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Modularity and allosteric communication<p>A new method for studying signal transmission between functional sites by decomposing protein structures into modules demonstrates that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways.</p>

Abstract

Background: Allosteric communications are vital for cellular signaling. Here we explore a
relationship between protein architectural organization and shortcuts in signaling pathways.

Results: We show that protein domains consist of modules interconnected by residues that
mediate signaling through the shortest pathways. These mediating residues tend to be located at
the inter-modular boundaries, which are more rigid and display a larger number of long-range
interactions than intra-modular regions. The inter-modular boundaries contain most of the
residues centrally conserved in the protein fold, which may be crucial for information transfer
between amino acids. Our approach to modular decomposition relies on a representation of
protein structures as residue-interacting networks, and removal of the most central residue
contacts, which are assumed to be crucial for allosteric communications. The modular
decomposition of 100 multi-domain protein structures indicates that modules constitute the
building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize
experimentally identified functional regions. Based on the study of an additional functionally
annotated dataset of 115 proteins, we propose that high-modularity modules include functional
sites and are the basic functional units. We provide examples (the Gαs subunit and P450
cytochromes) to illustrate that the modular architecture of active sites is linked to their functional
specialization.

Conclusion: Our method decomposes protein structures into modules, allowing the study of
signal transmission between functional sites. A modular configuration might be advantageous: it
allows signaling proteins to expand their regulatory linkages and may elicit a broader range of
control mechanisms either via modular combinations or through modulation of inter-modular
linkages.
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Background
Allosteric communications play crucial roles in many cellular
signaling processes. Perturbations caused by factors such as
ligand binding at one functional site affect a distant site,
thereby regulating binding affinity and catalytic activity [1,2].
Since the allosteric model proposed by Monod and coworkers
[1], decades of research have extended the common view of
allostery associated with multi-domain proteins to single
domain proteins. The allosteric behavior displayed by single
domain proteins, such as myoglobin [3], called into question
the existing allosteric dogma. In the 'new view' of protein
allostery, all proteins are potentially allosteric when thought
of in terms of population redistribution upon ligand binding
causing conformational change in a second binding site [1].

Dynamic models have been proposed to explain the confor-
mational changes involved in signal transmission between
functional sites [4,5]. In particular, the role of the pre-existing
equilibrium of conformational sub-states in allostery pro-
posed already over 20 years ago [6] is increasingly receiving
attention, emphasizing the key role of protein dynamics in
this process [1,7-9]. Although experimental methods such as
double mutant cycle analysis [10] have provided insights into
allosteric communications, understanding the general princi-
ples of the transmission of information between distant func-
tional surfaces remains a challenge in structural biology.
Several theoretical methods based on sequence and structural
considerations have been proposed for the identification of
key amino acids for long-range communications [11-13].
Among these, an interesting sequence-based approach has
been proposed by Ranganathan and coworkers [14,15] for
estimating the thermodynamic coupling between amino acids
in several examples of protein families. Recently, we intro-
duced a model based on a network representation of protein
structures. The model allows us to determine fold centrally
conserved residues (FCCRs). These residues are responsible
for maintaining the shortest pathways between all amino
acids and, thus, play key roles in signal transmission [13].
Analysis of several protein families showed an agreement
between our results and experimental data, illustrating the
importance of protein topology in network communications.
Perceiving protein structures as information processing net-
works, it is reasonable to assume that mutations of amino
acids crucial for network communications could impair signal
transmission.

The rationale for modular organization of proteins in allos-
teric behavior has been discussed previously [16-18]. Modu-
lar domains can act cooperatively, leading to new input (and
output) relationships. The Src family proteins constitute a
clear example of this modular architecture: these proteins
contain amino-terminal SH3 and SH2 domains, which flank
a kinase domain by intra-molecular SH3-binding and SH2-
binding sites [16]. It is further known that modular functional
units display certain degrees of functional specificity in a
number of proteins. In several cases of protein-protein inter-

actions, which are involved in cell signaling, some parts of the
interacting interface participate in the information transfer,
whereas other interacting regions appear to contribute solely
to binding affinity [19]. Examples of proteins exhibiting this
binding site modular configuration include Myosin, C5a
receptor, and the protein kinase R activator PACT among oth-
ers [19]. Here, we aim to obtain the modular decomposition
of allosteric proteins and to explore a relationship between
the modules and the allosteric activity. We expect that such a
relationship, if it exists, would lead to deeper insight into
functional mechanisms. We develop a new approach for
decomposing protein structures into modules using their res-
idue network representations. Our methodology is based on
the edge-betweenness clustering algorithm proposed by New-
man and Girvan [20,21], which has been previously applied to
a wide variety of problems [22-25]. This method uses edge
centrality to detect module boundaries and finds the assigna-
tion of nodes into modules [20].

The small-world topology of protein structures suggests that
the key amino acids for signal transmission should lie in the
shortcuts linking different regions of the structure. The
removal of the most central contacts forming these shortcuts
divides the structure into modules. We characterize these
modules from a structural point of view. Our results, derived
from a non-redundant dataset of multi-domain proteins,
reveal that, in the vast majority of the cases, modules tend to
be located within rather than across domains. Therefore,
modules can be considered as sub-domains. Further analysis
shows that the percentage of long-range interactions at the
modular boundaries is much higher than that in non-bound-
ary regions. Residues forming inter-modular contacts
fluctuate less than those participating only in the intra-mod-
ular interactions. One possible explanation of this finding is
that most central residues, which have been shown to be
important for the allosteric communications, are located at
the inter-modular interfaces and, therefore, tend to be more
rigid to maintain their contacts. Inspection of 13 allosteric
proteins shows that functionally annotated regions exhibit a
modular architecture, with modules interconnected by
FCCRs, which are responsible for mediating the shortest
pathways between all amino acids and, thus, play crucial roles
in allosteric communications [13]. Functional sites are often
contained in one module; however, there are also examples of
functional sites shared by two or more modules. Some of
these cases correspond to binding sites divided into two mod-
ules belonging to different domains. The Gαs subunit and
P450 cytochromes are examples of functional sites shared
between modules. Interestingly, the modular decomposition
of the Gαs subunit reflects binding site partitioning into
regions involved in different sub-functional specialization,
general binding and information transfer regions [26]. The
P450eryF active site is divided into a module containing the
ligand-binding site, and a module comprising the effector-
binding site, whereas the P450cam substrate binds to one
module, and the product binds mainly to another module. A
Genome Biology 2007, 8:R92
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detailed analysis of a large dataset of proteins with functional
annotations revealed that modules exhibiting high modular-
ity tend to include functional sites.

Our results lead us to propose that the modular architecture
of protein structures yields a more efficient performance of
the functional activity. Modules may possess certain func-
tional independence; and, they are interconnected through
amino acids previously shown to mediate signaling in pro-
teins. Modules consist of groups of highly cooperative resi-
dues. Evolution has organized proteins as systems consisting
of modules linked by amino acids that maintain the shortest
pathways between all amino acids and are, thus, crucial for
signal transmission, leading to robust and efficient communi-
cation networks. This organization is advantageous and, as
such, has been conserved by evolution.

Results and discussion
Here we propose a novel way to decompose protein structures
into modules based on their representation as residue inter-
acting networks (see Materials and methods). Our approach
relies on the edge-betweenness clustering algorithm pre-
sented by Newman and Girvan [20,21]. Modular decomposi-
tion allows us to identify functionally important regions in
proteins.

Structural properties of modules
We carried out the modular decomposition of protein struc-
tures of a non-redundant dataset of 100 multi-domain pro-
teins (described in Materials and methods). Results show that
the majority of the modules have most of their residues in one

domain (Figure 1). That is, modules tend to be located within
rather than across domains, and hence may be considered as
sub-domains. Comparison of contacts between amino acids
belonging to different modules (inter-modular contacts) and
those between amino acids belonging to the same module
(intra-modular contacts) revealed that the percentage of
long-range interactions is larger in the inter-modular con-
tacts (Figure 2). This finding is in agreement with the ration-
ale that long-range interactions often mediate the shortest
pathways between most residues in the protein.

A detailed analysis of 115 proteins (described in Materials and
methods) with available structures in different conforma-
tional states and temperature B-factors showed that residues
with inter-modular contacts fluctuate less than those forming
exclusively intra-modular contacts. Figure 3 clearly illus-
trates this situation: the normalized root mean square devia-
tion (RMSD) values and the B-factors of the residues involved
in inter-modular interactions tend to be lowerthan those of
the residues involved in intra-modular interactions. This
result could suggest that intra-modular regions, which
include most of the protein or ligand binding sites, absorb
conformational changes due to perturbations. In contrast, the
boundaries between modules are more rigid, allowing them
to maintain key residue contacts for the integration and
transmission of the information between modules.

Modularity of protein function
The modular decomposition of protein structures provides
information about functional sites and signal transmission.
We selected a dataset of 13 allosteric proteins based on previ-
ously analyzed examples [13] and new examples with

Mapping of modules into domains for the dataset of multi-domain proteinsFigure 1
Mapping of modules into domains for the dataset of multi-domain 
proteins. The abscissa axis shows the percentage of a module contained in 
one domain. The bars indicate the percentage of all modules 
corresponding to each interval of the abscissa axis.
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Percentage of long-range interactions for each protein of the multi-domain protein datasetFigure 2
Percentage of long-range interactions for each protein of the multi-domain 
protein dataset. The interactions were calculated separately for the set of 
the inter-modular residues and for the set of intra-modular residues. The 
ordinate axis shows the percentage of long-range interactions for the 
inter-modular interfaces (in red) and for the intra-modular regions (in 
blue).
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experimental information. A detailed study of these proteins
revealed that many modules contain functional regions,
which are interconnected by residues mediating the shortest
pathways between most amino acids in the structure
(FCCRs). A majority (72%) of the FCCRs connect modules
(Additional data file 1). Table 1 summarizes the analyzed
examples, including the assignment of functional sites to
modules (detailed information is provided in Table 3 of Addi-
tional data file 1).

Modular division of functional sites
Functional sites can be decomposed into modules. In some
cases, the modules are located in different domains. An illus-
trative example of this situation is the pyruvate kinase (PDB
ID 1liu, chain A). The catalytic site is divided into two modules

belonging to different domains and exhibiting different
degrees of flexibility [27] (Table 1). In other examples, the
functional site is contained in one domain and is divided into
two or more modules. Such is the case of tyrosine phos-
phatase 1B (PDB ID 1pty), with the catalytic residues located
in two modules. One of these modules comprises a loop,
whose flexibility is important for the transition from the open
to the closed conformation [28] (Table 1). The Gαs subunit
and Cytochrome P450eryF and P450cam examples are dis-
cussed in detail below.

Guanine nucleotide-binding protein G(s) subunit alpha (Bos Taurus)
A well-studied example of signal transmission is the regula-
tion of adenylyl cyclase by the Gαs subunit [19,29]. It is known
that the Gαs subunit undergoes significant conformational
changes upon exchange of GDP by GTP, affecting its affinity
for adenylyl cyclase [29]. It has been experimentally verified
that the Gαs subunit involves three main regions for its inter-
action with this enzyme effector - the switch I and switch II
regions and the α 3-β5 loop [26]. Although the Gαs subunit
activation of adenylyl cyclase is a complex process, experi-
mental results indicate that the switch I and switch II regions,
which display conformational flexibility, mainly mediate
information transfer, whereas the α 3-β5 loop is solely
involved in the ligand binding affinity [26]. Interestingly, the
modular decomposition of the Gαs subunit (1azs, chain C)
shows that the adenylyl cyclase-binding site is divided into
two modules: one of the modules contains the switch I and
switch II regions and the other module comprises the α 3-β5
loop (Figure 4). Thus, in this example we find a correspond-
ence between the modular decomposition of the binding site
and its partition into signal-transfer and general binding
regions.

Cytochromes P450
P450eryF (Saccharopolyspora erythraea)
P450eryF, a cytochrome P450 involved in erythromycin bio-
synthesis, exhibits no cooperativity with its natural substrate
6-deoxyerythronolide, while showing sigmoidal substrate
saturation curves with other smaller substrates [30]. The
presence of multiple binding sites within the same binding
pocket is believed to be a primary cause of allostery in cyto-
chromes P450 [31]. Since P450eryF has a large active site, it
is assumed that P450eryF is capable of binding the large sub-
strates of the mammalian P450s [32]. X-ray crystallographic
studies and other experimental results indicate that two
androstenediones are simultaneously present in the active
site, interacting with each other, and, therefore, exhibiting a
certain degree of homotropic cooperativity [32]. Binding of
one androstenedion (Andro2) induces conformational
changes in the active site and increases its hydrophobicity,
resulting in increased binding affinity to the other androsten-
edion (Andro1) [32]. The modular decomposition of this pro-
tein indicates that the two modules share the active site. Each
of these modules contains one of the two androstenedion-
binding sites (Figure 5a).

Modular flexibility for each protein of the dataset of proteins with conformersFigure 3
Modular flexibility for each protein of the dataset of proteins with 
conformers. (a) Averages of normalized residue temperature B-factors 
for inter-modular residues (red) and intra-modular residues (blue) for 
each protein. (b) Averages of normalized residue RMSDs for inter-
modular residues (red) and intra-modular residues (blue) for each protein.
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P450cam (Pseudomonas putida)
The camphor monoxygenase P450cam catalyzes the 5-exo
hydroxylation of camphor [33]. Its active site may be consid-
ered to have two functionally different subsites: the substrate
binding region (site I) and the L6 position of the iron to which
oxygen binds upon reduction (site II) [33]. Allosteric interac-
tions between these subsites are reflected in the fact that site
I binding can inhibit site II ligation and vice versa.
Furthermore, the presence of the product 5-exo-OH camphor
inhibits binding of the substrate camphor (and vice versa)
[33]. The modular decomposition of the P450cam structure
(PDB ID 1noo) shows that the substrate (camphor) and prod-
uct (5-exo-OH camphor) binding sites are mainly located in
different modules, sharing common central residues, which
are likely to be important for the allosteric communication
between these sites. Figure 5b shows that residues compris-
ing the 5-exo-OH camphor binding site tend to be located
closest to the heme central ion, whereas amino acids forming
the camphor binding site tend to be positioned distal from the
heme group.

These examples suggest that the modular design of functional
sites might be related to their sub-functional specialization.
Each module contains a portion of the active site and is
mainly involved in a specific sub-function, such as the bind-
ing of the substrate, the product or an allosteric ligand.

Modularity and functional significance of modules
Analysis of the previously studied dataset of 115 proteins with
functional site annotations (described in Materials and meth-
ods) indicates that modules exhibiting high modularity values
tend to comprise functional sites. The analysis of all modules
illustrates that a large percentage of modules comprising
functional regions exhibit above average modularity values
(Figure 6a). Figure 6b clearly illustrates that there is a corre-
lation between the percentages of functional modules and the
modularity values.

Conclusion
In signaling proteins, modular domains can act as switches
mediating activation, repression and integration of diverse
input functions. Experimental studies confirm that inter-
domain linker regions are crucial for the domain coupling
required for the information transfer [16]. Our approach
decomposes protein structures into modules, allowing us to
study functional sites linked by signal transmission. To detect
module peripheries, we rely on the identification and removal
of the most central residue contacts, assuming that the inter-
actions of these amino acids are crucial for information trans-
fer. Our results show that modules, which often characterize
functional sites, can be considered as building blocks of pro-
tein domains. Hence, the question arises, how is the trans-
mission between distinct modules achieved? Although a very
complex process, which is not fully understood, our findings
suggest that inter-modular boundaries are essential for inte-

grating and transmitting the information between functional
regions. The majority of the fold centrally conserved residues,
recently shown to play a key role in signal transmission by
maintaining the short path lengths between all residues in the
structure [12], are those responsible for the inter-modular
interactions. Furthermore, boundary residues are rigid, sus-
taining key amino acid interactions for the communication
between modules. On the other hand, intra-modular regions,
which include most of the protein or ligand binding sites,
form a flexible cushion. Most of the inter-modular residue
interactions form long-range contacts, which are predomi-
nantly involved in mediating signaling. A detailed study of 13
allosteric proteins showed that functional sites are often con-
tained within one module. However, there are cases of active
sites divided into two or more modules. The analysis of the
Gαs subunit and of Cytochromes P450eryF and P450cam
illustrate that the modular architecture of the active site may
relate to its sub-functions. Modules containing functional
sites display high modularity, suggesting that modularity can
be used to identify functional modules.

To conclude, our approach decomposes protein domains into
modules. Mapping annotated functional regions onto the
decomposed structures illustrates that the modules
characterize functional sites. We observe that most inter-
modular boundary residues provide the shortcuts in the
communication wires. These residues maintain the shortest
pathways between all amino acids, leading to robust and effi-
cient signal transmission communication networks. Func-
tional specificity and regulation relies on the communication
between modules. This advantageous organization has been
conserved by evolution. Furthermore, due to the possible
functional independence of modules, changes in boundary
residues may lead to new functions or to functional altera-
tions as might be needed in a changing environment.
Therefore, a modular configuration might allow signaling
proteins to increase their regulatory links, and to expand the
range of control mechanisms either via new modular combi-
nations or through modulation of inter-modular linkages.
Since our results indicate that boundary residues are crucial
in efficient short communication pathways, both mechanisms
appear possible.

Materials and methods
Protein datasets
A non-redundant dataset of 100 multi-domain proteins was
selected from NCBI [34]. The domain information was
extracted from the CATH database [35,36]. This dataset was
used to analyze the distribution of protein modules into
domains and to calculate the distribution of the long-range
interactions at the inter-modular interfaces and in the intra-
modular regions. Using the definition of Green and Higman
[37], we considered the interactions as long range if they
occur between amino acid residues that are ten or more resi-
dues apart in the sequence. While residues close in sequence
Genome Biology 2007, 8:R92
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Table 1

Modular division and FCCRs connecting functional modules for the studied allosteric proteins

Protein (ID) Functional sites Modules Linking FCCRs

Hemoglobin (1bz0 A) ['15,48,49] Hem BS 1,2 65(1)(1-2)

AB interface 1 66(1)(1-2)

98(2)(2-1)

128(1)(1-2)

Glycogen phosphorylase (1e1y A) ['50-53] Cat site 5 84(2)(2-3-4)

AMP BS 1 93(1)(1-2-5)

280 loop* 2 138(2)(2-1-4)

Glycogen BS 2 161(2)(2-1)

Tower helix* 2 490(1)(1-2-5)

608(5)(5-2)

648(5)(5-2-4)

Retinoic acid receptor RXR-alpha (1g5y A) Cat ligand BS 5 305(1)(1-5)

[54-56] AF2 helix* 4 309(5)(5-3-1)

Coactivator BS 1,4 310(5)(5-1)

AB interface 5 315(5)(5-1)

371(1)(1-5)

Catabolite gene activator protein (1g6n A) DNA BS 3 63(2)(2-3)

[57-61] cAMP BS 2,1 64(2)(2-1-4)

65(2)(2-1-3)

69(1)(1-2-4)

Glutamate dehydrogenase (1hwz A) [62-64] Cat site 2 110(2) (2-1)

NAPH BS DomA2 in 2 and DomA3 in 5,1 173(2) (2-5)

GTP BS 5 211(2) (2-5-1)

Glutamate BS DomA2 in 2 and DomA3 in 2 252(5) (5-1)

Antenna* 7 347(1) (1-5)

Rhodopsine (1l9h A) [65-69] Retinal BS
G protein BS

1
2

301(1)(1-3-2)

Pyruvate kinase (1liu A) [70,71] Cat site DomA2 in 5 and DomA3 in 7 163(7)(7-4)

FBP BS 3 337(6)(6-2-7)

PEP BS 6,4 342(7)(7-6)

361(6)(6-2-3)

482(3)(3-6-2)

488(3)(3-6-2)

Phosphofructokinase (1pfk A) [72-74] Cat site DomA1 in 2 and DomA2 in 3 126(2)(2-3)

FBP BS DomA1 in 2 and DomA2 in 3 139(2)(2-3)

MgADP BS 2,1 169(3)(3-2)

Tyrosine phosphatase 1B (1pty) [28] Cat site 2 81(2)(2-1)
Genome Biology 2007, 8:R92
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Phosphotyrosine BS 2,1 109(2)(2-1)

Inhibitor BS 1 194(1)(1-2)

199(1)(1-2)

254(1)(1-2)

257(2)(2-1)

Beta-trypsin (2ptc E) ['15,74,76-78] Cat site DomA2 in 3 and DomA1 in 3 29(3)(3-1)

S1 site* 2,1 30(3)(3-1)

Loop1* 2 138(1)(1-2-3)

Loop2* 2 141(1)(1-3)

Loop3* 2 189(2)(2-1)

194(1)(1-3-2)

212(3)(3-2)

213(3)(3-1-2)

228(2)(2-1-3)

G-protein s-alpha (1azs C) [19,26,29] Cat site DomC1 in 1,4 and DomC2 in 1 50(1)(1-4-3)

GSP BS DomC1 in 1 and Dom C2 in 4 58(1)(1-4)

Adenylyl cyclase BS*
-Binding only*

DomC2 in 4,1 and DomC1 in 1
2

173(4)(4-1-5)
201(4)(4-1-3)

-Binding and 
transmission*

DomC2 in 4,1 and DomC1 in 1

G-protein beta-gamma (1tbg A) [19,79] PLC-beta2 BS* 4 61(4)(4-3-2)

-Binding only* 3,2,4 63(4)(4-3-2)

-Binding and 
transmission*

4 105(4)(4-3)

150(3)(3-4)

151(3)(3-4)

190(3)(3-2)

192(3)(3-2)

234(2)(2-3)

258(2)(2-1-3)

289(2)(2-4)

318(2)(2-4)

320(2)(2-4)

Cytochrome P450eryF (1eup A) [32] Hem BS 2,6 102(6)(6-2-4)

Andro1 BS 6 238(6)(6-3)

Andro2 BS 3 349(2)(2-5-6)

The functional site divisions into modules are indicated. *The information on these sites was extracted from the reference indicated in the first column. Dom denotes those 
functional sites divided into several domains according to the CATH database. The FCCRs linking functional modules are listed (the first number in parentheses represents the 
module to which the FCCR belongs and the numbers in the following parentheses are the modules it connects). BS, binding site; Cat, catalytic site. AB, chains A and B; AF2 
helix, activation function 2 helix; FBP, fructose1,6-bisphosphate; PEP, phosphoenolpyruvate; PLC, phospholipase C.

Table 1 (Continued)

Modular division and FCCRs connecting functional modules for the studied allosteric proteins
Genome Biology 2007, 8:R92
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are close in space, we adopt this standard notation, which has
been used in numerous studies. The analyses of flexibility and
modularity of modules were based on a different dataset of
115 proteins with conformers. This dataset was compiled
using the database of macromolecular movements: [38-40]
undergoing distinct molecular motions. Only conformers
with more than 60% sequence identity were chosen. The
annotations of functional sites were taken from PDBsum
[41,42]. We annotated a module as functional if more than
30% of its residues belong to a functional site. We selected 13
examples of proteins displaying allosteric activities with
existing PDB structures. All protein structure images were
created using DS ViewerPro 6.0 [43].

Network analysis of protein structures
Each protein structure was modeled as an undirected graph,
where amino acid residues corresponded to vertices, and
their contacts were represented as edges. Residues i and j
were considered to be in contact if at least one atom corre-
sponding to residue i was at a distance of less than or equal to
5.0 Å from an atom from residue j. This value approximates
the upper limit for attractive London-van-der-Waals forces
[12,37].

FCCRs were calculated as in del Sol et al. [13]. Protein net-
works were decomposed into modules using the edge-
betweenness clustering algorithm of Girvan and Newman
[21] based on the iterative removal of the highest between-
ness edges. We used the parallel implementation PEBC (par-
allel edge betweenness clustering) [44] of the Girvan and
Newman algorithm. We modified the program to obtain the

modular decomposition after removing 80% of the network
edges. This cutoff was obtained empirically for optimizing the
correspondence in the mapping of functional sites into mod-
ules. Based on the expression of network modularity
introduced by Guimerà and Nunes Amaral [45], we defined
the modularity of protein modules Qm as follows:

Binding site of the G-protein α s subunit (PDB ID 1azs) divided into two modulesFigure 4
Binding site of the G-protein α s subunit (PDB ID 1azs) divided into two 
modules. This division coincides with the specialized regions of this binding 
site for ligand binding only (pink module) and ligand binding and 
information transfer (blue module). The binding site residues are depicted 
in spacefill. Modular regions not involved in the binding site are depicted in 
green.

Module 1 - binding and transmission

Module 2 - binding only

Modular chromes binding tesFigure 5
Modular division of the Cytochromes binding sites. (a) Modular division of 
the Cytochrome P450eryF (PDB ID 1eup) binding site. Two 
androstenedione molecules (Andro1 and Andro2 colored in blue and 
purple, respectively) are bound to the protein. The binding site (in 
spacefill) for the androstenedione is divided into two modules (highlighted 
in red and yellow) corresponding to the binding area for each of these two 
molecules. Modular regions not involved in the binding site are depicted in 
green. (b) Modular division of the Cytochrome P450cam (PDB ID 1noo) 
binding site. Two camphor molecules (camphor and 5-exo-OH camphor) 
can bind to the protein. The binding site (in spacefill) for the camphor is 
highlighted in yellow and orange. The binding site (in spacefill) for the 5-
exo-OH camphor is highlighted in red and orange. Residues in orange are 
the ones that can bind both camphor and hydroxycamphor. Catalytic 
residues (in spacefill) are highlighted in light blue and purple. The ones in 
purple can also bind hydroxycamphor. The residues forming each of the 
four modular regions (and not involved in any of the functions previously 
described) are depicted in magenta, blue, green and brown.
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where L is the number of edges in the network, lm is the
number of edges between nodes in module m, and dm is the
sum of the degrees of the nodes in module m. The rationale
for this modularity measure is as follows: modules with high
modularity values must contain many within module links
and as few as possible between-module links. The equation
above imposes Qm = 0 in cases when the module comprises
the whole network or if nodes are placed randomly into
modules.

Protein flexibility analysis
The analysis was carried out over the dataset of 115 proteins
with conformers in two ways. We first calculated the averaged
main chain residue RMSD considering all pairs of structurally
aligned conformers. The structural alignments were obtained
using MultiProt [46,47]. We also calculated the main chain
temperature B-factor of each residue. The normalizations of
the RMSDs and B-factors were calculated using the standard
definition of the Z-score values.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 contains figures
with additional examples of protein modularity and tables
with the data sets used for the analyses.
Additional data file 1Additional examples of protein modularity and the datasets used for the analysesAdditional examples of protein modularity and the datasets used for the analyses.Click here for file
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