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Abstract

Background: Exposure to cadmium is associated with a variety of human diseases. At low
concentrations, cadmium activates the transcription of stress-responsive genes, which can prevent
or repair the adverse effects caused by this metal.

Results: Using Caenorhabditis elegans, 290 genes were identified that are differentially expressed
(>1.5-fold) following a 4 or 24 hour exposure to cadmium. Several of these genes are known to be
involved in metal detoxification, including mtl-1, mtl-2, cdr-1 and ttm- [, confirming the efficacy of the
study. The majority, however, were not previously associated with metal-responsiveness and are
novel. Gene Ontology analysis mapped these genes to cellular/ion trafficking, metabolic enzymes
and proteolysis categories. RNA interference-mediated inhibition of 50 cadmium-responsive genes
resulted in an increased sensitivity to cadmium toxicity, demonstrating that these genes are
involved in the resistance to cadmium toxicity. Several functional protein interacting networks
were identified by interactome analysis. Within one network, the signaling protein KEL-8 was
identified. Kel-8 protects C. elegans from cadmium toxicity in a mek-1 (MAPKK)-dependent manner.

Conclusion: Because many C. elegans genes and signal transduction pathways are evolutionarily
conserved, these results may contribute to the understanding of the functional roles of various
genes in cadmium toxicity in higher organisms.

Background been classified as a category 1 human carcinogen by the Inter-
Cadmium is a persistent environmental toxicant that is asso-  national Agency for Research on Cancer [1]. In addition, cad-
ciated with a variety of human diseases. Target organs of cad-  mium exposure is associated with teratogenic responses,

mium toxicity include kidney, testis, liver, prostate, lung and  including fetal limb malformations, hydrocephalus, and cleft
tissues, including muscle, skin and bone. Cadmium has also palate [2-5].
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Atlow levels of exposure, the toxicological effects of cadmium
are prevented by the activation of intracellular defense and
repair systems, namely the stress response. Cadmium-
induced expression of stress-responsive genes has been
reported in a variety of species [6-10]. Cadmium can activate
transcription of many stress-responsive genes, including
those that encode metallothioneins, glutathione-S-trans-
ferases (GSTs) and heat shock proteins, all of which play
important roles in the resistance to metal toxicity or cellular
repair. The emergence of microarray technology has enabled
genome-wide investigations of gene regulation, and the sub-
sequent identification of genes that were not previously asso-
ciated with responses to cadmium exposure. For example,
treatment of HeLa cells with cadmium affected the expression
of more than 50 genes, out of 7,075 genes that were examined
[11]. Exposure of the human T-cell line CCRF-CEM to cad-
mium altered the mRNA levels of more than 100 genes in a
dose- and time-dependent manner [11,12]. The results
obtained from these and other studies provide valuable
knowledge on the ability of cadmium to alter gene expression

[13,14].

In most cases, the relationship between cadmium-induced
changes in mRNA levels and the biological consequence of
the alteration has not been established. Only a few cadmium-
responsive genes have been tested for a role in the resistance
to cadmium toxicity. Mammalian metallothioneins and the
Caenorhabditis elegans cdr-1 genes are highly cadmium-
inducible. Inactivation of both MT-1 and MT-2, in MT-1/2
double knockout mice, or inhibition of cdr-1 by RNA interfer-
ence (RNAI) in C. elegans results in hypersensitivity to cad-
mium [15-17]. These results confirmed the important roles of
these proteins in the defense against cadmium toxicity.

In the present study, we utilized whole genome C. elegans
DNA microarrays to monitor global changes in the nematode
transcription profile following cadmium exposure. Bioinfor-
matic analysis of Gene Ontology (GO) and protein interaction
networks were used to identify potentially novel pathways
involved in the cadmium defense response. The biological
role of the cadmium-responsive genes and the cognate path-
ways in the defense against cadmium toxicity were studied by
inhibition of gene expression using RNAi. Genes and path-
ways previously associated with cadmium exposure were
identified, confirming the efficacy of the study. In addition,
genes and pathways not previously associated with cadmium
exposure were discovered.

Results

Effects of cadmium on the transcription of stress-
responsive genes

To determine the optimal conditions that affect cadmium-
responsive transcription, quantitative real-time PCR (qRT-
PCR) was performed to assess the effects of different cad-
mium concentrations and exposure times on the expression
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Effects of cadmium on the transcription of stress-responsive genes. Total
RNA was extracted from non-treated or cadmium-treated C. elegans, and
mRNA levels of cadmium-responsive (cdr-1 (triangle), mtl-/ (square), mtl-2
(circle)) and general stress-responsive (gst-38 (asterisk), hsp-70 (cross);
T24H10.4 (diamond)) genes were measured with qRT-PCR. All
measurements were normalized to the mRNA level of mlc-2. Fold change
was normalized to the mRNA levels observed in non-exposed nematodes.
Results were displayed in mean log,fold + SE (n = 3). (a) The effect of
cadmium concentration on mRNA levels following 24 h exposure. (b) The
effect of exposure time on mRNA levels following exposure to 100 pM
cadmium.

of selected stress-responsive genes. The level of expression of
three C. elegans cadmium-responsive genes, cdr-1, mtl-1 and
mtl-2, significantly increased at all cadmium concentrations
following a 24 h exposure (Figure 1a). However, the levels of
expression of the two general stress-responsive genes, gst-38
and hsp-70, were induced only at concentrations greater than
50 uM (Figure 1a).

The time course of gene induction in response to 100 uM cad-
mium was also examined. The expression of cadmium-
responsive genes was maximally induced after only 4 h; in
contrast, the general stress-responsive gene gst-38 reached
its highest level of expression after 24 h (Figure 1b). The C.
elegans homolog of human jun, T24H10.7, did not respond
significantly to cadmium exposure. Based on these results,
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subsequent microarray experiments were performed using C.
elegans exposed to 100 uM cadmium for 4 and 24 h.

Microarray analysis of cadmium-responsive
transcription

There were 37 and 95 genes significantly up-regulated after 4
h and 24 h exposures to cadmium, respectively; 6 genes were
significantly down-regulated following a 24 h exposure (fold-
change >2, p < 10°6) (Table 1, Figure 2). The genes whose lev-
els of expression significantly changed were clustered into
three groups: group 1, early response genes; group 2, late
response genes; and group 3, down-regulated genes. The
early response group includes cdr-1, mtl-1, mtl-2, and phase I
and phase IT metabolism genes. The levels of expression from
the microarray study of cdr-1, mtl-1, mtl-2 and gst-38 were
consistent with the qRT-PCR results.

Microarray results were analyzed to identify the biological
processes and molecular functions that are affected by cad-
mium exposure. To extend the scope of the analysis, 290
genes, whose expression levels were changed by cadmium by
at least 1.5-fold (p < 0.001) following either 4 h or 24 h expo-
sure, were used in the analysis (237 up-regulated and 53
down-regulated; Additional data file 2). Gene Ontology anal-
ysis indicated that C. elegans metabolic and localization path-
ways, which regulate establishment of localization and
transportation of different chemical species (especially metal
ions), were significantly enriched (p < 0.05) with up-regu-
lated genes following the 4 h exposure (Figure 3, Additional
data file 3). After a 24 h exposure, metabolic and localization
pathways were enriched with both up- and down-regulated
genes. Additional pathways that were overpopulated with
down-regulated genes included fatty acid metabolism, cellu-
lar lipid metabolism and cell wall catabolism. Proteolysis
pathways were enriched with up-regulated genes following a
24 h exposure, suggesting that increased protein degradation
may occur after prolonged exposure to cadmium. The molec-
ular functions enriched with over-expressed genes after both
4 h and 24 h exposures were catalytic activity and binding
activities to many ion species, which agrees well with the
results of the biological processes analysis (Figure 3, Addi-
tional data file 4).

Although GO analysis provides an overall understanding of
the global transcription profile, current C. elegans GO data
are not sufficient to predict the functions of all of the cad-
mium-responsive genes. Several C. elegans cadmium-regu-
lated genes have been mapped to known metabolic pathways
in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [18] (Table 2). Among these are four cytochrome
P450 genes, which are involved in metabolism of both endog-
enous and exogenous compounds; gene W01A11.1, which is
involved in degradation of tetrachloraethene; and gst-38,
which is involved in phase II metabolism. The majority of the
cadmium-responsive genes, however, are novel and have not
been assigned GO categories or mapped to biochemical path-
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ways. Of the 290 genes whose expression significantly
changed following a 24 h cadmium exposure, only 83 (29%)
have been assigned biological process GO terms. Similarly,
only 109 (38%) of the genes following a 24 h exposure have
been assigned molecular function GO terms (Additional data
file 1).

Functional analysis of cadmium-responsive genes using
RNA interference

Of the 53 down-regulated genes (>1.5-fold), 8 have previously
reported RNAi phenotypes, including embryonic lethality,
slow growth, larval growth arrest, and sterility (Table 3). This
suggests that the suppression of the expression of these genes
by cadmium may adversely effect embryonic development,
growth or reproduction. Several of the up-regulated genes
also have previously reported phenotypes, such as F57B9.3
(embryonic lethal, larval arrest) and cyp-1344 (locomotion
abnormal, slow growth) [19]. The biological consequence of
changes in expression of the majority of the genes, and their
roles in the defense against cadmium toxicity, however, are
unknown. To investigate the relationship between cadmium-
induced gene expression and resistance to cadmium toxicity,
the effects of inhibiting the expression of the cadmium-
responsive genes in the presence or absence of cadmium on C.
elegans growth were determined.

The expression of 92 cadmium-responsive genes, which were
induced by cadmium (>1.5-fold), was inhibited by RNAI in the
presence of four different cadmium concentrations in an mtl-
2 null background. In RNAi control animals, slow growth and
uncoordinated movement were observed after cadmium
exposure. Morphological changes (protruding vulva, multi-
vulva) were occasionally observed at higher cadmium con-
centrations (100 and 200 uM). Lethality was not observed
under any experimental condition. RNAi-mediated inhibition
of 50 of the 92 genes tested resulted in slower growth in the
presence of cadmium, compared to the RNAi control in the
same treatment group (visual observation under microscope;
Additional data file 5). The only gene that exhibited a mor-
phological phenotype when inhibited by RNAi in the absence
of cadmium was F57B9.3, which encodes a translation initia-
tion related protein. As described previously [19,20],
inhibition of F57B9.3 caused embryonic lethality and L1 lar-
val arrest.

To confirm and quantify the effect of the 50 cadmium-respon-
sive genes that affected nematode growth in the presence of
cadmium, we repeated the RNAi-mediated inhibition of these
genes in the presence of 100 uM cadmium and measured
nematode body length (as a measure of growth/development)
using the COPAS Biosort [21]. Inhibiting the expression of
these genes resulted in different degrees of slow growth in the
presence of cadmium, compared to the RNAi control in the
same cadmium treatment group (Figure 4, Additional data
file 6). Based on the changes in cadmium sensitivity caused by
RNAI, the genes were grouped into three classes, strong,
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Table |

Genes whose expression changes following 4 h or 24 h cadmium exposure

Gene name CGC gene name 4 h exposure 24 h exposure

Fold change P value Fold change P value

Up-regulated genes (early response group)

F35E8.11 cdr-1 734 1.00E-43 1114 3.10E-43
TO08GS.10 mtl-2 28.7 1.70E-38 317 <1.0E-43
KI1G9.6 mth| 17.1 6.28E-40 15.0 4.71E-39
R04D3.1 cyp-14A4 14.9 5.32E-37 324 4.02E-34
T26H2.5 10.1 6.57E-27 152 2.88E-38
Y46G5A.24 74 1.32E-37 18.3 6.16E-37
F56A4.5 6.5 1.96E-29 1.8 1.32E-32
TI0B9.10 cyp-13A7 6.3 2.57E-26 6.9 4.00E-26
AC3.7 ugt-1 54 4.16E-42 8.2 3.46E-37
F41B5.2 cyp-33C7 53 6.86E-30 6.9 5.18E-42
TO8GS. | 4.9 1.20E-27 6.8 4.04E-32
TI6GI.6 4.5 I.16E-41 6.1 3.91E-36
TI0B9.I cyp-13A4 4.3 6.38E-40 7.1 1.12E-35
F28DI.3 thn-1 4.0 7.88E-34 9.9 1.50E-42
F53C3.12 39 1.07E-31 57 2.12E-40
CO02A12.1 gst-33 38 2.57E-33 78 2.15E-33
Y59E9AR 4 thn-5 37 2.50E-35 8.5 4.87E-42
F28D1.4 thn-3 3.6 2.69E-23 14.3 6.80E-33
Y39B6A.24 3.4 7.06E-31 1.4 4.48E-42
F28DI.5 thn-2 34 3.45E-30 37 351E-35
TI8D3.3 33 2.18E-31 43 1.45E-35
TI16GI1.5 3.0 1.65E-30 22 1.02E-29
TI0B9.2 cyp-13A5 29 3.11E-36 4.4 1.22E-34
CI7H1.3 27 5.00E-17 4.0 7.58E-25
Y40BI10A.6 2.6 2.99E-20 38 6.72E-23
Y40BI0A.7 24 1.41E-20 35 1.59E-22
C27H5.4 24 1.90E-27 4.1 1.52E-32
F26F2.3 2.4 1.77E-14 2.7 1.66E-19
F49F1.6 24 6.64E-33 34 2.19E-38
F45D11.4 23 1.52E-22 33 6.57E-31
F49F1.7 22 2.93E-20 2.8 6.66E-24
E02A10.2 grl-23 2.1 2.47E-07 2.6 3.93E-19
K04A8.5 2.1 1.04E-25 3.0 2.50E-23
WOIALILI 2.1 2.01E-28 23 1.28E-31
F45DI1.14 2.1 9.71E-09 2.6 2.43E-14
F37B1.8 gst-19 2.0 8.18E-24 27 2.40E-27
C3IALLS 2.0 7.33E-24 1.7 3.35E-18

Up-regulated genes (late response group)

FO8F8.5 7.1 1.06E-28
B0507.8 1.8 4.14E-09 5.6 2.51E-32
CO8E3.6 52 2.02E-27
F35E8.8 gst-38 1.6 3.05E-20 5.0 1.41E-28
C31B84 1.8 5.34E-09 43 2.57E-37
CI7H1.8 4.0 5.83E-19
TOIC3.4 1.6 3.18E-07 37 3.88E-32
FISEIL.12 34 1.88E-10
WO08AI12.4 1.6 2.66E-12 33 2.54E-27
F48C1.9 33 2.97E-14
RO5D8.9 1.8 9.43E-18 32 4.16E-25
ZCl96.6 3.0 I.18E-26
CO8E3.10 1.6 2.44E-08 3.0 1.58E-30
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Table | (Continued)

Genes whose expression changes following 4 h or 24 h cadmium exposure

Y73C8C.2 1.8 I 45E-22 3.0 3.27E-28
TOSEI .1 29 5.78E-24
C54D10.8 29 3.96E-24
CI7H1.4 29 5.74E-21
Y39G8B.7 28 I.55E-26
C45G7.3 28 731E23
FI5B9.6 1.5 2.29E-17 27 403E-33
ZK742.3 15 9.27E-14 27 1.04E-24
CI7H1.9 27 8.10E-18
TO7D10.4 clec-15 1.7 6.03E-10 26 1.51E-22
CO8E3. | 24 I.12E-19
F37BI.1 gst-24 24 1.02E-18
TI0B9.3 yp-13A6 1.9 2.08E-25 24 5.68E-25
C47A10.1 pgb-9 1.8 1.09E-20 23 332E21
F42C5.3 1.6 1.37E-11 23 3.76E-20
B0024.4 23 9.01E-17
B0507.10 23 2.11E-23
Y105C5A.12 23 1.06E-19
T27E4.2 hsp-16.11 23 9.06E-30
ZK643.8 grl-25 1.8 7.23E-07 22 2.62E-19
FISE6.8 22 8.03E-23
FI3H6.3 1.7 331E-25 22 6.26E-31
KO02E2.7 22 1.25E6-22
F57B9.3 22 I.18E-19
YI19DI0B.7 22 2.44E-13
F49H6.5 15 I.18E-09 22 I.19E-16
C29F7.1 1.9 2.15E-24 22 3.55E-30
F44E7.5 15 6.49E-2 22 3.59E-29
M8s.1 ugt-62 1.6 1.06E-23 22 2.78E-34
F53H2.1 22 247E23
B0284.2 2.1 5.41E-26
C54D10.7 2.1 2.83E-2 -
F56C3.9 1.5 321E-13 2.1 420E-23 &
T27F62 clec-12 2.1 .45E-18 §
D2023.7 col-158 1.8 6.26E-07 2.1 6.44E-15 e
C29F7.2 2.1 1.41E-30 g
TI12D8.5 2.1 5.12E-22 8
F41B5.3 yp-33C5 1.6 8.21E-20 2.1 1.21E-24 5
FI5A48 2.0 2.08E-22
T28D9.3 1.7 3.40E-24 2.0 7.68E-30
FO9BY.| 1.7 8.66E-20 20 1.63E-32
Y75B8A.28 2.0 3.06E-20
FISEIL.I 2.0 341E-11
B0284.4 2.0 457E-13
F47H4.10 skr-5 2.0 2.15E-28
K09D9.1 2.0 3.55E-22

Down-regulated genes

ZK816.5 dhs-26 1.5 I.16E-10 23 3.77E-11
F58B3.3 lys-6 24 1.35E-17
F58B3.1 lys-4 23 3.80E-18
F58B3.2 lys-5 2.1 3.93E-18
Y48EIB.8 2.0 1.0IE-I5
Y39GI0AR.6 ugt-3/ 2.0 5.16E-18
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Figure 2

Heat map of cadmium-responsive genes. Cadmium responsive genes (>2-
fold) based on decreased expression (blue) or increased expression
(orange) relative to non-treated C. elegans. Brighter shades of color
correspond to greater fold changes in expression.

http://genomebiology.com/2007/8/6/R 122

medium and weak protective effects against cadmium toxicity
(Additional data file 6). Several of the genes in the strong and
medium category (cdr-1, ttm-1, mtl-2, and mtl-1) have been
previously reported to be involved in cadmium detoxification
[17,22,23]. However, the majority of the genes have not been
shown to be involved in resistance to metal toxicity. GO
molecular function analysis indicated that many of these
genes have metal ion binding and catalytic activities (Table
4).

The genes that had the strongest protective effects against
cadmium toxicity in the growth assay were also examined for
an effect on C. elegans reproduction. RNAi of cyp-1344 or
thn-1 resulted in a significant decrease in the number of C.
elegans offspring when nematodes were exposed to cad-
mium, compared to the RNAIi control in the same cadmium
treatment group. RNAi did not significantly affect reproduc-
tion in the remainder of the tested genes (Table 5).

Protein interaction analysis reveals a novel pathway
involved in the response to cadmium

In order to further define the molecular mechanisms of the
cadmium defense response, the program Cytoscape was used
in protein interaction analysis to identify potential regulatory
pathways [24]. C. elegans has a relatively small interaction
database (approximately 3,000 proteins and approximately
5,000 interactions) [25]. A larger data set of predicted inter-
actions in C. elegans, based on data from Drosophila and
Saccharomyces interlogs, was recently released [26]. We
merged the two data sets into an interaction network desig-
nated WI_combined. Of the 290 cadmium-responsive genes,
49 were mapped to the interaction network, including 6 genes
that were functionally important in cadmium defense
response, as identified in the RNAi analysis (Figure 5a).
Among these functional local networks, Y46G5A.24, which
encodes a B,B-carotene 15,15'-dioxygenase like protein, was
highly cadmium-inducible and inhibition of this gene by
RNAI resulted in hypersensitivity to cadmium (Table 1, Fig-
ure 4). Two proteins that interact with Y46G5A.24, KEL-8
and BRP-1, are themselves centers of other interactions.

KEL-8 can interact with several proteins, including MEK-1,
PMK-1, MPK-1 and MKK-4, which are components of the
mitogen-activated protein kinase (MAPK) pathway (Figure
5b). The MAPK pathway is involved in the C. elegans heavy
metal response [27,28]. Inhibiting the expression of
Y46G5A.24 or kel-8 by RNAI resulted in enhanced sensitivity
to cadmium exposure in wild-type and mtl-2 mutant C. ele-
gans (Figure 6a). This suggests that both Y46G5A.24 and kel-
8 can protect C. elegans from cadmium toxicity. The mek-1
mutant alone was slightly more sensitive to cadmium than
wild-type nematodes. However, inhibition of kel-8 in mek-1
null background did not cause hypersensitivity to cadmium
compared to mek-1 mutant alone, suggesting that the protec-
tive function of kel-8 against cadmium toxicity depends on
the normal function of mek-1 (Figure 6a).

Genome Biology 2007, 8:R122
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Figure 3

Biological processes and molecular functions enriched with cadmium-responsive genes. We used 286 genes that were significantly changed following a 24
h exposure to 100 uM cadmium and 86 genes that were significantly changed following a 4 h exposure in the GO analysis. GO terms with p < 0.05, and >4
changed genes in at least one of four conditions (up or down regulated after 4 or 24 h cadmium exposures) are displayed (Additional data files 3 and 4).

The brighter the color, the more significant the enrichment of the pathway.

We also tested the function of brp-1, the other gene that was
shown to interact with Y46G5A.24 brp-1 mutant nematodes
showed a similar response to cadmium as wild-type nema-
todes, implying that brp-1 is not involved in the response to
cadmium (Figure 6b).

Discussion

Identification of cadmium-responsive genes in C.
elegans

Microarray technology has been used to examine the effects
of cadmium exposure in a variety of organisms [29-32].
Although cadmium-regulated gene expression has been doc-
umented, in C. elegans there is inadequate information
regarding the genome response to this metal. In the present
study, well known cadmium-responsive C. elegans genes,
mtl-1, mtl-2, cdr-1 and several heat shock protein genes, were
identified, confirming the efficacy of the study. Previously, 49
C. elegans cDNAs, whose steady-state levels of expression
change 2-6-fold in response to 24 h cadmium exposure, were
identified using differential display [33]. Among these were
mtl-1, cdr-1, hsp-70, and genes encoding collagen and
metabolic proteins. Novillo et al. [34] also reported over-
expression of C. elegans cdr-1, mtl-2 and collagen genes, as
well as changes in the expression of metabolic genes, follow-

ing a seven day exposure to cadmium. These expression data
are similar to the present study, although some of their genes
were not identified in the present analysis. This can be attrib-
uted to the difference in cadmium concentrations or exposure
times, and methods of analysis. Another study conducted by
Huffman et al. [22] also tested the C. elegans genome
response following a 3 h exposure to 1 mM cadmium. How-
ever, the results are not comparable to our study because
their study was conducted using a mutant strain, glp-4(bnz2),
and only three replicate microarrays were performed.

Several gene families that have not been well-characterized in
regard to cadmium exposure were identified. Among these
are genes that encode phase I and phase II detoxifying
proteins, innate immunity proteins, and ABC transporters.
Cadmium exposure caused over-expression of fourteen P450
genes, six GST genes and five UDP-glucuronosyltransferase
(UGT) genes. Cadmium also caused the down-regulation of
one UGT gene. The P450 genes showed the most substantial
expression changes, with changes between 1.5- to 32-fold,
and many of them responded after a 4 h exposure. The cad-
mium-induced increase in P450 gene expression is similar to
previous observations in C. elegans [35] and mammalian sys-
tems [36,37] but contrasts with the decreased expression
observed in cadmium-exposed European flounder [30].
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Table 2
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KEGG pathways for cadmium-responsive genes

Gene name Description KEGG pathway

TOIB9.1 cyp-13A4* Ascorbate and aldarate metabolism

TOIB9.2 cyp-13A5* Stilbene, coumarine and lignin biosynthesis

TOIB9.3 ccp-13A6* Gamma-hexachlorocycloheane degradation

TOIB9.10 cyp-13A7* Limonene and ponene degradation Fluorene degradation
WOIAII.I Predicted hydrolases or acyltransferases Tetrachloraethene degradation

F35E8.8 gst-38 Glutathione metabolism

*Each of the cyp genes is found in each of the KEGG pathways listed in the right column.

Cadmium affected the expression of several genes previously
implicated in the nematode immune response. Four of the ten
known lysozyme genes were down-regulated by cadmium,
and four thaumatin/PR-5 family genes were up-regulated fol-
lowing cadmium exposure. C. elegans has 88 C-type lectins, a
subset of which is inducible by infection and may function as
a recognition tool in host defense [38,39]. The expression of
eight C. elegans C-type lectin genes were affected by cad-
mium. There are several reports describing a relationship
between cadmium exposure and changes in the immune
response [40,41]. The immune response genes may be
affected by cadmium due to the modulation of shared signal
transduction pathways, such as the MAPK signaling cascade

[27,42-44].

There are approximately 60 ABC transporter genes in the C.
elegans genome. The expression of four of these genes, pgp-
1, pgp-8, pgp-9 and mrp-3, was induced by cadmium, and
pmp-5 was suppressed. A relationship between ABC
transporter expression and cadmium exposure has also been
observed in several species [45,46].

Table 3

In addition to these known gene families, exposure to cad-
mium affected the expression of nuclear receptors (nhr-206,
mxl-3 and grl-23), translation initiation factor (F57B9.3),
ins-7 (insulin/IGF-1-like peptide), and genes with unknown
functions. Interestingly, inhibition of many novel genes by
RNAi resulted in hypersensitivity to cadmium, suggesting
these genes have important roles in resistance to metal/cad-
mium toxicity.

GO analysis determined that the C. elegans genes that are
over-expressed following a 4 h exposure to cadmium encode
cellular trafficking proteins (localization/binding and trans-
port) and metabolic enzymes. This suggests that the first
response to cadmium intoxication is a transcriptional adjust-
ment to maintain ion homeostasis and readjust the perturbed
energy supply. Following a prolonged exposure (24 h), the
proteolysis category was significantly enriched with over-
expressed genes, suggesting an accumulation of damaged
proteins. Cadmium exposure is associated with protein dam-
age caused by metal binding to sulfhydryl groups or oxidative
stress [47]. Cellular trafficking, fatty acid metabolism and cell

Published RNAIi phenotypes of down-regulated genes

Target gene name Description 24 h fold change RNA.i phenotype* Reference
FO9F7.4 Enoyl-CoA hydratase 1.8 Emb [61]
Gro [19]
F22A3.6 Unknown 1.8 Emb [62]
TI5B7.1 Ficolin and related extracellular proteins 1.7 Emb [63]
F52B11.4 Collagen (col-133) 1.7 Emb, Gro, Rup [19]
RINGII.14 Triglyceride lipase-cholesterol esterase 1.6 Him [64]
C55B7.4 Acyl CoA dehydrogenase (acdh-1) 1.5 Age [65]
C25G4.6 Unknown 1.5 Ste [66]
Lva, Pvl, Stp [67]
TO04A8.5 Glutamine phosphoribosylpyrophosphate amidotransferase 1.5 Larval lethal-early (L1/L2), WT [61]
Lva [63]

*The phenotypes are: Age, ageing alteration; Emb, abnormal embroygenesis; Gro, abnormal growth rate; Him, high incidence of males; Lva, larval arrest; Pvl, protruding vulva;

Rup, exploded through vulva; Ste, sterile; Stp, sterile progeny; WT, wild type.
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Figure 4

Effect of gene inhibition on C. elegans growth. The expression of target genes was inhibited using RNAI in the absence (upper panel) and presence (lower
panel) of 100 uM cadmium. mtl-2 (gk|25) mutant nematodes were grown on test plates for three days before collection (RNAi of gene mtl-2 was
conducted using an mtl-/ null strain, mtl-/ (tm1770)). C. elegans body length, a measure of growth/development, was normalized to the mean body length
in the RNAI control group under identical cadmium exposure conditions. Results are displayed as mean normalized body length + SE (n = 200-500

nematodes).

wall metabolism categories were also enriched with down-
regulated genes following a 24 h exposure to cadmium, indi-
cating multiple cellular functions may be disrupted by cad-
mium toxicity.

Discovery of novel genes and pathways involved in
cadmium resistance

In C. elegans, mtl-1, mtl-2, cdr-1 and ttm-1 (Toxin-regulated
target of p38 MAPK) are cadmium-responsive genes that
function in resistance to cadmium toxicity [22]. pcs-1, a phy-
tochelatin synthase, and hmt-1, an ATP-dependent
phytochelatin transporter, were also able to protect C. ele-
gans from cadmium toxicity [48-50]. However, the relation-
ships between increased levels of transcription and biological
function of most of the other C. elegans cadmium-responsive
genes are unknown. To examine the function of the transcrip-
tional change in response to cadmium, we combined func-
tional genomics with microarray studies, and examined 92
cadmium-responsive genes in the presence and absence of
cadmium. With one exception, inhibition of the expression of
these genes did not affect C. elegans growth in the absence of
metal. This suggests that most of the genes affected by cad-
mium are non-essential. Inhibition of these genes in the pres-
ence of metal resulted in hypersensitivity to cadmium,
suggesting that these genes play important roles in the
defense against cadmium toxicity. None of the tested genes
showed lethal effects when inhibited in the presence of cad-

mium under the current experimental conditions. There are a
couple of possible reasons: first, gene knockdown using RNAi
is not 100% efficient and residual gene expression may be suf-
ficient for defense against cadmium toxicity; and second,
functional redundancy within the C. elegans genome could
prevent lethal effects when the expression of only one of the
redundant genes is affected.

By integrating the RNAi assay results into the protein interac-
tion network, a novel signal pathway involved in cadmium
resistance was discovered. The center of the network is
Y46G5A.24, which encodes a B,B-carotene 15,15'-dioxygenase
like protein. This protein shares 95.8% sequence identity with
human B,B-carotene 15,15'-monooxygenase, an enzyme
involved in the biosynthesis of retinoic acid. Cadmium has
been shown to act synergistically with retinoic acid in the
induction of limb-bud malformation in mice [51]. The
Y46G5A.24 network includes kel-8, which encodes a signal-
ing molecule containing a kelch-repeat, and mek-1, which is a
major component in the MAPK signaling pathway [27,52].
RNAI results indicate that kel-8 is involved in protecting C.
elegans from cadmium toxicity, and that the protective effect
of kel-8 depends on the normal function of mek-1. Because
kel-8 and mek-1 are both evolutionarily conserved, they may
be components of a conserved metal-responsive signal trans-
duction pathway.

Genome Biology 2007, 8:R122
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Table 4
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Gene Ontology molecular functions of genes related to cadmium sensitivity

GO molecular function

Cadmium sensitivity genes

Iron ion binding

Calcium ion binding

Zinc ion binding

Sugar binding

Monooxygenase activity

Transferase activity, transferring hexosyl groups
Transferase activity, transferring acyl groups
Methyltransferase activity

Carboxylic ester hydrolase activity

Epoxide hydrolase activity

TI10B9.1 F41B5.2 F41B5.3 TI10B9.3 F49H6.5
TO8GS.10

T26H2.5

T27F6.2 Y73C8C.2

TI0B9.I1 F41B5.2 F41B5.3 T10B9.3

M88.1

FO9B9. 1

Y40BI0A.7

KO04A8.5 T08G5.10

WOIAILI

Although only one local interaction network was examined in
detail, there are several other local networks: ttm-1, gst-9,
cyp-13A4, cyp-12A6 and gst-38. Further study of these func-
tional local networks may provide additional information on
the mechanisms involved in metal detoxification/resistance.

Many studies have demonstrated that large gene sets are
induced in response to various stressors/toxicants. In gen-
eral, these studies have been used to identify particular genes
involved in the detoxification process. However, it has
remained unclear if the global response to toxicant exposure
is specific to detoxification of that stressor or a more general
universal response. For example, cadmium exposure induces
MAPK pathways, which affect the expression of genes that
detoxify related stressors (metals, reactive oxygen species,
and organic chemicals) but that do not defend against cad-

Table 5

mium simply because these stressors affect common path-
ways. Alternatively, a response could be specific and largely
only cadmium detoxification genes are over-expressed. By
using RNAI to examine the role of 92 cadmium responsive
genes in the resistance to cadmium toxicity, we find that 50 of
these genes have at least some effect on nematode health
when cadmium is present but not when it is absent. Moreo-
ver, because RNAi may only knock down gene function and
not eliminate it entirely, it is plausible that even more of these
genes could play a role in the resistance to cadmium toxicity.
The fact that all the resistance genes identified in our initial
visual screen had confirmed phenotypes in our secondary
quantitative assay is indicative of the sensitivity of our sys-
tem, allowing us to potentially identify resistance genes that
play only a minor role in the response. Thus, in the C. elegans

Effects of RNAi and cadmium on C. elegans reproduction

Target gene CGC gene name Reproduction rate (minus cadmium)* Reproduction rate (plus cadmium)* Diff. of medians P valuet
TI0BY.1 cyp-13A4 0.92, 0.92, 0.88, 0.96, 0.87 0.57,0.59, 0.61, 0.79, 0.72 031 0.008
F28D1.3 thn-1 1.04,1.02, 1.14, 1.03 0.89, 0.86, 0.92, 0.92 0.13 0.029
F35E8.11 cdr-1 1.01, 1.02, 0.94, 0.95, 1.19, 1.04 1.38, 1.21, 0.88, 0.79, 0.80, 0.84 0.15 0.394
Y39B6A.24 1.10, 1.03, 1.09 1.01, 1.21, 1.03 0.06 0.700
T26H2.5 0.88, 0.99, 0.81 0.74, 0.95, 1.00 -0.07 1.000
KI1G9.6 mth-1 0.85, 1.13, 0.99, 0.90, 1.07 0.97, 1.16, 1.12, 1.08, 1.12 -0.13 0.222
T27F6.2 clec-12 1.10, 0.90, 1.00, 1.03, 0.64, 0.90 1.05, 1.32, 1.42, 0.94, 1.32, 0.83 -0.24 0.180
CI7HI1 .4 0.87,0.89, 1.13 0.91, 1.06, 1.75 -0.15 0.686
CO8E3.10 0.94,0.93, 1.03 1.39, 1.24, 1.26 -0.32 0.100
M88.1 ugt-62 0.93, 1.03, 0.99, 1.05, 0.98, 0.89 1.08, 0.94, 1.34, 0.83, 0.95, 0.88 0.04 0818
Y39E4A.2 ttm-1 0.73,0.88, 1.05, 0.91, 0.94, 0.83, 1.01, 1.03 0.86, 0.82, 1.12, 0.91, 0.94, 0.93, 0.83, 0.85 0.04 0.721
F42C5.3 1.01,0.94, 1.02, 1.12, 1.05, 0.99 1.06, 1.19, 1.10, 0.94, 0.91, 0.90 0.02 0818
F53H2.1 1.06, 0.94, 1.00, 1.20, 0.95, 0.93 1.27, 1.30, 1.05, 1.05, 1.07, 0.96 -0.08 0.132
F09B9.1 0.76, 1.04, 1.06, 0.89, 1.13, 0.96, 1.01 1.04, 0.73, 0.95, 0.72, 0.88, 0.85, 0.92 0.13 0.073
Y46G5A.24 1.10,0.94, 1.12 0.98, 0.87, 0.80 0.23 0.200

*The reproduction rate was calculated by comparing the number of offspring with the targeted gene knocked-down by RNAi to those without RNAi in the same cadmium-
treatment group during a two day reproduction period after nematodes reached L4 stage of development. TWilcoxon Rank-sum tests were applied for significance tests.
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Figure 5

Protein interaction analysis using Cytoscape. High confidence interactions from yeast two-hybrid screens and the literature are displayed with solid blue

lines; low confidence interactions from yeast two-hybrid screens are displayed with dashed blue lines; and predicted interactions are displayed with yellow
lines. (a) Local networks involved in cadmium sensitivity. The network was filtered by showing nodes that were significantly up-regulated (red) or down-
regulated (green) following a 24 h exposure to cadmium (>1.5 fold, p < 0.001) and their first neighbors (white). The identified genes are those that affect
cadmium sensitivity in the RNAi experiments. (b) The BRP-1-Y46G5A.24-KEL-8 interaction network. Immediate and secondary neighbors of Y46G5A.24

are displayed.

response to cadmium, approximately 21% of the 237 cad-
mium-inducible genes (<1.5-fold) are involved in the
resistance to cadmium toxicity (although these genes cer-
tainly could also be involved in detoxification of other stres-
sors). These cadmium resistance genes include previously
known genes involved in the cadmium response as well as
several novel genes and pathways involved in cadmium
detoxification.

Conclusion

The results of the microarray and RNAi studies in C. elegans
will help in the understanding of genomic responses to metals
in higher organisms. Although cadmium-regulated expres-
sion of individual genes has been intensively studied, the bio-
logical consequences of global transcriptional changes caused
by this metal were unexplored. In mammals, metal-
lothioneins are the only cadmium-responsive proteins known
to function in the cellular resistance to cadmium toxicity [16].
In the present study, we identified new cadmium-responsive
genes in C. elegans that can protect nematodes from cad-
mium toxicity. The discovery of these novel genes involved in
the resistance to cadmium toxicity provides valuable infor-
mation in understanding the biological function of the tran-
scriptional change caused by cadmium. Because more than
60% of C. elegans genes and many signaling pathways are

evolutionarily conserved, these results contribute to
understanding of functional roles of various genes in cad-
mium related diseases in humans.

Materials and methods

C. elegans strains

The following strains were used in this study: N2 Bristol; mtl-
2 null, mtl-2 (gk125); mtl-1 null, mtl-1 (tm1770); mek-1 null,
mek-1 (ks54); and brp-1 null, brp-1 (0k1084).

Growth and collection of C. elegans

The Bristol N2 strain of C. elegans was cultured in S-medium
with Escherichia coli OP50 as a food source, as previously
described [33]. Nematodes were grown at 20°C and addi-
tional bacteria were added after three days to maintain an
adequate food supply. For cadmium exposure studies, 250 ml
of the C. elegans culture was placed into 1 L flasks. Nema-
todes were then exposed to cadmium under the following
conditions prior to isolation: 24 h exposure at 0, 50, 100, or
200 pM cadmium; or 100 uM cadmium for 0, 4, 12, 24 or 36
h. Cadmium chloride, at the indicated final concentrations,
was directly added to the culture medium. At the indicated
times, nematodes were collected, washed, then rapidly frozen
as pellets in liquid nitrogen and stored at -80°C, as previously

Genome Biology 2007, 8:R122
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Figure 6

Functional analysis of the BRP-1-Y46G5A.24-KEL-8 interaction network.
RNAI was performed in triplicate in the presence or absence of 100 uM
cadmium. (a) The effect of inhibiting kel-8 or Y46G5A.24 in wild-type
(WT), mtl-2 null (mtl-2 (gk125)) or mek-1 null (mek-1(ks54)) C. elegans on
nematode growth in the presence of 100 uM cadmium. (b) Effects of
cadmium exposure on growth of brp-1 null C. elegans (brp-1 (ok1084)). C.
elegans body length of the cadmium exposed population was normalized to
the mean body length in the same RNAI treatment group not exposed to
cadmium. Results are displayed as mean body length + SE (n = 200-500).

described [33]. All exposure studies were preformed in
triplicate.

Isolation of total RNA and qRT-PCR

To isolate total RNA, frozen nematode pellets were ground
into fine powder using a liquid nitrogen-chilled mortar and
pestle before homogenization in TRIzol (Invitrogen,
Carlsbad, CA, USA), as previously described [33]. Total RNA
was subsequently purified using RNAeasy kits (Qiagen,
Valencia, CA, USA) prior to qRT-PCR or microarray
experiments.

The sequences of the oligonucleotide primers used in the
gRT-PCR (Additional data file 7) were designed using Web
Primer [53]. qRT-PCR was performed using QuantiTect
SYBR Green RT-PCR kits (Qiagen) following the manufac-
ture's instructions in an ABI Prism 7000 system (Applied Bio-

http://genomebiology.com/2007/8/6/R 122

systems, Foster City, CA, USA). Three biological replicates for
each treatment were prepared, and each biological replicate
was measured three times.

Microarray experiments and design

Total RNA was prepared from non-treated control nematodes
and those exposed to 100 uM cadmium for 4 h and 24 h. For
each condition, RNA samples were prepared from three inde-
pendent cultures of C. elegans, and the RNA was isolated in
triplicate. This generated nine replicates per treatment. RNA
samples from cadmium-treated and control C. elegans were
labeled using Low RNA Input Fluorescent Linear Amplifica-
tion kits following the manufacture's protocols (Agilent Tech-
nologies, Inc, Santa Clara, CA, USA). Labeled cRNAs were
hybridized to Agilent C. elegans oligonucleotide microarrays.
These microarrays contained target probes for the entire C.
elegans genome, approximately 20,000 open reading frames
(Agilent Technologies). Dye-flips were performed for each
pair of hybridizations, resulting in a total of 36 hybridiza-
tions. Data were extracted from the microarrays using Agi-
lent's DNA microarray scanner and Feature Extraction
software (Agilent Technologies). The data presented in this
publication have been deposited in NCBIs Gene Expression
Omnibus [54] and are accessible through GEO Series acces-
sion number GSE7535.

Analysis of microarray expression data

GeneSpring GX (Agilent Technologies) was used for the ini-
tial analysis of expression data. Dye-flips were transformed
and Lowess normalization was applied before further data
processing. Genes with both red and green signals less than
twice the background signal on more than two-thirds of the
same treatment were excluded. Expression changes are
described by fold change (expression ratio between treated
and control signals). A cross gene error model was applied in
the significance tests [55].

Gene Ontology analysis of cadmium-responsive genes

The GO for 290 significantly changed genes (286 changed fol-
lowing the 24 h cadmium exposure and 86 changed following
the 4 h exposure, fold change >1.5, p < 0.001) was assigned
using GoMiner [56]. GO terms that met the two following
criteria in at least one of four conditions are presented. The
first criterion was that four or more genes were significantly
changed in the GO term, and the second was that the p value
of the enrichment was less than 0.05. The four conditions
were: genes that are over-expressed after a 24 h exposure;
genes that are under-expressed after a 24 h exposure; genes
that are over-expressed after a 4 h exposure; and genes that
are under-expressed after a 4 h exposure (Additional data
files 3 and 4). Cluster [57] and TreeView [58] were used for
the clustering and visualization of the results. P values of the
GO terms were transformed into a positive number (-In(p
value)) to better visualize the data.

Genome Biology 2007, 8:R122
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Functional analysis of 92 cadmium-responsive genes
using RNA interference: initial screen

RNAi was performed using the Ahringer bacterial RNAi
library (MRC Gene Service, University of Cambridge, UK). To
increase the sensitivity of the RNAi screen, a nematode strain
carrying a deletion in the C. elegans metallothionein-2 gene
(mtl-2(gk125) V) was used. This strain was backcrossed four
times to wild-type nematodes prior to use. This mutation did
not affect the growth or reproduction of nematodes under
experimental conditions, but did increase the sensitivity of C.
elegans to cadmium when mtl-1 was inhibited by RNAi. The
feeding protocol was as previously described, with the follow-
ing modifications [59]. Synchronized L1 larva were put on
standard NGM plates with E. coli OP50 as food for approxi-
mately 31 h and allowed to develop into L4 larva. About 25
early L4 nematodes were then transferred to each well of a 6-
well NGM plate, containing 1 mM IPTG (isopropyl-p-D-thi-
ogalactopyranoside) and 25 pg/ml carbenicillin, seeded with
different RNAi expressing bacteria. Plates were then incu-
bated at 20°C for approximately 40 h. After the initial feeding
period, 2 gravid adults from each well were then transferred
to test plates containing RNAi bacteria and either 0, 50, 100,
or 200 uM cadmium. Control RNAi (empty vector) exposures
were also performed for each cadmium treatment. Adults
were allowed to lay eggs for approximately 12 h before
removal. F1 nematodes were then grown on test plates for
three additional days at 20°C. The following phenotypes were
scored every 24 h: lethality (larval lethality); development
(slow growth, larval arrest); morphology (gross body mor-
phology defect); and movement (uncoordinated, sluggish,
and paralyzed).

The initial screen of 92 genes (whose expression increased
following cadmium exposure; Additional data file 5) was per-
formed in duplicate. Genes that showed increased sensitivity
to cadmium after RNAi compared to the RNAIi control in at
least one replicate study were chosen for a second round of
RNAI screening.

Functional analysis of 50 cadmium-responsive genes
using RNA interference: second screen

Quantification of effect of RNAi on C. elegans growth
Experiments were performed as described in the initial
screen except only two conditions were tested, no cadmium or
100 pM cadmium. Each exposure was performed in triplicate.
At the end of the 3 day growth period, F1 nematodes were
washed off the 6-well plates using M9 buffer and transferred
onto 96-well plates. Body size measurements, as represented
by nematode body length (time of flight (TOF)) were meas-
ured using the COPAS Biosort [21].

Quantification of effect of RNAi on C. elegans reproduction

Synchronized Lis were transferred onto RNAi feeding plates.
After approximately 40 h, 3 L4 nematodes were transferred to
fresh plates containing RNAi expressing bacteria (0 or 100
uM cadmium). After two days, the F1 nematodes were

Genome Biology 2007,  Volume 8, Issue 6, Article R122

counted using the COPAS Biosort. Only those plates that had
all three adults at the end of the test were measured. Three to
eight replicate plates were successfully counted for each RNAi
treatment.

Data analysis

For qRT-PCR assays, all measurements were normalized to
mlc-2, and fold change of each gene was normalized to that
observed in the non-treated C. elegans samples. Final results
are presented by mean log,fold + standard error (SE; n = 3).

In the study of RNAi effects on nematode growth, body length
means for control nematodes differed slightly across replicate
experiments. To account for differing body length means
among animal cohorts, body length measurements on RNAi
plates were normalized to the RNAi control by dividing by the
mean body length of the RNAi control nematodes of the same
cadmium treatment, unless another method is described.
Then measurements from all replicates in the same cadmium
and RNAI treatment were pooled together. To compare the
normalized mean body length in the presence and absence of
cadmium for the same RNAIi treatment, Welch two-sample t-
tests were performed because these tests accounted for differ-
ences in variance between groups [60]. Results were pre-
sented in terms of the difference in the normalized mean body
length in the presence and absence of cadmium (n = ~200-
500).

In the RNAI tests of C. elegans reproduction, the reproduc-
tion rate under RNAi was calculated by dividing the number
of progeny on the RNAi plate by that of the RNAi control in
the same cadmium treatment. Because reproduction rates
calculated from replicates were not normally distributed, Wil-
coxon Rank-sum tests were performed to assess significant
differences in the reproduction rates with or without
cadmium.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a figure showing
the cadmium-responsive genes that have been mapped to
biological processes and molecular functions following 4 and
24 h cadmium exposures. Additional data file 2 is a table list-
ing genes that were up- or down-regulated (>1.5 fold, p <
0.001) following 4 h and 24 h cadmium exposures. Additional
data file 3 is a table displaying significantly enriched
biological processes following 4 h and 24 h cadmium expo-
sures and genes in the pathway that are cadmium-responsive.
Additional data file 4 is a table displaying significantly
enriched molecular functions following 4 h and 24 h cad-
mium exposures and genes in the pathway that are cadmium-
responsive. Additional data file 5 is a table listing the cad-
mium-responsive genes tested in the first round RNAi screen.
Additional data file 6 is a table summarizing the effect of
RNAi and cadmium on C. elegans body size in the second
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round RNAI screen using COPAS BioSort. Additional data file
7 is a table listing the primer sequences used in qRT-PCR.
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