blot analysis
HMEC were harvested and lysed in lysis buffer (25 mM Hepes
pH 7.4, 50 mM β-glycerophosphate, 1 mM para-nitrophenol-
phosphate, 2.5 mM MgCl2, 1% Triton, complete Protease
Inhibitor Cocktail Tablets (Roche Applied Science, Indianap-
olis, IN)). Protein samples (25 μg/well) in SDS loading buffer
were subjected to 4-12% SDS-polyacrylamide gel electro-
phoresis (PAGE) and transferred to nitrocellulose membrane
(Bio-Rad, Hercules, CA). The membrane was blocked with 5%
dry milk and 0.1% Tween 20 (USB, Cleveland, OH). Mouse
monoclonal anti-HO-1 antibody (StressGen Biotech, Victoria,
Canada) and mouse monoclonal anti-β-actin antibody
(Abcam, Cambridge, MA) were used as primary antibodies at
1:1,000 dilution overnight, respectively. Anti-mouse IgG
horseradish peroxidase-linked secondary antibody (Amer-
sham Biosciences, Piscataway, NJ) was used as secondary
antibody at 1:2,000 dilution for 1 h. Chemiluminescent sig-
nals were detected by enhanced chemiluminescence assay
Genome Biology 2007, 8:R149
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(Pierce, Rockford, IL). Protein expression levels were deter-
mined using a densitometer (Kodak Digital Science 1D Anal-
ysis Software; Kodak, Rochester, NY).

RNA preparation and expression microarray analyses
HMEC were cultured, treated in triplicate wells and harvested
as described. Cytoplasmic RNA was isolated by RNeasy kit
(Qiagen, Valencia, CA) and analyzed on an Agilent 2100 Bio-
analyzer (Agilent, Palo Alto, CA) to assess RNA integrity.
Biotin-labeled cRNA was synthesized by the Total prep RNA
amplification kit from Ambion (Austin, TX). cRNA was quan-
tified and normalized to 77 ng/μl, and then 850 ng was
hybridized to Beadchips (Beadchip 8X1, Illumina, San Diego,
CA) that contain probes for around 23,000 transcripts. The
hybridized Beadchips were scanned by an Illumina BeadScan
confocal scanner and analyzed by Illumina's BeadStudio soft-
ware, version 1.5.1.3. cRNA synthesis, hybridization and
scanning were performed at the UCLA Illumina microarray
core facility. The microarray data was normalized by the rank
invariant method and analyzed using BeadStudio software.

Quantitative real-time PCR
Cytoplasmic RNA was isolated from cells using RNeasy (Qia-
gen). One microgram of total RNA was reverse transcribed
using random hexamer primers and Superscript-III reverse
transcriptase (Invitrogen, Carlsbad, CA). Quantitative RT-
PCR (qPCR) was performed using iQ and SYBR Green detec-
tion kits (Bio-Rad, Hercules, CA). Primers were designed by
PrimerQuest software (Integrated DNA Technololgies, Cor-
alville, IA). PCR conditions were three 3-min steps of 94°C
and 40 cycles of 94°C for 15 sec, 60°C for 30 sec, and 72°C for
30 sec. Expression levels were determined from cycle thresh-
olds using a standard curve, normalized to human β2-
microglobulin or mouse β-actin expression levels and
expressed as fold-control.

Weighted gene coexpression network construction
We followed the method for constructing a weighted gene

coexpression network previously reported by us [36]. Briefly,

the absolute value of the Pearson correlation coefficient was

calculated for all pairwise comparisons of gene-expression

values across all microarray samples. The Pearson correlation

matrix was then transformed into an adjacency matrix A -

that is, a matrix of connection strengths using a power func-

tion. Thus, the connection strength aij between gene expres-

sions xi and xj and was defined by aij = |cor(xi, xj)|β. The

network connectivity (kall) of the ith gene is the sum of the

connection strengths with the other genes, that is,

. This summation performed over all genes in a

particular module is the intramodular connectivity (kin). We

chose a power of β = 6 based on the scale-free topology crite-

rion [36] but our findings are highly robust with respect to

this choice.

Network module identification
Modules are defined as sets of genes with high 'topological

overlap' [36,60]. The topological overlap measure can serve

as an important filter to counter the effects of spurious or

missing connections between network nodes. Specifically the

topological overlap between genes i and j is written as

where, denotes the number of nodes to which

both i and j are connected, and u indexes the nodes of the

network. Because hierarchical clustering takes a dissimilarity

measure as input, we defined a topological overlap-based dis-

similarity measure as follows . We defined mod-

ules as the branches of the resulting hierarchical clustering

tree. We used average linkage hierarchical clustering as

implemented in the R software [61].

Module enrichment analysis
On the basis of the treatments with DEP, ox-PAPC, or DEP
plus ox-PAPC, gene significance (GS) of the ith gene-expres-
sion profile xi was defined as

GS(i) = -log10(p value(i))

where the p value was computed using analysis of variance
(F-statistic). An important step in gene network analysis is to
study the biological relevance of network modules. To assess
whether the modules were related to the treatments, we
defined a module significance measure on the basis of gene
significance measure. Specifically, we define a measure of
module significance by the mean gene significance in the qth
module, that is

where i indexes the genes in the qth module and nq denotes
the module size. By considering the module significance
measure in our applications, we observed that certain mod-
ules (green and brown modules) were enriched with differen-
tially expressed genes. Similarly, the synergistic index (see
below) gives rise to a module synergy measure.

Assessment of synergy
Synergy was defined as the presence of a co-regulatory effect
by both DEP and ox-PAPC that was greater than the effects
induced by either compound alone and greater than the sum
of those individual effects. To differentiate synergistically
enhanced from additive gene response in those cases where
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there was upregulation over the untreated samples (controls),
we developed a synergistic index (SI) defined as SI = ΔAB/
(ΔA+ΔB) where ΔAB was the difference in between gene mean
expression levels shown by a DEP plus ox-PAPC combinato-
rial treatment and controls, ΔA was the differential expres-
sion in between mean DEP and mean controls and ΔB was the
differential expression in between the corresponding concen-
tration of mean ox-PAPC and mean controls (Figure 4a). Such
a SI was used for both microarray intensity and qPCR read-
outs. Synergy in upregulated genes required the concurrence
of three criteria: SI > 1; AB (mean) > A (mean) (p = 0.05); and
AB (mean) > B (mean) (p = 0.05). The enrichment of modules
in synergistic genes was assessed by the determination of a
modular mean SI, where non-synergistic genes were assigned
a value of zero.

Exposure of apoE null mice to ambient PM
Two-month-old male C57BL/6J apoE null mice (Jackson
Laboratory, Bar Harbor, ME) were placed on a high-fat diet
and exposed to concentrated ambient particles (CAP) for a
total of 120 hours over a 56-day period (5 hours per day, 3
days per week for 8 weeks). Animals were euthanized 24 h
after completion of the last CAPs exposure, and aortic roots
and livers were harvested. Animals in the unexposed (NE)
group were kept in the UCLA vivarium, and the mice destined
for CAP exposure were transported to the mobile animal lab-
oratory in downtown Los Angeles, close (approximately 300
m) to the 110 freeway. This mobile research laboratory
(AirCARE1) is equipped with state-of-the-art research capa-
bilities as previously described [62]. Mice were housed in fil-
ter-top cages under temperature- and humidity-controlled
conditions. Exposures took place in custom-designed expo-
sure chambers [63,64] that were connected to a particle-con-
centration-enrichment system or to a source of purified,
filtered air (FA) [65]. Other than the NE group, there were
three groups (17-18 mice per group) that were exposed to FA,
CAP less than 2.5 μm in aerodynamic diameter (FP) and CAP
less than 0.18 μm in aerodynamic diameter (UFP). Particle
mass concentration and elemental CAP composition were
determined as previously described [65]. Average FP mass,
FP particle number concentration, and FP particle enrich-
ment factor were 361.95 μg/m3, 2.7 × 105 particles/cm3, and
13.8-fold, respectively. Average UFP mass, UFP particle
number concentration, and UFP particle enrichment factor
were 128.55 μg/m3, 3.24 × 105 particles/cm3, and 16.5-fold,
respectively. Experimental protocols were approved by the
animal research committee at UCLA.

Statistical analysis
For the microarray gene-expression analysis, the two-tail Stu-
dent t-test embedded within the BeadStudio software was
used. For the assessment of synergy, we used the F-test for
multiple comparisons and values were considered significant
at a p < 0.05. For qPCR analysis, we used ANOVA with two-
tail Fisher PLSD post-hoc analysis. Differences were consid-
ered statistically significant at p < 0.05.

Additional data files
The following additional data files are available online with
this paper. Additional data file 1 shows the number of genes
that DEP and ox-PAPC significantly downregulate. Addi-
tional data file 2 shows the heat map of the yellow module,
where a pattern of synergistic/additive interaction is noted.
Additional data file 3 contains selected pathway analysis on
the total number of genes that were significantly regulated by
DEP and/or ox-PAPC. Additional data file 4 shows the distri-
bution of genes for particular pathways in the gene coexpres-
sion network modules. Additional data file 5 contains the list
of genes that exhibited a synergistic mode of regulation in the
gene network. Additional data file 6 shows SIs of representa-
tive genes as determined from microarray and qPCR data.
Additional data file 7 contains the recovery of major organic
fractions from 1 g DEP. Additional data file 8 contains the
content of polycyclic aromatic hydrocarbons in crude DEP
extract and fractions. Additional data file 9 contains the qui-
none content in crude DEP extract and fractions.
Additional data file 1The number of genes that DEP and ox-PAPC significantly downregulateThe number of genes that DEP and ox-PAPC significantly downregulate.Click here for fileAdditional data file 2Heat map of the yellow module, where a pattern of synergistic/additive interaction is notedHeat map of the yellow module, where a pattern of synergistic/additive interaction is noted.Click here for fileAdditional data file 3Selected pathway analysis on the total number of genes that were significantly regulated by DEP and/or ox-PAPCSelected pathway analysis on the total number of genes that were significantly regulated by DEP and/or ox-PAPC.Click here for fileAdditional data file 4The distribution of genes for particular pathways in the gene coex-pression network modulesThe distribution of genes for particular pathways in the gene coex-pression network modules.Click here for fileAdditional data file 5A list of genes that exhibited a synergistic mode of regulation in the gene networkA list of genes that exhibited a synergistic mode of regulation in the gene network.Click here for fileAdditional data file 6SIs of representative genes as determined from microarray and qPCR dataSIs of representative genes as determined from microarray and qPCR data.Click here for fileAdditional data file 7The recovery of major organic fractions from 1 g DEPThe recovery of major organic fractions from 1 g DEP.Click here for fileAdditional data file 8The content of polycyclic aromatic hydrocarbons in crude DEP extract and fractionsThe content of polycyclic aromatic hydrocarbons in crude DEP extract and fractions.Click here for fileAdditional data file 9The quinone content in crude DEP extract and fractionsThe quinone content in crude DEP extract and fractions.Click here for file
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