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Properties of cis-regulatory modules<p>Analysis of 280 experimentally-verified <it>cis</it>-regulatory modules from <it>Drosophila </it>reveal features both common to all and unique to distinct subclasses of modules.</p>

Abstract

Background: Transcriptional cis-regulatory modules (for example, enhancers) play a critical role
in regulating gene expression. While many individual regulatory elements have been characterized,
they have never been analyzed as a class.

Results: We have performed the first such large-scale study of cis-regulatory modules in order to
determine whether they have common properties that might aid in their identification and
contribute to our understanding of the mechanisms by which they function. A total of 280
individual, experimentally verified cis-regulatory modules from Drosophila were analyzed for a range
of sequence-level and functional properties. We report here that regulatory modules do indeed
share common properties, among them an elevated GC content, an increased level of interspecific
sequence conservation, and a tendency to be transcribed into RNA. However, we find that dense
clustering of transcription factor binding sites, especially homotypic clustering, which is commonly
believed to be a general characteristic of regulatory modules, is rather a feature that belongs chiefly
to a specific subclass. This has important implications for current computational approaches, many
of which are biased toward this subset. We explore two new strategies to assess binding site
clustering and gauge their performances with respect to their ability to detect all 280 modules and
various functionally coherent subsets.

Conclusion: Our findings demonstrate that cis-regulatory modules share common features that
help to define them as a class and that may lead to new insights into mechanisms of gene regulation.
However, these properties alone may not be sufficient to reliably distinguish regulatory from non-
regulatory sequences. We also demonstrate that there are distinct subclasses of cis-regulatory
modules that are more amenable to in silico detection than others and that these differences must
be taken into account when attempting genome-wide regulatory element discovery.
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Background
Regulated spatial and temporal control of gene expression is
a fundamental process for all metazoans, and much of this
regulation occurs through the interaction of transcription fac-
tors (TFs) with specific cis-regulatory DNA sequences. The
best-defined of these regulatory elements are promoters,
which are easily identified based on their position surround-
ing the transcription start sites (TSSs) of their associated
genes [1]. However, promoters comprise just a small fraction
of important functional cis-regulatory sequences. A large
amount of gene regulation is mediated by cis-regulatory ele-
ments that are distal to the promoter and organized in a mod-
ular fashion (reviewed by [2]). Each module regulates a
particular temporal-spatial pattern of gene expression that is
a subpart of the entire expression pattern of its associated
gene; at the molecular level, each contains a series of binding
sites for a specific complement of TFs. Often referred to as
'enhancers', these elements can lie hundreds of kilobases
away from the promoter and can be located 5', 3', or within
the intron of their own or a non-associated gene. Here, we use
the more generic term 'cis-regulatory module' (CRM) to refer
both to enhancers and to other classes of regulatory
sequences.

The number of CRMs in the genome is believed to be very
high; Davidson [2] suggests that there might be five-to-ten
times as many individual CRMs in the genome as there are
genes. It has become increasingly apparent that polymor-
phisms and mutations in CRMs play a major role as produc-
ers of normal phenotypic variation, as inducers of birth
defects and chronic diseases, and as a powerful evolutionary
driving force [2-4]. Despite their prevalence and importance,
however, much less is known about CRMs in general than
about promoters. This is largely due to the difficulties
involved in identifying CRMs, which until recently has been
possible only through a dedicated empirical approach of test-
ing sequence fragments for regulatory activity in a reporter
gene assay, either in transgenic animals or an appropriate cell
culture system. In the past several years, a number of compu-
tational approaches for CRM identification have been
attempted, with varying degrees of success (for example, [5-
22]). Broadly speaking, most of these methods fall into either
or both of two classes: those based on sequence alignment, or
those dependent on transcription factor binding site (TFBS)
clustering. In the first, putative CRMs are predicted based on
conservation of non-coding sequences between two or more
related species. In the latter, CRMs are defined as regions
containing a particular number and/or combination of spe-
cific TFBSs. Considerations regarding these approaches and
their variations have been reviewed elsewhere [23-28] and
will not be discussed at length here. However, it is important
to note that all of these methods have at their core an under-
lying assumption that CRMs contain common properties that
will facilitate their discovery, that is, interspecific conserva-
tion or TFBS clustering.

From numerous examples, we know that both of these
assumptions at times hold true. Many known CRMs are well-
conserved in related species [22,29,30], and most of the
extensively studied CRMs, in particular the enhancers of the
Drosophila early patterning genes, consist of a dense cluster
of TFBSs containing multiple occurrences of TFBSs for a
small number of transcription factors [31-33]. This latter
property is sometimes referred to as 'homotypic clustering' of
TFBSs due to the repeated numbers of similar sites [34]. Nev-
ertheless, there are also characterized CRMs that do not con-
tain one or the other, or even both, of these properties. Late
pair-rule expression of the Drosophila runt gene, for
instance, is regulated by a diffuse CRM spread over 5 kb of
sequence that is poorly conserved in distantly related Dro-
sophila species [35,36]. Although this is typically viewed to be
the exception rather than the rule, evidence to support this
belief is thin and suffers from significant ascertainment bias:
since many known CRMs were discovered based on one of
these two properties, there is naturally an overrepresentation
of conserved CRMs with clustered TFBSs. Thus, the actual
extent to which these are common or unusual CRM character-
istics remains undetermined.

We recently constructed a database of cis-regulatory ele-
ments in Drosophila melanogaster, the REDfly database,
which contains records for over 650 experimentally verified
positive-acting CRMs drawn from the published literature
[37]. These CRMs are responsible for regulating the expres-
sion of a diverse set of genes in many different tissues and
stages of development. Here, we present the results of our
first large-scale analysis of the REDfly CRMs to define prop-
erties that are common to CRMs as a class, and those that are
present only in specific CRM subsets. In the first section of the
paper we describe the general sequence properties of Dro-
sophila CRMs and show that CRMs are more GC-rich and
evolutionarily conserved compared to other non-coding
sequences, and are likely to be transcribed into RNA. Our
data indicate that while CRMs have these distinct common
properties as a class, they are difficult to distinguish from
non-CRMs as individual sequences. In the second part of the
paper we focus on TFBS clustering and show that homotypic
TFBS clustering is prevalent only in certain CRM groups. We
also undertake two new approaches to CRM discovery, nei-
ther of which are biased by any prior knowledge of binding
sites, and show that these too favor the subclasses of CRMs
with the greatest amount of TFBS clustering. Throughout, we
consider the impact of the unknown fraction of CRMs present
in unannotated non-coding sequence on all aspects of CRM
discovery and analysis.

Results
Basic characteristics of the REDfly CRMs
Number and size
At the time we initiated this study, the REDfly database [37]
contained 544 records of known Drosophila CRMs. We chose
Genome Biology 2007, 8:R101
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for analysis the subset of these that were non-overlapping and
that were less than 2,100 base-pairs (bp) in length. This
length cutoff captured 75% of the non-overlapping CRMs and
was imposed based on our concern that CRMs of greater than
2 kb of sequence or so would contain large amounts of non-
functional sequence (that is, that a more minimal CRM would
exist within the larger sequence that had not yet been experi-
mentally isolated). There were 280 CRMs associated with 148
genes, with an average length of 760 bp (Figure S1-1A in Addi-
tional data file 1), that met these criteria and are referred to
hereafter as the 'REDfly analysis CRMs'. A detailed listing of
these CRMs can be found in Additional data file 2. Analysis of
a subset of these CRMs, in which only those ≤1,000 bp in
length were used, gave essentially identical results to those
reported below (data not shown).

Functional roles
In order to determine the breadth of the functional spectrum
covered by the genes associated with the REDfly analysis
CRMs, we looked at the Gene Ontology (GO) terms for these
genes and at the stages and tissues in which the REDfly anal-
ysis CRMs regulate gene expression. GO term designations to
which ≥10% of the CRM-associated genes map are shown in
Table S1-1 in Additional data file 1. Although there is a bias
toward CRMs associated with genes encoding transcription
factors (>50%) and for genes involved in development
(>80%), embryonic, larval, and adult stages of development
are all represented (Figure S1-1B in Additional data file 1). A
large variety of tissues are also represented (Figure S1-1C in
Additional data file 1). Of these, embryonic blastoderm is the
most heavily covered tissue (19%), followed by neuronal tis-
sue (13%). An alternative breakdown of tissue representa-
tions is provided in Figure S1-2 in Additional data file 1.

Genomic location
Figure S1-1D in Additional data file 1 describes the location of
the REDfly analysis CRMs with respect to the TSS of their
associated genes: 61% of the CRMs are located 5' to the anno-
tated TSS; 13% of the CRMs overlap the promoter or are com-
pletely contained within the first 500 bp 5' of the TSS while
38% begin more than 500 bp 5'. 13% of the CRMs are down-
stream of the annotated 3' end of their genes, while 16% lie
within introns. The vast majority of these are within the first
(50%) or second (27%) introns, but CRMs are found within
sixth and seventh introns as well (Figure S1-3 in Additional
data file 1).

Genes with multiple transcripts present a particular problem
for assigning the location of CRMs; when the transcripts are
generated from alternative promoters, a CRM can be
upstream of one TSS, but in an intron of another. As a result,
10% of the REDfly analysis CRMs have a 'mixed' upstream
and intronic location. It is generally unknown whether the
CRMs influence the expression of all or only a subset of the
transcripts with which they are associated.

CRMs have an elevated GC content
We measured the average GC content of the REDfly analysis
CRMs and compared it to that of coding sequences, intergenic
regions, and introns (Figure 1). It has previously been shown
that the GC content in coding sequences is higher than that of
non-coding sequences [38,39], and that Drosophila promot-
ers tend to be AT-rich [40]. Surprisingly, we found that the
REDfly analysis CRMs have a higher average GC content than
other intergenic or intronic sequence, although a lower GC
content than coding regions (mean 0.45 (standard deviation
(SD) 0.06) versus 0.37 (0.07), rank sum test P < 1e-16; 0.45
(0.06) versus 0.54 (0.05), rank sum test P < 1e-16). This does
not appear to be the result of a higher density of TF binding
sites present in the CRMs, as an analysis of the footprinted
binding sites contained in the FlyReg database [41] shows
that they have an average GC content similar to that in non-
CRM intergenic sequence (data not shown). No differences in
the results were observed when various tissue- or stage-spe-
cific subsets were used in place of the entire 280 REDfly anal-
ysis CRMs (data not shown). A moderate negative correlation
exists between CRM length and GC content (Figure 2; Spear-
man's ρ = -0.27, P < 9e-06). Size-matched random non-cod-
ing sequences are uncorrelated with GC content (Figure 2b;
Spearman's ρ = 0.03, P = 0.28). Assuming that longer introns
are likely to contain more CRMs than short introns [42], the
higher GC content of CRMs versus non-regulatory non-cod-
ing sequence may help to account for the observations by
Haddrill et al. [43], who saw both a positive correlation
between intron length and GC content, and a negative corre-
lation between GC content and sequence divergence between
D. melanogaster and D. simulans introns (as CRMs are more
highly conserved; see below).

CRMs are more highly conserved than non-regulatory 
sequences
Functional sequences are expected to be conserved among
related species, a property that has been used successfully for
the identification of CRMs in many organisms (reviewed by
[44]). This approach has worked particularly well in verte-
brates, for which a wide range of related species have been
sequenced. However, while it is clear that conserved
sequences frequently contain CRMs, it is less clear how often
CRMs lie in non-conserved sequences, nor how many con-
served sequence regions do not contain CRMs. To begin to
address these questions, we constructed pairwise alignments
between the REDfly CRM sequences in D. melanogaster and
D. simulans, D. yakuba, D. erecta, D. ananassae, D. pseu-
doobscura, D. mojavensis, and D. virilis (more closely to
more distantly related, respectively; [45]) using DIALIGN
[46]. DIALIGN was chosen due to its strong performance in a
previous assessment of alignment of simulated non-coding
sequences [47]. We assessed both the conservation of the
CRM sequences themselves and the conservation of
sequences up to 1 kb to each side of the CRM and compared
these alignments with alignments of size-matched, randomly
selected non-coding sequences. We assessed conservation in
Genome Biology 2007, 8:R101
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terms of both fraction of aligned bases and degree of nucle-
otide identity between two sequences; both measures gave
similar results (Figure 3; Figure S3-1 in Additional data file 3;
data not shown).

We find that CRMs are on average significantly more well-
conserved than randomly chosen non-coding sequences (Fig-
ure 3a; Figure S3-1 in Additional data file 3; Kolmogorov-
Smirnov test, Bonferroni-corrected P < 7e-07). The
sequences flanking the CRMs are generally less conserved
than the CRMs but more conserved than the random
sequences. Some of the increased conservation of the flanking
sequences relative to randomly drawn ones may be due to the
presence of coding regions within these sequences. However,
this is unlikely to account for the entire observed difference as

the majority of the CRMs are sufficiently far from their asso-
ciated coding regions that the flanking sequences contain
only non-coding DNA (data not shown). We speculate that
most of the difference is due either to a greater likelihood for
the adjacent sequences to contain additional (as yet unidenti-
fied) CRMs, or to the gradual loss of regulatory function in
these sequences due to binding site turnover (for example,
[48-50]). Interestingly, we find that although as expected, the
degree of CRM conservation decreases with increased evolu-
tionary distance, the difference between the amount of con-
servation in CRMs versus random sequences remains
essentially constant (Figure 3a). This is in marked contrast to
the difference between coding and random sequences, which
increases steadily with evolutionary distance. The different
behaviors of the two types of functional sequences appear to

GC content of the REDfly analysis CRMs as well as coding, intronic, and intergenic sequencesFigure 1
GC content of the REDfly analysis CRMs as well as coding, intronic, and 
intergenic sequences.
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Sequence conservation properties of the REDfly analysis CRMsFigure 3 (see following page)
Sequence conservation properties of the REDfly analysis CRMs. (a) Average fraction of aligned bases between D. melanogaster and each of the other 
species for the CRMs (blue), CRM flanking sequences (green; ± 1 kb to each side of the CRM; see text), coding regions (orange; based on 2,000 genes; see 
Materials and methods), and size-matched randomly selected non-coding sequences (red). Dashed lines indicate the 20% and 80% percentile values for the 
CRMs and random sequences. Also indicated are the 'differences' in conservation between CRMs and random non-coding sequences (black) and between 
coding sequences and random non-coding sequences (pink). Species abbreviations are as given in the legend to Figure 3. A similar graph showing the 
fraction of aligned 'identical' bases is given in Figure S3-1 in Additional data file 3. (b) Histogram of the conservation fraction for CRMs (black bars) and 
random non-coding sequences (white bars) for D. melanogaster aligned with D. pseudoobscura. Histograms for the other species are shown in Figure S3-2 in 
Additional data file 3. (c) Median conserved block density for each of the species aligned to D. melanogaster. Blocks are defined as ungapped regions of 
seven or more nucleotides with ≥75% identity. Shown are block densities for CRMs (blue), CRM flanking regions (green), and size-matched randomly 
selected non-coding sequences (red). (d) Histogram of the distribution of conserved block density for CRMs (black bars) and random non-coding 
sequences (white bars) for D. melanogaster aligned with D. pseudoobscura. Histograms for the other species are shown in Figure S3-3 in Additional data
file 3.
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Figure 3 (see legend on previous page)
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be due to a faster rate of divergence in CRMs versus coding
sequences. As with GC content, no differences in the results
for any of the conservation-related properties were observed
when various tissue- or stage-specific subsets were used in
place of the entire set of 280 REDfly analysis CRMs (data not
shown).

Despite the clear difference in mean conservation fraction
between CRMs and random non-coding sequence, the distri-
butions of the two sets are highly overlapping (Figure 3b; Fig-
ure S3-2 in Additional data file 3). Therefore, degree of
sequence conservation would appear to be an ineffective way
of reliably distinguishing regulatory from non-regulatory
sequences. We note, however, that an unknown fraction of
the random non-coding sequence we use will actually contain
regulatory elements and might in addition contain other cur-
rently unannotated functional sequences such as missed first
exons and micro-RNAs. The higher this fraction, the more
likely we are to be underestimating the true amount of sepa-
ration between the regulatory and non-regulatory sequences.
We return to this point in more detail in the Discussion.

As we observed for GC content, CRM length and conservation
fraction are negatively correlated, with more closely related
species generally having a greater degree of correlation than
more distantly related ones (Figure 2; P < 0.05). We also
observe a weak but statistically significant negative correla-
tion for randomly selected non-coding sequences in the most
closely related species. This is in contrast to results recently
reported by Halligan and Keightley [51], who found that non-
coding sequence length is negatively correlated with
divergence. The difference may be due to the different scale of
the two analyses: our study is mainly looking at much shorter
sequences.

Although the magnitude of the difference in sequence conser-
vation between CRMs and random non-coding sequences is
relatively constant among all the analyzed species, the pat-
tern of conservation differs. We looked at conserved sequence
blocks of 7 bp or more with ≥75% identity in CRMs, their
flanking sequences, and random non-coding sequences.
While the length of conserved blocks does not vary signifi-
cantly among these groups (with the exception of D. simu-
lans; Figure S3-3 in Additional data file 3; data not shown),
there is a significant difference in the density of conserved
blocks in the more diverged species. In these species, CRMs
have more blocks per kilobase than do random non-coding
sequences (Figure 3c; Kolmogorov-Smirnov test, Bonferroni-
corrected P < 0.003). As we saw for overall conservation,
sequences adjacent to the CRMs fall in between the CRMs and
the random sequences. Again, however, the distributions are
highly overlapping, suggesting that conserved block density
also is not a reliable discriminator between regulatory and
non-regulatory sequences (Figure 3d; Figure S3-4 in Addi-
tional data file 3). Our results differ slightly from those of
Papatsenko et al. [52], who observed an increased number of

long (>20 bp) conserved blocks in CRM sequences when com-
paring D. melanogaster and D. pseudoobscura. The differ-
ences are likely due to the fact that that study defined blocks
as having 100% identity versus our looser standard of 75%
identity. Nevertheless, our overall conclusions are in agree-
ment with those of Papatsenko et al. [52].

Ultraconserved elements are overrepresented in 
CRMs
Several recent studies have remarked on the presence of
'ultraconserved' elements and other highly conserved regions
in both vertebrate and invertebrate genomes [19,53,54].
Ultraconserved elements (uc-elements) are long stretches of
sequence (≥50 bp) that are perfectly conserved over tens of
millions of years of evolution. The majority of these are asso-
ciated with genes encoding TFs and other regulators of devel-
opment, and it has been hypothesized that uc-elements lying
in non-coding regions might serve as all or parts of cis-regu-
latory modules [54]. Glazov et al. [55] have identified uc-ele-
ments conserved between D. melanogaster and D.
pseudoobscura, and we examined the extent of overlap
between these uc-elements and the REDfly analysis CRMs. Of
the 20,301 non-coding uc-elements conserved between the
two fly species, 84 overlap a REDfly analysis CRM by greater
than 15 bp. On average, a mean of 98% (11% SD) of each of
these 84 uc-element sequences is contained within a CRM. In
all, 61 of the REDfly analysis CRMs (22%) contain at least one
uc-element, with 28% of these containing two or more (Addi-
tional data file 4). This is significantly greater overlap than we
find for uc-elements in size-matched random non-coding
sequence controls (17% of sequence 'elements'; Fisher's exact
P < 0.04). The overrepresentation of uc-elements within
CRMs is even more apparent when the total amount of ultra-
conserved base-pairs is considered: 2.5% of the total REDfly
analysis CRM sequence is ultraconserved, versus only 1.8% of
size-matched random non-coding sequence (Fisher's exact P
< 2.2e-16). Again, we note that these data are likely to under-
state the differences in the regulatory and non-regulatory
populations due to the presence of an unknown number of
regulatory and/or coding elements in the randomly selected
sequence.

CRM sequences are transcribed with high frequency
Recent transcriptional profiling studies using whole-genome
tiled microarrays in a number of organisms have revealed
that a much larger fraction of the genome than previously
appreciated is transcribed into RNA [56-62] (reviewed by
[63]). We used the microarray data of Manak et al. [64],
which covers the Drosophila genome at 35 bp resolution, to
determine whether or not the REDfly analysis CRMs are tran-
scribed. We found that over 35% (99/280) of the CRMs were
transcribed versus only 23% (3,194/14,000) of size-matched
randomly selected non-coding sequences (P < 4.05e-07 by
two-sample test of proportions). Thus, CRM sequences are
transcribed with higher frequency than non-CRM sequences.
Data from a second Drosophila tiled microarray experiment
Genome Biology 2007, 8:R101
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[58] are consistent with this result, although differences in
microarray design prevent a direct comparison of the datasets
(see Additional data file 5, Table S5-1 and Figure S5-1).

A modified Fluffy-tail test distinguishes CRM from non-
CRM sequences
We next turned our attention to a property often assumed to
be common to the majority of CRMs, that of TFBS clustering.
Abnizova et al. [65] have proposed a method, the Fluffy-tail
test (FTT), that relies on homotypic TFBS clustering to iden-
tify CRMs. Like a number of other CRM discovery methods
(for example, [34,66,67]), the FTT uses similar nucleotide
subsequences as a proxy for related binding sites. The FTT
score is based on the size of the largest group of 'similar
words' - related nucleotide subsequences - in a CRM sequence
and was reported to have excellent performance at distin-
guishing CRMs from non-regulatory non-coding sequences
when analyzing 60 Drosophila CRMs (Figure S6-1 in Addi-
tional data file 6, columns 1 and 2). We therefore decided to
make use of the FTT to test the underlying assumption that
dense homotypic TFBS clustering is a general feature of
CRMs.

We developed a revised version of the FTT, which we refer to
as the FTT-Z (see Materials and methods), that performs sim-
ilarly to the original test but eliminates a problem in which
the score is confounded with the length of the sequence being
analyzed (Figures S6-2 and S6-1 in Additional data file 6,
columns 3 and 4). There are 41 of the REDfly analysis CRMs
present in the original FTT training set. When we applied the
FTT-Z to these 41 CRMs, we found that the separation
between the CRMs and random non-coding sequence was
very poor, suggesting that the FTT-Z score does not provide a
good method for distinguishing regulatory from non-regula-
tory sequences (Figure 4, columns 1 and 2). However, there is
a significant difference in the mean scores between the two
groups (CRMs, 0.55 ± 0.09 (mean ± standard error of the
mean); random non-coding -0.01 ± 0.07; rank sum test P <
2.5e-05). We therefore went on to apply the test to all of the
REDfly analysis CRMs. Once again, we found that the differ-
ence in the mean scores was statistically significant between
CRMs and random non-coding sequences (0.15 ± 0.03 versus
0.02 ± 0.02; rank sum test P < 0.02), but the separation
remained very poor (Figure 4, columns 3 and 4).

Blastoderm CRMs are different from other CRMs
Although both sets of CRMs are significantly different from
random sequence, the mean score when using all of the RED-
fly analysis CRMs is significantly smaller than the score using
the 41 CRM training set (rank sum test P < 3.7e-04). We noted
that close to 80% of the 41 CRMs are CRMs that regulate gene
expression in the early embryonic blastoderm (referred to
hereafter as 'blastoderm CRMs') and wondered whether this
might account for the difference in scores. Therefore, we com-
pared separately the 80 REDfly analysis CRMs annotated as
being blastoderm CRMs and the remaining 200 non-blasto-

derm CRMs to both random non-coding sequence and to each
other. While the blastoderm CRMs are significantly different
from random sequence (Figure 4, columns 5 and 6; 0.36 ±
0.06 versus 0.01 ± 0.05; rank sum test P < 8.2e-05), the non-
blastoderm CRMs and random sequence are indistinguisha-
ble (Figure 4, columns 7 and 8; 0.07 ± 0.03 versus 0.03 ±
0.03; rank sum test P < 0.14). Furthermore, the blastoderm
and non-blastoderm CRMs are significantly different from
one another (Figure 4, columns 5 and 7; rank sum test P <
4.7e-04). We therefore conclude that the differences observed
between the REDfly analysis CRMs and random non-coding
sequences are due mainly to the presence of the blastoderm
CRMs. These data suggest that although the blastoderm
CRMs have large numbers of homotypic repeats, CRMs in
general are no different from non-regulatory sequences in
this regard.

We also tested whether stage- or tissue-specific categories of
CRMs containing ≥15 members (Figure S1-1B, C in Additional
data file1) have FTT-Z scores that are different from randomly
selected sequences. Other than the blastoderm CRMs, only
those annotated as being associated with gene expression in
the ectoderm, embryo, and adult have significant differences
(Table S6-1 in Additional data file 6). However, these are not
mutually exclusive classes, and the 'ectoderm' and 'embryo'
CRMs overlap considerably with the blastoderm CRMs.
Therefore, it is probable that the high FTT-Z scores of the
blastoderm CRMs account for most of differences seen in
these subsets.

Results from the FTT-Z testFigure 4
Results from the FTT-Z test. Boxplots indicate the median (heavy bar) and 
first and third quartiles of the data (boxed area). Details are provided in 
the text.
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Biases in CRM type found by CRM discovery algorithms
Sets of CRMs consisting primarily of blastoderm CRMs have
been used to develop a number of computational approaches
to CRM discovery [5,14,65-69]. Our results from the FTT-Z
demonstrate that the blastoderm CRMs differ from CRMs in
general in their degree of similar nucleotide subsequences.
We therefore wondered if methods that were trained and
tested on a blastoderm CRM dataset were biased toward dis-
covery of CRMs with an unusually strong homotypic repeat
structure. We reasoned that if this were the case, the CRMs
found by these methods would have high FTT-Z scores,
whereas unbiased methods would be uncorrelated with FTT-
Z scores. To test for such biases, we ranked all of the REDfly
analysis CRMs by FTT-Z score and assessed the median rank
(highest score = 100%) of the CRMs discovered by the various
other methods (Table 1). An unbiased method should have a
median rank around 50% ('expected' in Table 1), while a heav-
ily biased method would have a median rank close to 100%.
We found that the previously known CRMs used in the train-
ing sets ('known') had a median rank of 90%, confirming the
heavy bias toward homotypic repeats in that set. Similarly,
the CIS-ANALYST method of Berman et al. [6] predicted
CRMs with a median rank of 92%, suggesting that while effec-
tive for finding blastoderm-like CRMs with a dense subse-
quence repeat structure, this type of algorithm would be likely
to perform poorly at discovering the majority of the known
Drosophila CRMs. On the other hand, the Ahab algorithm
used by Schroeder et al. [33] found CRMs with a median FTT-
Z rank of only 57% and might thus provide a CRM discovery
method less geared toward the fraction of CRMs with highly
repeated subsequences.

A YMF-based method can distinguish CRMs from non-
regulatory sequences
As an alternative approach to addressing the question of
whether binding site clustering is a general property of CRMs,
we ran the motif-finding program YMF [70] for each CRM.
YMF identifies motifs (words representing related subse-
quences) that are statistically overrepresented in a sequence

or set of sequences and generates a count of how many unique
motifs are found. The count of overrepresented motifs for
each CRM was compared to the corresponding counts from
50 size-matched randomly selected non-coding sequences,
and an empirically computed P value was derived for each
CRM (see Materials and methods). The resulting distribution
of scores shows a significant bias towards low P values, com-
pared to the uniform distribution of P values expected by
chance (Figure 5a, blue versus red curves; Table 2; Kol-
mogorov-Smirnov test, P < 3.54e-11). This indicates that a
CRM, on average, contains a larger number of significant
motifs than a randomly chosen size-matched non-coding
sequence. As a negative control, we created a collection of
randomly chosen genomic sequences of the same lengths as
the REDfly CRMs, and repeated the exercise. As expected, we
found that the distribution of the P value scores is close to
uniform (Figure 5a, green curve; Table 2; P ≅ 1).

In light of the results from the FTT-Z indicating that the blas-
toderm CRMs have distinct properties, we recalculated the
histogram of P value scores (Figure 5a) for each of several
subsets of the REDfly analysis CRMs, formed on the basis of
similarity of expression stages or tissue types (Table 2; Figure
5b). The blastoderm CRMs have a higher percentage of low P
values than the CRMs in general, consistent with the idea that
TFBS clustering is more prevalent in this CRM subset (P <
6.53e-04). Other tissue-specific subsets that were tested were
not significantly different from random expectation (Table 2).
One key difference from the FTT-Z results is that although the
FTT-Z found that the non-blastoderm CRMs do not
significantly differ from random non-coding sequences, these
CRMs are still biased toward low YMF P values and score in a
range similar to the REDfly analysis CRMs as a whole (Figure
5b; data not shown). This difference is likely the result of the
different ways each method assesses TFBS clustering (see
Discussion).

Table 1

Performance of CRM discovery methods with respect to FTT-Z 
score of confirmed CRMs

Method Reference Median rank*

Expected - 50%

Known† - 90%

CIS-ANALYST [6] 92%

PFR-Searcher [67] 73%

Fly Enhancer [13] 65%

Ahab [33] 57%

- [14] 39%

*Median rank of CRMs among all 280 REDfly analysis CRMs ranked by 
FTT-Z score. †'Known' CRMs are those used as training data by either/
or CIS-ANALYST or Ahab.

Table 2

Significance of YMF results for tissue/stage-specific subsets

Tissue/stage* Number of CRMs P value†

All REDfly analysis CRMs 280 3.54E-11

Random non-coding 280 1

Blastoderm 51 6.53E-04

Non-blastoderm 207 1.02E-05

Mesoderm 24 0.78

Embryo 128 9.00E-07

Non-embryo 123 0.07

Larva 32 1

Neuronal 22 0.31

*See Figure S1-1 in Additional data file 1). Only CRMs uniquely assigned 
to the tissue or stage are included here. †Kolmogorov-Smirnov test. P 
values for subsets are Bonferroni-corrected. Values in bold are 
significant.
Genome Biology 2007, 8:R101
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Prediction of CRMs using YMF
We can use the YMF P value score to predict whether or not a
given sequence is a CRM (see Materials and methods). Sensi-
tivity of the prediction is based on the P value score used as a
threshold for calling a sequence a CRM, while the specificity
of prediction depends on the true proportion of CRMs in the
genome. That is, we assume that some number of the random
non-coding sequences are in fact currently unidentified
CRMs. Under the assumption that 50% of the input
sequences are CRMs, we can achieve a prediction specificity
of 69% at a sensitivity of 23%, much better than the 50% spe-
cificity expected by chance. Figure 5c shows the specificity of
CRM prediction expected at varying levels of sensitivity under
different assumptions about genomic CRM abundance (25%,
50%, and 75% of randomly chosen genomic sequences being
CRMs). Note that the blastoderm CRMs can be predicted with
much better sensitivity/specificity than the other CRMs, con-
sistent with our previous finding that they comprise a distinct
CRM subclass (Figure 5c, dashed versus solid lines).

Supervised learning and classification of CRMs versus 
random genomic sequences
As a third way of testing the TFBS clustering properties of
CRMs, we undertook a supervised learning approach to CRM
classification based on a modification of the HexDiff algo-
rithm [66]. We used frequencies of short subsequence words
to train an algorithm to discriminate CRMs from non-CRMs
(see Materials and methods). The classification accuracy was
evaluated in a ten-fold cross validation exercise in which the
REDfly analysis CRMs were treated as the positive set and an
equal number of randomly chosen genomic sequences (of the
same lengths as the CRMs) used as the negative set.

A set of 175 modules (the REDfly analysis set after removing
CRMs <500 bp or >2,000 bp), augmented with an equal sized
'negative' set of random sequences, could be classified cor-
rectly with an accuracy of 63.8% in a 10-fold cross-validation

Figure 5

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CRM
Uniform
Random

P-value

P
er

ce
nt

ag
e 

of
 s

eq
ue

nc
es

(a)

(b)

(c)

YMF scores for 280 CRMs

Cumulative YMF scores for CRM subsets

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P-value

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f s
eq

ue
nc

es

280 CRMs

Blastoderm CRMs

Non-blastoderm CRMs

Uniform

Embryo CRMs

Non-embryo CRMs

S
en

si
tiv

ity

Specificity

Specificity/sensitivity of CRM prediction

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

25%
50%
75%

Blastoderm CRMs
280 CRMs
Random CRMs

YMF scores for the REDfly analysis CRMsFigure 5
YMF scores for the REDfly analysis CRMs. (a) Histograms of percentage 
of CRMs for given P value ranges (YMF scores). The histogram for all 280 
REDfly analysis CRMs is shown in blue ('CRMs'), for randomly selected 
non-coding sequences in green ('Random'), and for the random 
expectation ('Uniform') in red. (b) Cumulative histograms of YMF scores 
for tissue- and stage-specific CRM subsets. The entire REDfly analysis set 
is shown in blue and the expected uniform distribution in red. Solid green 
lines indicate the blastoderm CRMs, while dashed green lines represent 
the non-blastoderm CRMs; orange solid and dashed lines show the 
embryo and non-embryo CRM subsets, respectively. Note that all subsets 
show significant deviation from the expected uniform distribution. (c) 
Specificity/sensitivity curves for CRM prediction using YMF. Three sets of 
curves are shown, representing three different assumptions as to the 
number of CRMs present in the randomly selected background sequences: 
25% CRMs (red), 50% CRMs (blue), and 75% CRMs (green). Solid lines 
indicate curves for the entire 280 REDfly analysis CRMs, while dashed 
lines show the blastoderm CRM subset. The black dashed line represents 
the curve for randomly selected sequences, shown for 50% background 
CRMs only. For each category, the random expectation is equal to the 
assumed number of CRMs in the background.
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exercise (Table 3; Binomial test P < 1.9e-07). Note that this
figure is not comparable to the sensitivity or specificity values
given for the YMF algorithm, since an accurate prediction in
this exercise requires correctly classifying both 'positive'
(CRM) and 'negative' (non-CRM) samples.

Like with the FTT and YMF methods, we also evaluated tis-
sue- and stage-specific subsets of CRMs using this learning
algorithm and a leave-one-out-cross-validation strategy. The
'blastoderm', and 'embryo' CRMs gave significantly high clas-
sification accuracy in similar cross-validation experiments
(Table 3). As we saw with the other methods, the blastoderm
CRMs have the most pronounced differences compared to the
other CRM subsets and to the entire REDfly analysis set.

Discussion
Two commonly held assumptions about transcriptional cis-
regulatory modules are that their sequences are
evolutionarily conserved and they contain a high degree of
TFBS clustering. We present here a large-scale analysis of
Drosophila CRMs designed to evaluate these and other CRM
properties. This is the largest such study performed to-date
for any metazoan; nevertheless, only about 1% of Drosophila
genes are represented, with presumably only a subset of the
CRMs for each gene. Our main conclusions can be summa-
rized as follows: first, CRMs have distinct properties that as a
group distinguish them from other types of DNA sequences,
regardless of the tissues or stages in which they regulate gene
expression. Second, these differences are typically not great
enough to reliably classify a given unknown sequence as CRM
or non-CRM. Third, TFBS clustering, and homotypic TFBS
clustering in particular, can begin to provide more reliable
classification of sequences as CRM or not CRM. Fourth,
homotypic clustering is not a general characteristic of CRMs
but rather is prevalent only in certain CRM subclasses.

Sequence conservation
Many CRMs, particularly in vertebrates, have been discov-
ered by virtue of sequence conservation, leaving open the pos-
sibility that the strong conservation of CRMs noted in these
species may be at least partially due to ascertainment bias. As

the majority of the REDfly analysis CRMs were discovered by
means other than an assessment of conservation (data not
shown), they present a useful test set for evaluating this bias.
Our results agree with studies of much smaller sets of Dro-
sophila CRMs [6,71]. Similar to those, we see a statistically
significant increase in the fraction of conserved sequence in
CRMs versus non-CRMs, but with a distribution not too
different from that of randomly selected sequences. One
caveat lies in the fact that the REDfly CRMs are heavily biased
toward those associated with genes with important functions
in development, as there is evidence from studies in verte-
brates that these CRMs are more likely to be conserved than
others [29]. Overall levels of conservation of CRM sequences
might thus be lower than what we have observed here.

The difference in degree of conservation between coding and
non-coding sequences increases with evolutionary distance.
Surprisingly, this is not the case for CRMs and their flanking
sequences, both of which retain a roughly constant degree of
difference in conservation fraction compared to random non-
coding sequences. Thus, CRM sequences diverge more rap-
idly than coding sequences, but in proportion with the overall
degree of sequence divergence of non-coding DNA. This may
be due to a general conflation of CRMs and what we call ran-
dom non-coding sequence: our CRMs might contain large
amounts of non-regulatory non-coding sequence, or the ran-
domly selected non-coding sequences might contain a large
fraction of CRM sequence. We favor the view that both of
these phenomena are occurring.

Support for the idea that the REDfly CRMs contain a substan-
tial amount of non-regulatory sequence is provided by the
negative correlations that we observe between CRM length
and both GC content and sequence conservation. That is,
longer CRMs are more like random non-coding sequences in
their sequence properties than are shorter CRMs. We inter-
pret this to mean that many of the REDfly CRMs are 'too long'
- they have not been defined down to minimal functional
sequences. However, we cannot rule out the (non-exclusive)
possibilities that all of the CRM DNA is functional but either
contains redundant elements that are more free to mutate, or
constrained at a non-sequence level (for example, spacing
between TFBSs).

What fraction of non-coding sequence consists of 
CRMs?
There is also good evidence to suggest that a significant frac-
tion of the Drosophila non-coding DNA is functional and may
harbor large numbers of CRMs. Halligan and Keightley [51]
have recently estimated that greater than 50% of non-coding
sequence is subject to selective constraint and, therefore, pre-
sumably functional, while Nelson et al. [72] have shown that
genes with complex expression patterns are associated with
longer flanking non-coding sequences than genes with simple
expression patterns. Moreover, the Drosophila genome has a
high rate of DNA loss in unconstrained sequences through

Table 3

Results from supervised learning

Tissue/stage* Classification accuracy P value

REDfly analysis CRMs 63.8% 1.9E-07

Blastoderm 68.4% 3.5E-03

Neuronal 65.0% 0.16

Embryo 59.1% 0.04

Larva 42.5% 1

*See Figure S1-1 in Additional data file 1. Only CRMs uniquely assigned 
to the tissue or stage are included here. P values for subsets are 
Bonferroni-corrected. Values in bold are significant.
Genome Biology 2007, 8:R101
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deletion events [73]. Taken together, these data argue that the
Drosophila genome is compact and contains a high propor-
tion of regulatory sequence.

Both non-functional sequence included in our CRM set and,
more importantly, a high density of CRMs within non-coding
sequences, have important implications for the results we
have presented here, as either feature will lead to underesti-
mation of the observed sequence properties. That is, the more
that our CRMs are contaminated with non-CRM sequence,
and vice versa, the less good will be the separation that we
detect between the two sequence classes. Therefore, although
our results suggest that CRMs and non-regulatory non-cod-
ing sequences are not clearly distinguishable, an improved
knowledge of the background fraction of CRMs in non-coding
sequence would potentially reveal a greater separation.
Unfortunately, until a truly unbiased empirical assessment of
regulatory activity over an extensive selection of non-coding
DNA is conducted, there may not be sufficient data to make a
proper estimate of the true CRM fraction.

Transcription of CRM sequences
Whole-genome tiling microarray experiments and detailed
EST sequencing projects have repeatedly revealed that much
higher percentages of the genomes of multiple organisms are
transcribed than originally believed [56-62], although the
functional significance of this transcription remains unclear
[63] and even controversial [74]. Our analysis suggests that a
substantial number of intergenic and intronic transcribed
sequences could be CRMs. Transcription of regulatory
sequences has been observed previously, notably in the Dro-
sophila bithorax complex (BX-C) and in the locus control
regions (LCRs) of several vertebrate gene clusters [75-80].
Johnson et al. [81] suggest that transcription at the β-globin
LCR is a consequence of RNA polymerase II recruitment by
the LCR, but other studies suggest that active transcription of
the CRM is required for gene activation (for example, [82]).
In the BX-C, CRM transcription is restricted to the tissues in
which the respective CRMs are active [75], but it is unknown
whether or not most CRM transcription is temporally and
spatially regulated or if it correlates with activity or inactivity
of the CRM. Further study of transcribed CRM sequences at
much higher spatial and temporal resolution than has cur-
rently been conducted will be necessary before these and
related questions can be answered.

TFBS clustering
A commonly held assumption about CRMs is that they con-
tain tightly clustered binding sites for one or several TFs, with
most of the sites represented multiple times (that is, homo-
typically clustered) [2,31]. As there also exist examples of
other types of CRM organization, an important question
becomes determining which is the exception, and which the
rule [83]. Since the REDfly CRMs span a broad range of reg-
ulatory systems, with most of the relevant transcription fac-
tors not characterized, we faced the technical challenge of

assessing TFBS clustering without knowing the actual bind-
ing sites. We therefore used several different methods to
count occurrences of similar words (motifs) as a surrogate for
measuring the extent of TFBS clustering. The FTT looks only
at the subsequence with the highest incidence in the CRM and
thus provides a measure of homotypic TFBS clustering [65].
YMF, on the other hand, considers how many different motifs
are overrepresented in the CRM [70]. YMF is, therefore,
simultaneously a measure of homotypic clustering (each
TFBS identified must be present at greater than background
levels) and heterotypic clustering (multiple significant TFBSs
must be present). Both methods clearly separate the blasto-
derm CRMs from the non-blastoderm CRMs, suggesting that
not only do blastoderm CRMs tend to have more homotypic
TFBS repeats than other CRMs (FTT results) but also that
they frequently contain a larger number of distinct binding
sites (YMF results). However, while non-blastoderm CRMs
are indistinguishable from random non-coding sequences by
the FTT, YMF clearly differentiates between the two. Hetero-
typic TFBS clustering may thus be a more common property
of CRMs than extensive homotypic clustering, which appears
to be a property mainly of specific CRM subclasses.

Biological significance of homotypic clustering
The prevalence of homotypic TFBS clustering in the CRMs
responsible for regulating transcription in the early embry-
onic blastoderm may relate directly to the biology of early fly
development. The use of CRMs consisting of multiple binding
sites with varying affinities has long been recognized as an
important component of the mechanism by which genes can
determine their position with respect to a morphogen gradi-
ent [84,85]. This is precisely the situation found in the early
fly embryo, which develops as a syncytium in which patterns
of gene expression are largely determined by TF concentra-
tion gradients (reviewed by [86]).

Consistent with the idea that homotypic clustering is associ-
ated with interpreting positional information based on mor-
phogen gradients, we note that a number of non-blastoderm
REDfly CRMs associated with morphogen-responsive genes
have high FTT-Z scores indicative of homotypic TFBS cluster-
ing. For instance, CRMs for the Ance/race gene, which
responds to morphogen gradient signaling during embryo-
genesis [87], and for the salm and bi/omb genes, which
respond to morphogen gradient signaling in the wing imagi-
nal disc [88], rank in the top half of the FTT-Z scores (percent
ranks = 75.2%, 69.1%, and 54.1%, respectively). Nevertheless,
not all genes in these classes have high levels of TFBS cluster-
ing, suggesting that other means are also used to ensure cor-
rect readout of morphogen concentrations [89].

In circumstances where gene expression is not regulated
through morphogen gradients, the need for dense TFBS clus-
ters may be less important, consistent with our finding that
homotypic clustering is not a general CRM property. In a cel-
lular environment, TFs are unable to diffuse from one spatial
Genome Biology 2007, 8:R101
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gene expression domain to another as they do in the syncytial
blastoderm, and sharp boundaries of TF activation domains
can be maintained by other methods. The apparently more
widespread presence of heterotypic TFBS clusters fits with
the idea that transcriptional regulation is highly combinato-
rial, with CRMs acting to integrate the input from multiple
signaling pathways and tissue-specific selector proteins
[3,90].

Implications for CRM discovery methods
Our large-scale study of CRM sequences provides a starting
point for re-evaluating existing methods for computational
CRM discovery and designing new approaches. Most meth-
ods that have been developed for computational discovery of
CRMs are based on the assumption that CRMs have common
properties that can provide a signal for their identification,
primarily either sequence conservation or TFBS clustering
(see reviews in [23-28]). We have demonstrated here that
CRMs do indeed share common properties, but the separa-
tion between the CRM and non-CRM populations is too poor
to allow for successful discrimination. While this separation
might be improved in organisms with a less highly compact
genome than Drosophila, tests of conserved sequences in ver-
tebrates also suggest that there, too, conservation alone is not
a sufficient marker of regulatory sequence (for example, [91]).
Nevertheless, despite not being enough to discriminate
between CRMs and non-regulatory sequences on their own,
these features can contribute to an overall scoring function
for CRM identification.

Importantly, our results demonstrate that distinct subsets of
CRMs can have specific properties not shared by all regula-
tory modules but which can be highly effective for CRM dis-
covery. Therefore, one-size-fits-all approaches to CRM
discovery are likely to be less effective than methods tailored
toward specific subsets. A favorable strategy might therefore
be to use methods that make use of a set of coexpressed genes
for training data, such as the PFR-Sampler/Searcher
programs [67], consistent with our finding that a supervised
learning approach provided greater sensitivity than the other
methods. Focusing on only a subset of CRMs might also make
it easier to incorporate the detection or use of 'grammatical'
rules, such as constraints in the spacing of TFBS pairs, into
CRM discovery algorithms [9,11,92,93]. Our study also high-
lights the value of having a large and diverse set of known
CRMs to use for training and evaluation purposes, something
that for the higher eukaryotes currently exists only for Dro-
sophila. Generating similar collections for human and other
model organisms should remain an important future goal.

Materials and methods
Gene Ontology term mapping
GO terms for the CRM-associated genes were determined
using GOTermMapper [94].

Sequences
For comparisons of sequence conservation between CRMs
and random non-coding sequences, five non-coding
sequences of the same length as the CRM were randomly cho-
sen from the genome of D. melanogaster for each CRM; val-
ues are the average value of the five sequences. Because
Halligan and Keightley [51] have reported a correlation
between the length of intergenic and intron sequences and
their degree of conservation, it is possible that artifacts could
be introduced if a CRM and its size-matched non-coding
sequences were drawn from regions of different lengths. We
tested this possibility for a small set of CRMs (n = 30, lengths
<1 kb different were considered identical) and found that
there was no difference in the results if the random sequences
were drawn from a similarly sized non-coding region or not (P
values for the various species ranged from 0.24-0.94 by
paired t-test). Therefore, random sequences were chosen
without regard to intergenic or intron sequence length. Con-
servation values for coding sequences are based on a random
selection of 2,000 non-overlapping coding regions.
Assignment of sequence as coding or non-coding was based
on release 4.2 of the Drosophila genome annotation.

Alignments
Globally aligned sequence regions for each of the species used
were obtained from the multiple alignments available from
the Berkeley Comparative Genomics project [95] using the
version 2 alignment of builds DroMel_4, DroYak_1,
DroAna_20041206, DroEre_20041028,
DroMoj_20041206, DroPse_1, DroSim_20040829, and
DroVir_20041029. Sequence data for D. simulans and D.
yakuba were produced by the Genome Sequencing Center at
Washington University School of Medicine in St Louis [96],
those for D. ananassae, D. erecta, D. mojavensis and D. viri-
lis by Agencourt Bioscience [97], and those for D. pseudoob-
scura by the Human Genome Sequencing Center at Baylor
College of Medicine [98]. 'Flanking' sequences were defined
by extending each CRM (or size-matched random sequence)
1 kb on each end, or until the sequence could no longer be
aligned, whichever was shorter. Each of these sequence
regions was then aligned pairwise with the D. melanogaster
sequence using DIALIGN [46] with the following parameters:
-n -it -fa. Four of the REDfly analysis CRMs could not be
cleanly assigned to orthologous sequence regions and were
omitted from the assessments of conserved sequence
(Dfd_EAE-C, gt_-1_construct, siz_loner/CG32434-PE,
tld_promoterfusion).

Transcribed CRMs
Significance of CRM transcription was assessed using 50 size-
matched sets of randomly selected non-coding sequence and
a two-sample z-test of proportions such that:
Genome Biology 2007, 8:R101
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where:

where p1 = proportion of transcribed CRMs, p2 = proportion
of transcribed random sequences, and n1 and n2 are the total
number of sequences for CRMs and random, respectively.

FTT
To reduce running time, the FTT MATLAB program [65] was
rewritten in C++. We created two versions of the FTT, one in
which the GC content for the randomized ('shuffled')
sequences was adjusted probabilistically (that is, each base
chosen according to the probability of it being a specific
nucleotide based on the nucleotide distribution of the original
sequence), identical to the FTT of Abnizova et al. [65], and
one in which GC content was held fixed by randomly rear-
ranging the actual bases of the original sequences. Both of
these versions performed identically and both gave similar
results to the MATLAB version (data not shown).

The FTT-Z test was modified from the FTT as follows: for
each CRM, the F score from the FTT was calculated as in the
original program, except that we increased the number of
shuffled sequences ('r') from r = 50 to r = 1000. To calculate
the FTT-Z score, we then selected 500 randomly drawn non-
coding sequences of the same length and from the same chro-
mosome as the CRM (except in the case of CRMs on chromo-
some 4, for which random sequence was drawn from
chromosome 2) and calculated the F score for each of these. A
Z-score was then calculated as:

where FC is the F score of the CRM sequence and  and σR

are the mean and standard deviation of the F scores of the

random sequences, respectively. Source code for the FTT-Z is

available upon request.

For both the FTT and the FTT-Z, we conducted the tests a
total of six times using either the CRMs or six independently
generated sets of size-matched random non-coding
sequences. The data reported in the text and in Figures 1 and
2 represent all six repetitions of the test.

Computation of YMF score
YMF [70] was run on every window of length 1,000 (with
shifts of 100) in the given sequence, with motif length 6 and

up to 1 degenerate symbol allowed. The count of motifs with a
reported z-score ≥3 is the 'YMF count score'. Random non-
coding sequences of the same length were chosen from the D.
melanogaster genome (Release 3.1), the YMF count score
was computed for each of these, and an empirical P value
computed as the fraction of random sequences that scored
greater than or equal to the given sequence's score. This
empirical P value is called the 'YMF score'. All sequences,
including the randomly chosen ones, were tandem repeat
masked with the 'Tandem Repeats Finder' program [99] with
parameters '2 3 5 80 10 25 500' before processing.

Estimation of sensitivity and specificity of CRM 
prediction
A sequence is classified as a CRM if its YMF score (empirical
P value) is below a threshold τ. Given a set of true CRMs, the
sensitivity is simply the fraction of these classified as CRMs.
The specificity of prediction is calculated by making assump-
tions about the fraction of randomly selected non-coding
sequences that are actually CRMs, as follows. Let S be an
input sequence, let TS be the event that S is classified as being
a CRM (because its YMF score was below threshold), let GS be
the event that S is a true CRM, and let BS be the event that it
is not a true CRM. The specificity is defined as the probability
that a sequence S classified as a CRM is indeed a true CRM.
That is, the specificity is given by:

Note that Pr(TS|BS) = τ, since the probability that a random
(non-CRM) sequence has an empirical P value (YMF score)
below threshold τ is itself τ. Pr(TS|GS) is computed from the
true (known) CRMs as the fraction of them that were classi-
fied as CRMs. Finally, we can make varying assumptions
about Pr(GS), the prior probability that a sequence S is a
CRM, and set Pr(BS) = 1 - Pr(GS) to obtain the specificity at
threshold τ. We show results under three different assump-
tions about the true proportion of CRMs: Pr(GS) = 0.25, 0.5,
0.75.

Classification of CRM versus random genomic 
sequences using supervised learning
We implemented a variation of the HexDiff algorithm [66] to
classify CRM sequences. The training data for our classifier
consists of a set of CRMs ('positive' sequences) and a set of
equally many random genomic fragments ('negative'
sequences) with lengths matching the CRM lengths.
(Sequences were not repeat masked for this exercise, and
sequences with lengths <500 bp or >2,000 bp were excluded
from this analysis.) We first find a set of discriminative words
(hexamers) from the training data; the discriminative power
s(w) of a word w, is measured by:
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where fp(w) is the frequency of w in the CRM sequences and
fb(w) is the frequency of w in the background, taken to be the
entire release 3 Drosophila genomic sequence. After ranking
all the words by this score, we choose a set W to be the top κ
words, where κ is determined from the training data (as
described below). To score a sequence, we scan this sequence
with a sliding window of size 500 and set the score of this
sequence to be the maximum score of all windows. The score
of a window is defined as:

∑n(w) s(w)

for all w in the set W, where n(w) is the number of occur-
rences of w in this window and s(w) is the discriminative
score we computed in the training stage. A sequence with
score above some threshold τ is predicted to be a CRM. The
values of κ and τ are determined as those which, if used, lead
to maximum prediction accuracy (least number of misclassi-
fied sequences) on the training sequences. In our experi-
ments, we tried all values of κ from 200 to 400, with a step
size of 50. Finally, each sequence in the test data is predicted
as a CRM or not, using the values of κ and τ learned from
training data.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 contains data on
sequence-level properties of the REDfly analysis CRMs,
including Figures S1-1 (basic properties of the CRMs), S1-2
(alternative mapping to tissues), S1-3 (distribution of intronic
CRMs), and Table S1-1 (GO terms). Additional data file 2 is a
GFFv3 file giving the locations and additional information on
the REDfly analysis CRMs. Additional data file 3 contains
Figures S3-1 through S3-4 with additional data on the evolu-
tionary conservation of the REDfly CRMs. Additional data file
4 is a table showing the overlap of REDfly CRMs with ultra-
conserved sequences. Additional file 5 provides data on tran-
scription of CRM sequences based on the microarray data of
Stolc et al. [58] and includes Table S5-1 and Figure S5-1.
Additional data file 6 illustrates differences between the orig-
inal FTT and the revised FTT-Z (Figures S6-1, S6-2) and con-
tains Table S6-1, which lists CRM subsets with significant
FTT-Z scores.
Additional data file 1Data on sequence-level properties of the REDfly analysis CRMsFigures S1-1 (basic properties of the CRMs), S1-2 (alternative map-ping to tissues), S1-3 (distribution of intronic CRMs), and Table S1-1 (GO terms).Click here for fileAdditional data file 2Locations and additional information on the REDfly analysis CRMsGFFv3 file giving the locations and additional information on the REDfly analysis CRMs.Click here for fileAdditional data file 3Evolutionary conservation of the REDfly CRMsFigures S3-1 through S3-4 and additional data.Click here for fileAdditional data file 4Overlap of REDfly CRMs with ultra-conserved sequencesOverlap of REDfly CRMs with ultra-conserved sequences.Click here for fileAdditional data file 5Transcription of CRM sequences based on the microarray data of Stolc et al. [58]Table S5-1 and Figure S5-1.Click here for fileAdditional data file 6Differences between the original FTT and the revised FTT-Z and CRM subsets with significant FTT-Z scoresDifferences between the original FTT and the revised FTT-Z (Fig-ures S6-1 and S6-2) and CRM subsets with significant FTT-Z scores (Table S6-1).Click here for file
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