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Abstract

Background: Being the first noneutherian mammal sequenced, Monodelphis domestica (opossum)
offers great potential for enhancing our understanding of the evolutionary processes that take place
in mammals. This study focuses on the evolutionary relationships between conservation of
noncoding sequences, cis-regulatory elements, and biologic functions of regulated genes in opossum
and eight vertebrate species.

Results: Analysis of 145 intergenic microRNA and all protein coding genes revealed that the
upstream sequences of the former are up to twice as conserved as the latter among mammals,
except in the first 500 base pairs, where the conservation is similar. Comparison of promoter
conservation in 513 protein coding genes and related transcription factor binding sites (TFBSs)
showed that 41% of the known human TFBSs are located in the 6.7% of promoter regions that are
conserved between human and opossum. Some core biologic processes exhibited significantly
fewer conserved TFBSs in human-opossum comparisons, suggesting greater functional divergence.
A new measure of efficiency in multigenome phylogenetic footprinting (base regulatory potential
rate [BRPR]) shows that including human-opossum conservation increases specificity in finding
human TFBSs.
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Conclusion: Opossum facilitates better estimation of promoter conservation and TFBS turnover
among mammals. The fact that substantial TFBS numbers are located in a small proportion of the
human-opossum conserved sequences emphasizes the importance of marsupial genomes for
phylogenetic footprinting-based motif discovery strategies. The BRPR measure is expected to help
select genome combinations for optimal performance of these algorithms. Finally, although the
etiology of the microRNA upstream increased conservation remains unknown, it is expected to
have strong implications for our understanding of regulation of their expression.
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Background

One of the prime motivating factors driving the sequencing of
vertebrate genomes is the expectation that the role played by
the functional regions of the human genome may be dis-
cerned by finding molecular level commonalities with and
differences from other animals. This is especially true of the
newly sequenced opossum (Monodelphis domestica), which
is the first completed marsupial genome. Being the first non-
eutherian mammal sequenced, the opossum helps to clarify
which sequence changes occurred before and after the diver-
gence of mammalian ancestors from other vertebrates [1],
and has already provided new insight into the evolution of
mammalian major histocompatibility complex genes [2]. It is
also hoped that the opossum genome may yield insights into
how gene regulation has evolved in vertebrates.

In protein coding genes, gene regulation is primarily control-
led by short DNA sequences in the vicinity of the gene's tran-
scription start sites (TSSs), which are targets for transcription
factor proteins. A high degree of evolutionary conservation of
these promoter regions can be attributed to functional cis-
regulatory elements. The increased conservation in the bio-
logically more important parts of the promoter region has
been explored by various phylogenetic footprinting algo-
rithms, such as PhyloGibbs [3], ConSite [4], rVista [5], and
FOOTER [6], to improve the prediction of transcription fac-
tor binding sites (TFBSs) in vertebrate genomes. Phyloge-
netic footprinting is a comparative genomics approach that
exploits cross-species sequence conservation in order to pre-
dict regulatory genomic elements. In the absence of evolu-
tionary information, TFBSs can be evaluated in terms of
sequence similarity scans against frequency matrices derived
from alignments of known binding sites for a given transcrip-
tion factor [7]. However, the typical short length of TFBSs (5
to 20 base pairs [bp]) and their inherent level of sequence
degeneracy makes them notoriously difficult to predict with
any degree of specificity using similarity searches alone [8].
Phylogenetic footprinting provides a way to reduce the
sequence search space to regions that are conserved (and
therefore more likely to contain functional elements), thereby
improving the specificity of TFBS prediction.

In order to improve the performance of phylogenetic foot-
printing algorithms, the evolutionary aspects of the promoter
regions and the TFBSs residing in them must be investigated.
Evolutionary distance is an important factor in the effective-
ness of phylogenetic footprinting techniques. For example,
the divergence between chimpanzee and human is generally
insufficient to reduce the sequence search space in any mean-
ingful way; conversely, the divergence between Drosophila
and human can be too large for any regulatory sequence con-
servation to be detected. Recently, the maximum sensitivity
of phylogenetic footprinting techniques has been measured
via estimations of the rate of TFBS 'turnover' between human
and rodent genomes [9-13]. We consider that a TFBS has
undergone turnover if the sequence in which it resides is not
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conserved between the species compared. High or low TFBS
turnover rates do not necessarily coincide with the rate of
changes in the regulatory mechanism (for instance, replace-
ment TFBSs can arise by chance elsewhere in the promoter
region or functional TFBSs may still be present in noncon-
served regions). Turnover, however, corresponds to the min-
imum false-negative rate for detection of TFBSs via
phylogenetic footprinting, and thus it serves as a critical
bound on the success of such algorithms. Human-rodent
TFBS turnover has been estimated at between 28% and 40%
[9-13], suggesting that TFBSs are among the most malleable
functional elements in the genomic landscape. However,
although rodents and primates diverged relatively recently
(approximately 9o million years ago [14]), the shorter gener-
ational time of rodents has placed a large degree of dissimilar-
ity between the two clades, as is evident in the human-dog
comparisons [15]. Therefore, TFBS turnover rates will have to
be estimated in other mammals before a clearer picture of the
selective pressure on mammalian TFBSs can emerge.

Another major mechanism for control of gene expression is
provided by microRNA (miRNA) genes. miRNAs are small
(22 to 61 bp long), noncoding RNAs that downregulate their
target genes via base complementarity to their mRNA mole-
cules [16,17]. Each miRNA can target multiple genes and each
gene can be targeted by multiple miRNAs [18-21]. In verte-
brates, their expression is tissue specific [22] and has been
shown to play an important role during development [23-25].
Although some miRNAs are found in the introns of coding
genes and therefore are probably regulated by the promoters
of the genes in which they reside [26], others are located in
the intergenic parts of the genome. Little is known about the
transcriptional regulation of these intergenic miRNAs,
although RNA polymerase II appears to be involved in the
process [27]. This suggests that they may have active pro-
moter regions that contain cis-regulatory elements, similar to
coding genes. The following question then arises; how does
the conservation in the upstream regions of the intergenic
miRNA genes compare with that of the protein coding genes?
In this respect, opossum and the other vertebrate species pro-
vide a broad range of evolutionary distances in which this
issue may be addressed.

In this report we present our findings regarding promoter
conservation of all protein coding genes and upstream
sequence conservation of intergenic miRNA genes in eight
vertebrate genomes as compared with human. To our knowl-
edge, this is the first time that such a comprehensive study
has been conducted on potential regulatory regions of both
protein coding and miRNA genes in vertebrates. Also,
because the opossum genome is placed at an evolutionary
midpoint relative to eutherian mammals and nonmammalian
vertebrates, using it as an outgroup to the existing eutherian
genomes allows for the estimation of the mammalian TFBS
turnover rate. Furthermore, the opossum genome provides
an opportunity to assess which transcriptional signals and
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Figure |

Phylogenetic tree of the species examined in this study. This phylogenetic
tree is based on the University of California, Santa Cruz (UCSC) multiple
alignments. The tree was generated using phyloGif [72].

regulatory mechanisms are shared between all mammals. For
these reasons, the conservation rates of the promoters of 513
human genes are also analyzed in relation to the turnover of
the 1,162 TFBSs they contain. Relationships between conser-
vation of sites and identity of the corresponding transcription
factors and their Gene Ontology (GO) [28] categories are also
investigated. Finally, we computationally re-evaluate the
potential of phylogenetic footprinting in the light of the opos-
sum genome and other recently sequenced vertebrates. A new
statistical measure, the base regulatory potential rate
(BRPR), is introduced to assess the efficiency of both pair-
wise and multiple species comparisons in phylogenetic foot-
printing strategies.

Results and discussion

Distribution of conserved blocks in the upstream
regions of protein coding and intergenic miRNA genes
Conservation of the 5 kilobases (kb) upstream regions of all
RefSeq protein coding genes as well as the known intergenic
miRNA genes was calculated using the sliding window
approach, as we describe in Materials and methods (below).
We chose to focus solely on intergenic miRNAs because
intronic miRNAs have been shown to be co-transcribed with
their corresponding protein coding genes [26]. Because little
is known about the transcriptional regulation of non-intronic
miRNA genes, we cannot assess the possible TFBS turnover.
We can, however, assess whether the miRNA upstream
regions evolve at the same, slower, or faster rate than those of
the protein coding genes, and whether their conservation pat-
tern across the upstream region indicates parts of potential
biologic importance. The phylogenetic tree of the species
examined in this paper is plotted in Figure 1.

Table 1 presents the number of orthologous genes in each spe-
cies (derived from the MULTIZ University of California,
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Santa Cruz [UCSC] synteny-based alignments), the average
block coverage of their upstream regions, and the average
percentage identity within these conserved blocks. For the
calculation of the average percentage identity, the conserva-
tion percentage of each block is multiplied by the total length
of the block. In other words, the average block conservation
corresponds to the number of bases that are identical in all
conserved blocks of one promoter over the total length of the
blocks in this promoter. The human genes were used as refer-
ence for all pair-wise comparisons. Surprisingly, we found
that, with the exception of teleosts and chimp, the conserva-
tion in the upstream regions of the miRNA genes is 34% to
60% higher on average than that in the protein coding genes.
This is independent of the average block identity, which
remains practically the same between the two types of genes
in these comparisons (Table 1). In all nonprimate mammals
the average block coverage in the miRNA upstream sequences
is significantly higher than that in the promoters of the pro-
tein coding genes (Wilcoxon rank-sum test: P = 6 x 104 for
opossum and P = 10714 to 10716 for rodents and dog).

In order to investigate this surprising finding further, we plot-
ted the sequence conservation as a function of the distance
from the start of the corresponding genes (Figure 2). We
found that in the first 500 bp the sequence conservation of the
miRNA genes is almost identical to that of the promoters of
the protein coding genes (R values > 0.9 and usually much
higher; regression t-test: P < 1019). In protein coding genes
this is typically the region with the highest concentration of
the known cis-regulatory elements. From all known human
and mouse TFBSs in TRANSFAC [29], 69.1% and 65.1%,
respectively, are annotated as being located in the proximal
500 bp region (data not shown). Interestingly, Lee and cow-
orkers [27] showed that this region is sufficient to drive
expression of the miR 23a~27a~24-2 intergenic miRNA gene
cluster by RNA polymerase II. Could this be a coincidence?
We tested this by analyzing the upstream sequence conserva-
tion of the tRNA genes in the human genome (see Materials
and methods, below). It has been long established that the
cis-regulatory elements of the tRNA genes are located down-
stream of their transcription start [30]. We found that the
sequence conservation for the tRNA genes was constant
throughout their 5 kb upstream regions (Figure 2; green
dashed line).

The conservation rates in both protein coding and miRNA
genes decline after the first 500 bp and become almost con-
stant. The difference between these two types of genes is that,
in the case of miRNAs, the constant conservation rate is up to
twofold higher than that in the protein coding genes for
rodents, dog, opossum, and chicken. We found this difference
to be statistically significant (Additional data file 1 [Supple-
mentary Figure 2]). Similarly high conservation rates are
observed in chimp for both types of genes, probably reflecting
the generally high conservation rate throughout the genome.
By contrast, similarly low conservation rates are observed for
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Conservation in the 5 kilobases upstream sequences in all protein coding and intergenic miRNA genes

Human versus Protein coding genes

Relative
conservation

Intergenic miRNA genes

Number of Block coverage  Average block ~ Number of Block coverage  Average block

orthologous identity orthologous identity
Chimp 23,643 93.03% 98.15% 144 93.46% 98.51% 0.46%
Mouse* 22,790 23.30%* 73.53% 142 36.17%* 74.72% 55.24%
Rat* 22,161 22.46%* 73.49% 140 34.95%* 74.68% 55.61%
Dog* 23,276 44.36%* 75.58% 145 61.72%* 76.96% 39.13%
Opossum* 17,334 7.28%* 74.90% 104 11.65%* 76.08% 60.03%
Chicken 8,087 4.55% 74.87% 54 6.08% 76.80% 33.63%
Fugu 6,257 4.13% 72.17% 47 2.73% 73.65% -33.90%
Tetraodon 7,821 3.43% 72.10% 60 231% 73.40% -32.65%

This table lists the number of genes orthologous to human genes in each of the genomes tested, the percentage of upstream sequence conservation
(in >65% block identity), and the weighted average within block identity. Relative conservation (in terms of block coverage) is also listed for the
microRNA (miRNA) versus protein coding genes. *Species for which the block coverage of miRNA gene upstream regions is statistically significantly

higher than that of the promoters of the protein coding genes.

the fugu fish and tetraodon. We note, however, that the
higher conservation rates are statistically significant only in
the (nonprimate) mammals, including opossum (Additional
data file 1).

It is not clear whether this increased upstream sequence con-
servation is a general biologic feature of the miRNA upstream
regions or is an artifact of the methods used to discover
miRNA genes. It is possible, for example, that the known
intergenic miRNAs happen to fall in more conserved regions
of the genome. This may be related to the way in which the
miRNAs were originally identified (through high similarity to
known miRNAs). However, it is also possible that because
miRNAs are involved in highly regulated vital cell or organis-
mal processes such as development [23-25], there is a much
greater selective pressure on their regulatory regions. We
investigate this further by comparing the upstream sequence
conservation in the miRNA genes with that of genes identified
as developmental according to GO classification (Figure 2;
light blue dashed line). We find that the upstream conserva-
tion of the developmental genes in all mammals is uniformly
higher than the overall average and similar to the conserva-
tion of the miRNA genes, especially in the first 2,000 bp. This
is true for all species examined, although in the nonmamma-
lian vertebrates the overall upstream sequence conservation
for all types of genes is similarly low (10% or lower after the
first 500 bp; Figure 2). The fact that miRNA genes have been
implicated in the regulation of various developmental proc-
esses [31] may partly explain the similar conservation rates in
their upstream regions and the promoters of the developmen-
tal genes, also indicating that analogous mechanisms and cis-
elements may regulate the expression of the corresponding
genes. The fact that opossum sequences also exhibit similar
conservation patterns, as do the sequences of eutherian spe-

cies, indicates that mammalian specific evolutionary con-
straints are in place.

In summary, the above observations are consistent with the
idea that miRNAs are regulated by similar mechanisms as
protein coding genes, which was also shown to be true in the
few cases studied thus far [27,32]. As more miRNA genes are
identified, the issue of their transcriptional mechanism will
warrant further investigation.

In all of the above pair-wise comparisons, except human-
chimp, the average block identity is about the same (72% to
77%; Table 1), regardless of the evolutionary distance or the
type of gene (protein coding or miRNA). Because the block
conservation threshold was 65%, this equivalency indicates
that a reduction in the number of conserved blocks rather
than a uniform decrease in similarity is responsible for the
observed conservation rates. Such a pattern of evolution is
expected if the cis-regulatory sites are organized in clusters
located in these upstream regions. Such clusters might con-
tain regulatory elements specific to, for instance, primates
only, eutherians only, and so on.

Evolutionary turnover of transcription factor binding
sites in vertebrates

We now turn to the relationship between promoter conserva-
tion of the protein coding genes and the turnover of the cis-
regulatory elements located in them. Table 2 presents the per-
centage of known human TFBSs that reside in conserved
blocks for each pair of genomes tested. The number of such
detectable TFBSs in each species differs depending on the
number of orthologous genes identified in that species. We
note that our analysis focuses on the TFBSs that are located
immediately upstream of the protein coding genes (up to 5
kb). This bias is imposed by the available data. It will be inter-
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Figure 2

Upstream sequence conservation of protein coding versus miRNA genes. Comparison of 5-kilobase upstream sequence conservation between human and
various organisms, relative to the transcription start site (TSS; protein-coding, solid blue line) and gene start (intergenic microRNA [miRNA] genes, orange
line). The conservation of developmental genes (light blue dotted line) and tRNA genes (green dotted line) are also plotted for comparison purposes. For
the plot 100 base pair (bp) intervals were used for the first 500 bp and 500 bp intervals thereafter.
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Figure 3

Conserved block coverage of the 5 kilobases upstream regions versus
TFBS turnover rates. A third-order polynomial trendline is fitted for
illustration. TFBS, transcription factor binding site.

esting to see how our results compare with the evolution of
DNA regulatory regions in other parts of the genome.

Although we confirm previously estimated rate of human-
mouse TFBS turnover [9-13], it is particularly interesting that
27% or more of the known human TFBSs are not located in
blocks conserved in mammals more distant than rodents
(Table 2). This does not necessarily mean that the mecha-
nisms of gene regulation have changed accordingly. Func-
tionally equivalent TFBSs are not always located in conserved
blocks, as demonstrated in a recent comparison of gene
regulation in human and zebrafish RET genes [33]. Similarly,
individual TFBSs that are not conserved between two species
may have been functionally replaced by other sites for the
same transcription factor in one of the species [34]. The find-
ing that only about 41% of TFBSs are located in conserved
human-opossum blocks is nevertheless surprising, because it
points to the relative ease with which individual mammalian
TFBSs may be deleted, replaced, or added.

As expected, TFBS turnover increases with decreasing per-
centage conservation coverage of the upstream regions. Fig-
ure 3 shows that opossum has low block conservation similar
to that in the nonmammal vertebrate species, but it retains
almost twice as many sites as chicken, which is the
evolutionarily closest nonmammal. This gives a first qualita-
tive assessment for the potential importance of the opossum
genome for identification of TFBSs in phylogenetic footprint-
ing approaches. In general, outside mammalian genomes, the
percentage of the detected TFBSs is reduced with increasing
evolutionary distance, although the percentage 5 kb upstream
coverage remains constant.

Table 2 also presents the average identity within the con-
served TFBSs. With the exception of human-chimp compari-
sons, the average identity within sites is substantially higher
than the average identity in the conserved blocks and rela-
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tively constant in all genome comparisons. We found no lin-
ear correlation between the block coverage rate and the
average block identity in these comparisons (R = 0.48). This
finding supports the idea that individual TFBSs are under
greater selective pressure than are the wider conserved blocks
in mammalian genomes (Wilcoxon test: P = 0.01).

Finally, Table 2 presents the BRPR values for each pair of
genomes (see Materials and methods, below). BRPR is the
likelihood ratio of the posterior probability of a base being
regulatory (part of a regulatory site), given that it is in a con-
served region, over the a priori probability of being regula-
tory. In other words, BRPR shows how much we can improve
our belief that a base (or a conserved region) is regulatory if
we only focus on the conserved blocks between two or more
species. One of the most surprising aspects of this study is
that, on average, a relatively large percentage of TFBSs (41%)
is located in only the 6.72% of the 5 kb promoter regions that
are conserved between human and opossum. This gives
human-opossum comparisons the second highest BRPR
value among the tested pair-wise comparisons, and makes
the use of opossum almost twice as effective for finding regu-
latory elements as the more typically used human-mouse
alignments (BRPR 5.647 versus 2.887, respectively). Another
interesting finding is that, because of the extensive conserva-
tion between human and dog genomes, the human-dog com-
parisons are not as effective as human-mouse for phylogeny-
based motif discovery (Table 2). The maximum BRPR value
occurs for human-chicken comparisons (BRPR 6.184). How-
ever, this value is very close to the opossum BRPR value and,
given that only 22% of known TFBSs can be detected as con-
served between human and chicken (as opposed to 41% in
human-opossum), we suggest that human-opossum compar-
isons are more effective overall than human-chicken
comparisons.

Phylogenetic footprinting becomes less effective in human-
fugu and human-tetraodon comparisons (Table 2). The
Afrotherian (elephant and tenrec) or Xenarthran (armadillo)
genomes that are currently undergoing low-coverage
sequencing, as well as the genomes of more distant verte-
brates, do not appear to offer any improvement in pair-wise
phylogenetic footprinting effectiveness (all are less effective
than using the mouse genome; unpublished data). However,
they may offer improvement in specificity in multispecies reg-
ulatory conservation scans.

Phylogenetic footprinting with multispecies
alignments

Thus far, the TFBS turnover rates and BRPR values were used
in pair-wise comparisons in order to assess the relative effec-
tiveness of discovering TFBSs via evolutionary conservation.
Given the availability of multiple vertebrate genomes, it is
naturally expected that combining conservation information
from multiple sources will increase the accuracy of phyloge-
netic footprinting. The following question then arises; which

Genome Biology 2007, 8:R84
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Promoter and site conservation between human and eight vertebrate species

Human versus Promoters

Sites BRPR

Number of Block coverage  Block Number of % detected Site nucleotide

orthologous nucleotide detectable sites identity

genes identity
Chimp 512 94.06% 98.27% 1,157 94.81% 98.74% 1.009
Mouse 506 24.20% 73.39% 1,146 72.34% 82.91% 2.887
Rat 496 23.09% 73.21% 1,129 67.14% 83.00% 2.757
Dog 507 46.05% 75.37% 1,151 73.59% 84.77% 1.535
Opossum 389 6.72% 74.63% 912 41.23% 83.93% 5.647
Chicken 189 3.21% 74.43% 451 21.73% 85.06% 6.184
Fugu 127 3.25% 72.87% 286 11.89% 83.98% 3.331
Tetraodon 166 2.50% 73.09% 363 12.12% 80.95% 4.227

Analysis of 1,162 known human transcription factor binding sites (TFBSs) associated with the promoters of 513 human genes between human and
eight vertebrate species. The number of genes orthologous to human genes in each species, their conservation block coverage, and their average
block identity are presented; also, the number of TFBSs associated with these orthologous genes in each species, the percentage of sites located in
conserved regions between species, and the average nucleotide identity within TFBSs are reported. The base regulatory potential rate (BRPR)
statistic is calculated from these data for each pair of genomes (see text). Block coverage is the percentage of the upstream region that is covered by
conserved blocks (>50 base pairs with >65% identity); the block nucleotide identity is the percentage of nucleotides in all conserved blocks that are
identical to the human sequence; and site nucleotide identity the percentage nucleotides in all detected TFBSs that are identical to the human

sequence.

genome combinations offer greater specificity? To address
this, we evaluate all possible combinations of tested genomes
(256 combinations). In the following, P(C) and P(C|R) are the
prior and posterior probability, respectively, that a base is
conserved, given that the base is part of a regulatory site. For
consistency, both P(C) and P(C|R) are calculated over all

100 4
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80 - @®No opossum

@®A\|| combinations
70
60 -
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30

Percentage TFBS detection rate (sensitivity)

20 4

0 1 2 3 4 5 6 7 8
BRPR threshold (relative specificity)

Figure 4

Association between BRPR scores and detectable sites. For each given
percent of detectable transcription factor binding sites (TFBSs), the
combination of aligned genomes with the highest base regulatory potential
rate (BRPR) value will yield the smaller conserved region (for phylogenetic
footprinting algorithm searches). The full list of genome combinations and
their BRPR values are given in Additional data file |. The blue line presents
the association between percentage of human TFBSs located in conserved
regions in a combination of genomes with this BRPR value among all
possible genome combinations in this study (see text for detailed
description). The grey line plot is similar after the opossum genome is
omitted (see text). BRPR, base regulatory potential rate.

known human sites in our dataset (1,162 sites) in all examined
human upstream bases (513 genes x 5,000 bp = 2.565 mega-
bases), regardless of the species we compare.

Table 3 shows the BRPR values for all comparisons between
human and two other species. Interestingly, the highest
BRPR value in three species comparisons is achieved when
human sequences are compared with both opossum and
chicken (BRPR 7.26). However, only 92 of the 1,162 known
human TFBSs (7.9%) may be found via this strategy. Table 3
also shows that requiring a base to be conserved with both
mouse and opossum is more effective than using either
genome alone, and 31.7% of known human TFBSs may be
detected in this way. The results of all tests (256 combina-
tions) are provided in Additional data file 1. The combination
with the overall highest BRPR value was human with chimp,
mouse, opossum, and chicken (BRPR 7.628). We note that
this maximum BRPR score places a cap on the possible value
of P(R). In the unlikely event that all human-chimp-mouse-
opossum-chicken conserved bases are part of TFBSs (that is,
assuming P(R|C) = 1), then the maximum value of P(R) from
Equation 1 (see materials and methods, below) is (7.628)-1. If
we extrapolate, then we find that a maximum of 655 bp may
be regulatory in the average human 5 kb upstream region.
Taking the average size of a TFBS in the JASPAR database
[35] of high-quality binding sites (10.658 bp) suggests that no
more than 61.5 nonoverlapping TFBSs are present in the
average 5 kb upstream region. This maximum value is in
agreement with previous reports that estimate this number to
be between 10 and 50 sites, depending on the promoter
[36,37]. The addition of six more (as yet unpublished) verte-
brate species in this analysis did not yield a combination of
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Three-way comparisons between human and two other vertebrate species

Human versus ~ Chimp Mouse Rat Dog Opossum Chicken Fugu Tetraodon
Chimp 67.90% 62.48% 70.65% 31.67% 8.26% 2.75% 3.53%
Mouse 2.896 61.10% 59.29% 31.67% 8.35% 2.93% 3.79%

Rat 2.794 3.277 54.22% 29.43% 8.00% 2.58% 3.44%
Dog 1.561 3.070 2.940 27.54% 6.88% 2.93% 3.79%
Opossum 5.845 6.430 6.247 5.565 7.92% 2.75% 3.70%
Chicken 5.864 6.939 6.875 5.891 7.262% 1.29% 1.20%
Fugu 2.625 3.409 3.207 3.457 3.604 2.891 2.67%
Tetraodon 3.195 4.103 3.951 4.165 4.620 2.775 3.468

Base regulatory potential rate (BRPR) for bases conserved between human and two other species is shown below the diagonal. The rates of
transcription factor binding sites detected in blocks conserved between human and two other species are shown above the diagonal. *Highest BRPR

value for these 3-species comparisons.

genomes with a higher BRPR than the human-chimp-mouse-
opossum-chicken combination (data not shown).

Most phylogenetic footprinting approaches use evolutionary
conservation in order to reduce the search space to the parts
of the promoters that are more likely to contain functional
cis-regulatory elements (for example, see the reports by San-
delin and coworkers [4] and Loots and Ovcharenko [5]). As
combinations of more than two genomes are considered, the
search space (the jointly conserved region) is reduced. At the
same time, the number of sites located within these conserved
regions is reduced as well, although at a slower rate. One
might then ask, for a given percentage of detectable sites
(maximum site sensitivity), which is the combination that
minimizes the search space (thereby maximizing specificity)?
We found that BRPR scores can be used to address this ques-
tion. BRPR scores are reversely proportional to P(C), which is
the a priori conservation probability (Equation 1; see Materi-
als and methods, below). Thus, the lower the BRPR score, the
larger the conserved region and the greater the chance that
false-positive TFBS predictions will be made. Therefore, for a
given percentage of detectable sites, one wishes to choose the
combination of genomes with high BRPR values.

We ranked each of the 1,162 tested human TFBSs according to
the highest BRPR value from the combinations of genomes
that could detect the given site. From this ranking of sites, it
may be seen that some subsets of highly conserved TFBSs
may be detected at much higher BRPR thresholds than those
sites that are conserved only with closely related species. The
proportion of TFBSs that may be detected for a given BRPR
threshold is plotted in Figure 4 (blue line). This figure shows,
for example, that in order to guarantee detection of 75% or
more of the known TFBSs, one should choose a combination
of genomes with BRPR value of 1.7 or less. Naturally, these
will be closely related species. By contrast, the combination of
genomes with the overall maximum BRPR score (human-
chimp-mouse-opossum-chicken, BRPR 7.628) includes only
about 7.7% of the known TFBSs in its conserved regions,

whereas the lowest possible BRPR score (human-chimp,
BRPR 1.009) includes about 98%. BRPR values may be more
appropriate than evolutionary distance for the purposes of
weighting contributions when aiming to discover constrained
regulatory sequences in multispecies alignments. We there-
fore suggest that when it comes to regulatory regions, the
BRPR score may be more useful that the 'conservation scores'
currently employed in phastCons [38] or MCS [39]
approaches.

Figure 4 also shows the importance of including the opossum
genome in the comparisons. The grey line displays the same
graph, but excluding the opossum genome from the plotted
combinations. Without including the opossum genome, the
BRPR threshold must be reduced to 3.5 before 20% of the
known TFBSs may be found in the conserved regions. How-
ever, with the opossum included, the BRPR threshold for the
same search may be increased to 6.5, indicating analogous
reduction in the search space. Figure 4 shows that opossum's
greatest contribution in terms of phylogenetic footprinting
efficiency is for the sensitivity values in the range of 10% to
33%, although smaller improvements are observed in the 55%
to 65% range. The 'blocky' nature of the plot is attributable to
the subsets of known TFBSs that are detectable in each of the
eight species. As more distant mammalian genomes are
sequenced, this plot may smooth out to give higher P(R|C)
scores to more of the known TFBSs.

Our preliminary results including unpublished genomes
show that more sites may be predicted with increased BRPR
thresholds. Only 20 human sites (1.72% of known TFBSs) are
not detected by any combinatorial approach, suggesting that
only a small minority of human TFBSs may not be conserved
in any other species. It should also be noted that without the
chimp genome, a maximum of 86.5% of the sites can be iden-
tified as conserved, suggesting that only 13.5% of known
human TFBSs may be conserved only among primates. This
is an interesting finding, because it establishes 86.5% as an
upper limit to the proportion of TFBSs that may be found
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using traditional phylogenetic footprinting techniques with
mouse or more distantly related species. If complete detec-
tion of all functional human TFBSs is required, then the phy-
logenetic shadowing technique for comparing closely related
species, proposed by Boffelli and colleagues [40,41], may be
more effective than traditional phylogenetic footprinting for
primate-specific TFBSs. However, as suggested by those
authors, at least six primate genome sequences other than
human will be required before phylogenetic shadowing will
become effective [40]. Another interesting approach is pre-
sented in the recent report by Donaldson and Gottgens [42],
which used the mouse genome as an outgroup compared with
human and chimpanzee promoters in order to discover regu-
latory motifs that are conserved in one but not the other [42].

Exploring dependencies between transcription factor
binding site nucleotide conservation and the associated
transcription factors

As noted above, the nucleotide conservation within the
human TFBSs (as compared with other vertebrates) is higher
than the percentage identity in the conserved blocks where
they reside (Table 2). This is expected because the regulatory
nucleotides may be under stronger evolutionary pressure.
Similarly, one would expect that high information content
positions (the most conserved positions of the motif) are crit-
ical for the binding and thus would also be most conserved
across species. This assumption does not take into
consideration possible differences in the binding protein res-
idues between species, but it has been shown to be correct for
individual yeast and fruit fly transcription factors [43,44].
However, this dependence appears to become weaker when
average conservation data are calculated over positions from
different vertebrate transcription factors.
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Figure 5

Cross-species conservation of individual TFBS positions versus their
information content. Conservation is measured between the human and
each of the other species. Information content is measured according to
the human position-specific score matrix (PSSM) model.
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From the transcription factors included in our dataset, 80
have a position-specific scoring matrix (PSSM) binding
model in JASPAR [45] or our manually curated set of mam-
malian motifs [6,46]. These transcription factors are associ-
ated with 544 sites in our dataset. The PSSM model of the
corresponding transcription factor was used to scan each of
its sites from our dataset (see Materials and methods, below).
Sometimes the recorded sites extend beyond the length of the
PSSM model, reflecting the biochemical method used to dis-
cover these sites (for example, DNA footprinting). The high-
est scoring (sub)sequence was considered to be the correct
target site (TFBS), and conservation of each of its nucleotides
was calculated for the species in which the site was conserved.
The results are plotted in Figure 5, sorted by information con-
tent of the corresponding PSSM columns. A weak but definite
trend is present in the nonprimate genomes, although even
transcription factor motif positions with zero information
content (typically assumed to be under no selective pressure)
are conserved at a higher rate than the wider conserved
blocks. This finding suggests that natural selection operates
almost equally strongly across the TFBS positions, regardless
of the perceived role of the nucleotide in protein-DNA inter-
actions. One possible explanation for the observed trends is
that some motif positions with lower information content
may play an indirect role in DNA binding, perhaps by facili-
tating DNA conformation or by some other mechanism (for
instance, Burden and Weng [47] demonstrated conserved
DNA structural features at degenerate TFBS locations).

As noted by Sauer and coworkers [11], for human-rodent
comparisons certain transcription factors are more likely to
have their TFBSs conserved across species than others. We
test this finding outside eutherians by examining conserva-
tion rates of TFBSs for those factors for which at least seven
instances are detectable in the corresponding comparisons.
The findings for human-mouse and human-opossum com-
parisons are presented in Tables 4 and 5, and similar compar-
isons between human and other species are available in
Additional data file 1.

Although some factors' TFBSs are conserved at higher than
expected (for example, CREB) or lower than expected (for
example, Gfi1l, AR and Sp1) rates in human-mouse compari-
sons, only the sites of Gfi1 are (under)conserved after the
Bonferroni correction (see Materials and methods, below).
Similarly, the sites of various factors are over-conserved (for
example, HMG and CREB, among others) and under-con-
served (for example, Gfi1 and Sp1, and so on) in human-opos-
sum comparisons, but only the HMG sites remain
(over)conserved after the correction (Table 5). We found that
all detectable HMG sites are conserved in both mouse and
opossum, but their small number (seven) made them appear
significant only in the human-opossum comparisons.
Interestingly, human Sp1 TFBSs are under-conserved in all
genomes except rodents (Additional data file 1). This may be
explained by the fact that the Sp1 target site (consensus:
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Table 4

http://genomebiology.com/2007/8/5/R84

Human-mouse TFBS conservation dependency on transcription factor identity

Factor Motif Human versus mouse
IC Length Detectable % conserved p value Over/under
HMG 8.43 9 7 100.00% 0.1029
CREB 11.52 8 17 94.12% 0.0257 Over
c-Myb 14.15 Il I 90.91% 0.1186
NF-ATI N/A N/A 10 90.00% 0.1494
IPFI N/A N/A 9 88.89% 0.1862
p50 15.63 Il 8 87.50% 0.2292
NF-xB 13.34 10 14 85.71% 0.1425
AhR 8.62 6 7 85.71% 0.2775
GR 7.06 6 7 85.71% 0.2775
E2F-1 10.17 8 12 83.33% 0.1982
AP-| 9.44 7 34 82.35% 0.0686
HIF-1 11.00 I I 81.82% 0.2286
MITF N/A N/A Il 81.82% 0.2286
ATF-2 N/A N/A 9 77.78% 0.2864
USFI 10.37 6 9 77.78% 0.2864
C/EBPa .12 9 22 77.27% 0.1745
p53 25.74 18 22 72.73% 0.1897
E2F 13.84 8 I 72.73% 0.2631
c-Ets-1 N/A N/A 7 71.43% 0.3193
HNF-la N/A N/A 7 71.43% 0.3193
Egr-1 13.12 9 12 66.67% 0.2184
POUIFla 7.57 5 12 66.67% 0.2184
Spl 9.22 8 15 66.09% 0.0250 Under
HNF-la-A 13.66 10 Il 63.64% 0.2010
GATA-I 5.57 4 14 57.14% 0.1007
TCF-4 12.54 7 7 57.14% 0.2032
EBF 21.10 15 8 50.00% 0.1120
AP-20A N/A N/A 23 47.83% 0.0073 Under
ER-a N/A N/A I 45.45% 0.0405 Under
Crx 11.60 10 7 42.86% 0.0772
Gfil 7.60 4 17 35.29% 0.0012 Under*
AR N/A N/A 7 14.29% 0.0022 Under

Factors with more than seven sites detectable between the two species are shown. The p values given pertain to the observed percentage of
conserved sites, and were determined using the Fisher's exact test. Over/under, specifies over-conservation or under-conservation of the sites of
the corresponding transcription factor (by Fisher's exact test) at the 5% significance level; *Significant under-representation after p value correction
(using Bonferroni). Detectable, total number of human transcription factor binding sites located in promoters of mouse orthologous genes; %
conserved, percentage of detectable sites that are in conserved regions; IC, information content (total); Length, length of the motif; N/A, there is no
available position-specific score matrix model for this transcription factor; TFBS, transcription factor binding site.

'GGcGGG') and related patterns are expected to occur fre-
quently in GC-rich mammalian promoters. As such, random
mutations in mammalian promoters have a high probability
of producing additional copies of functional sites. With such
a potential proliferation of 'backup' Sp1 target sites, an
increased Sp1 TFBS turnover rate should not be surprising.
Therefore, evolutionary conservation of TFBSs has some
dependency on the identity of the bound transcription factor,
but no strong conclusions can be drawn at this point because
of the limited amount of available data. AP-2a is represented

by 23 human sites in our dataset. All genes regulated by these
sites have orthologs in both mouse and opossum, and yet its
TFBSs are under-conserved in mouse. This is an example in
which TFBS conservation does not coincide with the conser-
vation of the downstream genes, which has been observed for
developmental genes as well [1].

We found no association between the information content
(IC) of the transcription factor motif and the percentage con-
servation. For example, TCF-4 motif has a relatively high IC
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Table 5
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Human-opossum TFBS conservation dependency on transcription factor identity

Factor Motif Human versus opossum
IC Length Detectable % conserved p value Over/under
HMG 843 9 7 100.00% 0.0020 Over*
p50 15.63 I 8 75.00% 0.0470 Over
MITF N/A N/A 10 70.00% 0.0487 Over
CREB 11.52 8 13 69.23% 0.0287 Over
E2F-1 10.17 8 10 60.00% 0.1228
GR 7.06 6 7 57.14% 0.2056
HNF-la N/A N/A 7 57.14% 0.2056
POUIFla 7.57 5 9 55.56% 0.1794
E2F 13.84 8 I 54.55% 0.1594
AP-1 9.44 7 24 50.00% 0.1112
ATF-2 N/A N/A 8 50.00% 0.2422
USFI 10.37 6 8 50.00% 0.2422
IPFI N/A N/A 9 44.44% 0.2565
HIF-1 11.00 Il 7 42.86% 0.2938
p53 25.74 18 16 37.50% 0.1949
HNF-lo-A 13.66 10 8 37.50% 0.2763
NF-xB 13.34 10 I 36.36% 0.2321
Spl 9.22 8 86 29.07% 0.0049 Under
AP-20A N/A N/A 23 26.09% 0.0581
C/EBPa .12 9 16 25.00% 0.0886
Egr-1 13.12 9 8 25.00% 0.1961
c-Myb 14.15 I Il 18.18% 0.0775
ER-a N/A N/A 9 I.11% 0.0521
GATA-1 5.57 4 9 I1.11% 0.0521
Gfil 7.60 4 I 0.00% 0.0028 Under
AhR 8.62 6 7 0.00% 0.0238 Under
TCF-4 12.54 7 7 0.00% 0.0238 Under

See Table 5 footnote for details.

value (12.5) and its sites are generally under-conserved in
both mouse and opossum, but they are significantly under-
conserved only in opossum (Tables 4 and 5). In contrast, the
sites of HMG are all in conserved regions in human-mouse
and human-opossum comparisons, yet the HMG motif has an
IC value of 8.4.

Exploring transcription factor binding site
conservation dependencies on Gene Ontology
categories between human and opossum

We also test the possible association between TFBS turnover
rates and the functional category of the corresponding regu-
lated genes. Previous studies suggest that the genes with the
highest upstream sequence conservation coverage are those
involved in transcription and development [48-51]. Table 6
presents the top 30 most populated GO-slim categories [28]
in terms of human-mouse orthologous genes from our 513
protein coding gene dataset. Significance was assessed using

the Fisher's exact test, as described in the Materials and
methods (below). We found that GO categories "physiologic
process' and 'transporter activity' to be over-represented and
under-represented, respectively, in both mouse and opos-
sum, even after the Bonferroni correction. Many other GO
categories have over-conserved TFBSs in the promoters of
their member genes between human and mouse. Examples
include 'transcription’, 'development’, 'cell-cell signaling',
response to various stimuli, among others (Table 6). Sauer
and coworkers [11] also showed that TFBS conservation in
human-rodent comparisons is correlated with the functional
category of the downstream regulated gene. Their findings
agree with ours in many categories. In particular, there are 34
categories in common for which one (or both) of the studies
has found them to be statistically over-represented or under-
represented. In 29 of them (85%) the two studies agree with
respect to the 'sign’ of conservation. The differences observed
between the two studies can be attributed to the different set
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Table 6
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Human-mouse TFBS conservation dependency on the GO category of the downstream regulated gene

GO category Number of Upstream Detectable % TFBS b value Over/under
genes coverage TFBSs detected

Transcription regulator activity 34 37.65% 128 83.59% 6.63 x |04 Over*

Cell-cell signaling 44 26.00% 141 82.27% 1.27 x 103 Over*

Development 55 35.19% 157 81.53% 1.41 x 103 Over*

Nucleotide binding 42 23.31% 137 79.56% 1.04 x 102 Over

Response to biotic stimulus 8l 22.67% 273 79.49% 5.62 x 104 Over*

Response to external stimulus 65 23.49% 209 79.43% 2.56 x 103 Over

Response to stress 9l 23.78% 316 79.11% 3.50 x 104 Over*

Physiologic process 154 23.59% 526 78.90% 1.37 x 106 Over*

Cell proliferation 53 29.13% 209 78.47% 6.00 x 103 Over

Receptor binding 65 24.36% 246 77.24% 9.74 x 1073 Over

Receptor activity 42 24.55% 114 77.19% 4.29 x 102 Over

Mitochondrion organization and biogenesis 100 25.26% 266 77.07% 893 x |03 Over

Transcription 67 35.72% 223 76.68% 1.82 x 102 Over

Extracellular region 56 21.66% 217 76.04% 2.73 x 102 Over

Protein binding 142 26.43% 464 75.86% 4.75 x 1073 Over

Extracellular space 54 23.08% 232 75.86% 2.70 x 102 Over

Regulation of biologic process 155 29.96% 562 75.27% 4.97 x 103 Over

Cytoplasm 45 22.87% 136 74.26% 7.17 x 102

Plasma membrane 57 20.12% 143 74.13% 7.10 x 102

Transcription factor activity 42 36.92% 137 73.72% 7.62 x 102

Nucleus 92 31.28% 332 73.49% 5.00 x 102

Cell death 48 21.97% 189 73.02% 6.95 x 102

Protein metabolism 49 19.65% 147 72.79% 7.83 x 102

Biologic process 35 21.69% 100 72.00% 9.24 x 102

Signal transduction 116 23.96% 398 71.86% 5.33 x 102

Cell cycle 41 28.45% 182 70.88% 6.34 x 102

Cell 118 21.23% 351 69.23% 1.68 x 102 Under

Binding 90 24.17% 297 68.69% 1.58 x 102 Under

Transport 39 24.11% 146 67.81% 3.30 x 102 Under

Catalytic activity 40 19.68% 99 61.62% 4.63 x 103 Under

Transporter activity 35 25.00% 123 60.98% 1.20 x 103 Under*

The top 31 Gene Ontology (GO) categories in terms of gene numbers in the dataset are shown. The p values given represent the significance
(uncorrected) of the observed percentage of conserved (detected) sites, as determined using the Fisher's exact test. Over/under, specifies over-
conservation or under-conservation of the sites of the corresponding GO category (by Fisher's exact test) at the 5% significance level. *Statistical
over-representation or under-representation after p value correction (using Bonferroni). TFBS, transcription factor binding site.

of TFBSs upon which their measurements are based (Sauer
and coworkers used sites from mouse and rat in addition to
human) and the methods used to assign significance.

We extend this study in opossum (Table 7) and the other ver-
tebrate genomes (Additional data file 1). Most of the over-
conserved categories between human and mouse are also
over-conserved in human-opossum comparisons (Fisher's
exact test; see Tables 6 and 7). These include 'cell-cell signal-
ing' and response to stress and biotic stimuli. On the other
hand, the TFBS conservation rate for the 'protein binding'
went from being over-conserved in human-mouse compari-
sons (76% TFBS conservation) to under-conserved in human-
opossum comparisons (36% TFBS conservation). This is one

of the highly populated categories, and its members are
involved in almost every cellular process, for instance signal
transduction, chromatin structure, transcription, translation,
cell cytoskeleton, and so on. It is therefore difficult to assess
the significance of this change in TFBS conservation related
to this category. One thing is for sure; the observed differ-
ences are not an artifact caused by the low number of TFBSs.
This category is represented by 142 genes associated with 464
TFBSs in mouse and 122 genes associated with 419 TFBSs in
opossum, making it one of the best represented categories in
our dataset.

'Development' is another category in which TFBSs are signif-
icantly over-conserved in human-mouse comparisons. In
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Table 7

Human-opossum TFBS conservation dependency on the GO category of the downstream regulated gene

GO category Number of Upstream Detectable % TFBS b value Over/under
genes Coverage TFBSs Detected

Receptor binding 51 6.49% 180 55.56% 5.80 x 106 Over*

Cell-cell signaling 35 6.37% 120 51.67% 3.67 x 103 Over

Physiologic process 122 5.63% 415 49.40% I.51 x 106 Over*

Response to external stimulus 54 5.60% 168 48.81% 6.12 x 103 Over

Transcription regulator activity 32 10.15% 122 47.54% 2.47 % 102 Over

Extracellular space 43 4.08% 175 47.43% 1.23 x |02 Over

Response to biotic stimulus 60 5.29% 209 47.37% 7.82 x 1073 Over

Transcription 6l 10.52% 208 45.67% 2.13 % 102 Over

Transcription factor activity 40 9.80% 133 45.11% 4.65 x 102 Over

Development 47 9.48% 120 45.00% 5.25 x 102

Signal transduction 86 5.72% 293 44.71% 1.95 x 102 Over

Response to stress 74 6.23% 268 44.03% 3.18 x 102 Over

Regulation of biologic process 134 8.49% 490 43.06% 2.59 x |02 Over

Cell 82 6.11% 24| 40.66% 5.96 x 102

Nucleus 8l 10.05% 305 40.66% 5.52 x 102

Extracellular region 44 6.17% 160 40.63% 6.95 x 102

Cell proliferation 49 7.63% 196 40.31% 6.26 x 102

Mitochondrion organization and biogenesis 77 6.90% 213 39.44% 5.29 x 102

Cytoplasm 34 6.07% 97 39.18% 7.95 x 102

Cell death 41 6.77% 164 37.80% 4.34 x 102 Under

Protein binding 122 7.01% 419 35.80% 4.81 x 104 Under*

Cell cycle 39 7.67% 176 35.23% 1.35 x |02 Under

Nucleotide binding 32 5.82% 112 31.25% 5.81 x 10-3 Under

Protein complex 28 5.90% 84 29.76% 7.37 x 103 Under

DNA binding 27 10.05% 74 29.73% 1.08 x 102 Under

Binding 71 6.77% 240 29.58% 5.58 x 106 Under*

Receptor activity 31 6.53% 88 29.55% 5.67 x 103 Under ci

Plasma membrane 37 4.78% 91 28.57% 3.00 x 10-3 Under g

Protein metabolism 41 6.27% 131 25.95% 3.75 % 103 Under* g

Transporter activity 31 6.28% 9l 23.08% 6.74 x 105 Under* g

Transport 32 5.53% 102 20.59% 1.85 x |06 Under* %
=

See Table 6 footnote for details.

human-opossum comparisons TFBSs are still over-con-
served, but not at a significant level. This can also be attrib-
uted to the sharp decrease in the percentage of detected
TFBSs (from 81.5% in mouse to 45% in opossum) in relation
to the high number of potentially detectable TFBSs (157 ver-
sus 120 in mouse and opossum, respectively). The develop-
mental genes themselves are ultra-conserved in opossum [1],
resulting in the detection of many orthologs and hence many
potentially detectable TFBSs associated with them. Conserva-
tion tables, similar to Tables 6 and 7, for comparisons
between human and other species are available in Additional
data file 1.

Comparison with other studies
A number of existing studies have attempted to quantify reg-
ulatory conservation in mammals, albeit using different

approaches and typically restricting their interest to human-
rodent comparisons. Our results on human-rodent compari-
sons generally agree with these studies. For example, we find
approximately 72% of detectable human TFBSs conserved in
mouse 5 kb upstream regions. Similarly, Sauer and coworkers
[11] reported detection of TRANSFAC [29] TFBSs in human-
rodent conserved sequences at a rate of 71.7% when using the
same conservation threshold (65% identity).

For conservation cutoffs of 70% identity, Liu and coworkers
[9], Levy and Hannenhalli [12], and Lenhard and colleagues
[13] independently found human-mouse conservation rates
for known TFBSs of about 60%, 65%, and 68%, respectively.
The latter three studies were also based on finding conserved
blocks via sliding windows on aligned sequences. Dermitzakis
and Clark [10] also reported detection of TRANSFAC TFBSs
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in human-rodent conserved sequences at rates of 60% to
68%. All of the aforementioned human-rodent TFBS turnover
rates are consistent with our findings, given the slightly
higher conservation cut-offs and the lower number of known
TFBSs tested (40 sites by Lenhard and colleagues [13], 64
sites by Dermitzakis and Clark [10], 467 sites by Liu and cow-
orkers [9], and 481 sites by Levy and Hannenhalli [12]).

In relation to our human-mouse 5 kb upstream conservation
coverage figure (24%), a number of other studies have found
human-rodent upstream conservation rates in the range 17%
to 25% [9,52,53]. In a comparison of 77 well defined human-
mouse gene pairs, Jareborg and coworkers [54] found 36%
conservation coverage of upstream sequence using the soft-
ware program DBA and a 60% cutoff. However, their
upstream sequences ranged from 500 bp to 1,000 bp
upstream of the TSS. Our conservation coverage in the same
range of distance is 38.7% to 49.2%. Sauer and coworkers [11]
found a background conservation rate of 35% in human-
rodent comparisons, although their study was based on 800
bp windows of sequence centered on a known TFBSs, and was
therefore also biased toward including sequence from the
proximal 500 bp region.

A recent study of the mouse transcriptome showed that a
large part of this mammalian genome may be transcribed
[55]. The authors found many more transcripts than the
number of genes currently estimated for the mammalian
genomes. For about one-third of these transcripts no associa-
tion with protein coding genes was found, and therefore they
were considered to be noncoding RNAs (ncRNAs). Similar to
our study, the authors analyzed the upstream sequences of
these potential ncRNAs, which they found to be more con-
served than the promoters of the protein coding genes. How-
ever, their study has some differences compared with ours.
First, it does not focus specifically on the intergenic miRNA
genes, but analyzes all transcripts for which no protein coding
gene association was found. Also, their study does not depict
the similarity we found in the conservation rates of coding
and noncoding upstream regions in the first 500 bp, which is
an important finding of our study, especially when compared
with the conservation of the upstream sequences of the tRNA
genes (Figure 2). Cooper and coworkers [56] recently ana-
lyzed the conservation rates of core promoter sequences of
protein coding genes. Their findings agree with ours in that
they find that the first 300 bp upstream of the TSS are impor-
tant for the core promoter activity. This is the region where
we find the highest conservation (Figure 2). In another study,
Taylor and coworkers [57] reported that the nucleotide sub-
stitution rate increases with the distance from TSS in various
types of protein coding genes in a way similar to our
observations.
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Conclusion

This study is the first to analyze conservation of the upstream
regions of protein coding genes in relation to the upstream
regions of intergenic miRNA genes. We found the latter to be
about twice as conserved as the former beyond the first 500
bp. The reason for this conservation is currently unknown.
The first 500 bp appear to be equally conserved in both types
of genes, a feature that is missing from the upstream
sequences of the tRNA genes. This indicates that similar
mechanisms of gene regulation may be in place, which is in
agreement with other studies [27,32]. The difference in con-
servation rates is more apparent in the mammalian lineages,
including opossum, and may reflect similarities in mamma-
lian gene regulation.

Another important finding is that the opossum genome offers
great potential in terms of improving the performance of the
phylogenetic footprinting algorithms. We found that 41% of
the known human TFBSs are located in the 6.7% of promoter
regions that are conserved between human and opossum,
illustrating that the opossum genome sequence can be used to
reduce the search space for a large proportion of human
TFBSs. A new statistical measure, BRPR, is introduced that
quantifies the trade-off between sequence conservation (or
reduction of the search space for comparative genomics strat-
egies) and regulatory site conservation. We show that for a
given site sensitivity threshold, an appropriate combination
of genomes can be selected to minimize the search space.
Finally, we find that basic cellular functions, such as cell-cell
signaling and receptor binding, have significantly over-con-
served sites between human and opossum (the corresponding
genes have more TFBSs located in the conserved parts of their
promoter regions). By contrast, TFBSs related to functions
such as transporter activity and protein metabolism are sig-
nificantly under-conserved.

Materials and methods

MicroRNA gene dataset

Human miRNA genes were retrieved from the miRBase [58]
and the UCSC Genome Browser (version hg18, March 2006)
[59]. Cross-referencing them with the miRNAMap dataset
[60] identified 169 putatively intergenic miRNA genes. The
sequences of these miRNAs were used in BLAST-like Align-
ment Tool (BLAT) [61] alignments against the latest UCSC
human genome and their exact genomic locations were iden-
tified. Following observations in previous studies [27,62], we
consider two miRNA genes to be co-transcribed if their
starting points are less than 250 bp apart. In this way, we
identified 12 clusters containing 31 genes. Only the 5'-most
gene in a cluster was considered in our analysis. Five miRNA
genes were found to reside within large introns of protein
coding genes, and although they may have their own regula-
tory regions, we excluded them from further analysis. This
resulted in a dataset of 145 human intergenic miRNA genes
(Additional data file 1). The coordinates of the BLAT outputs
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were used to retrieve up to 5 kb regions upstream of the gene
start site as described below.

We note that in a recent study, Devor and Samollow (personal
communication) tested 71 predicted miRNA genes using
quantitative polymerase chain reaction on pooled RNA from
brain, heart, lung, liver, tongue, and esophagus from an adult
opossum. They found evidence of expression in 80% of the
cases they tested, including 36 genes in our opossum dataset.

Pair-wise and multiple species comparisons

Pair-wise and multiple species alignments for both protein
coding and miRNA genes were retrieved from the 17-species
MULTIZ multiple alignments [38], which are available from
the UCSC web server (version hgi18, March 2006) [63]. The
MULTIZ algorithm builds a multiple alignment from local
pair-wise BLASTZ alignments of the reference genome with
each other genome of interest [38,64]. Each base in the refer-
ence genome is aligned to at most one base in the other
genomes, and the alignment is guided by synteny. In this
study, we present the results from pair-wise and multiple spe-
cies comparisons of human [65] with four eutherian
mammals (chimpanzee [66], mouse [67], rat [68], and dog
[15]), the newly sequenced opossum [1], chicken [69], fugu
[70], and tetraodon [71]. A phylogenetic tree for those species
and with branch lengths derived from the ENCODE project
Multi-Species Sequence Analysis group (September 2005) is
shown in Figure 1. This tree was generated using the phyloGif
program [72] from Threaded Blockset Aligner (TBA) align-
ments over 23 vertebrate species and is based on 4D sites
(similar to the tree presented by Margulies and coworkers

[73D).

For each pair-wise or multiple species comparisons, the cor-
responding (aligned) 5 kb upstream sequences were retrieved
directly from the MULTIZ alignments for greater accuracy,
using the human genes as reference. If other genes were
found within this 5 kb range, then the upstream sequences
were shortened accordingly to exclude the additional genes.
We used the 65% as our conserved block threshold, which is
similar to that in previous studies [9,12,13] and similar to the
default threshold used by many phylogenetic footprinting
algorithms [6,13].

tRNA dataset

Human tRNA genes and pair-wise alignments were extracted
from the UCSC Genome Browser database (version hgi8,
March 2006) using the genomic MULTIZ alignments as we
describe above. Genes that were found to be facing opposite
directions in the genome (‘head-to-head") and their starts
were closer than 2.5 kb apart were excluded from the analysis.
This rule excluded 156 genes. The final human tRNA dataset
included 1,795 upstream sequences.
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Dataset of known transcription factor binding sites
TRANSFAC database (release 9.3) [29] contains 1,162 human
confirmed TFBSs that satisfy the following criteria: the site is
experimentally confirmed and associated with a promoter of
a human gene from the database (confirmed sites); the TFBS
sequence can be found within 5 kb upstream of the TSS; if
multiple site occurrences are present in the corresponding
promoter, then positional information (relative to TSS) is
listed in the database; and the regulated human gene corre-
sponds to an entry in the RefSeq gene collection. The above
TFBSs are located in the promoters of 513 human genes,
which serves as our primary dataset for the transcription fac-
tor-TFBS association study. We focus on the sites located in
the 5 kb upstream region, because this includes 83.4% of all
known human TFBSs in TRANSFAC (data not shown). The
majority of the sites (a total of 774) have a TRANSFAC
assigned quality score of 1, 2, 3, or 4, which shows confirmed
binding activity to a known transcription factor. For an addi-
tional 325 sites, no TRANSFAC quality score was assigned.
The remaining 63 sites (about 5%) belong to TRANSFAC cat-
egory 5, for which an unknown protein has been shown to
bind to a DNA element.

Dataset of position-specific scoring matrix models
JASPAR database [35] contains 20 PSSM models for tran-
scription factors whose sites are present in our dataset. In
addition, we previously generated manually 60 more PSSM
models from high-quality human and mouse sites in TRANS-
FAC [6], which we make publicly available through our web
server [74]. These models were used to analyze the position
information content with the nucleotide conservation in the
subset of 572 corresponding known TFBSs (Figure 5).

Conserved blocks and transcription factor binding site

detection: some definitions

In this study, sequence conservation is expressed as con-
served block coverage. A sliding window of width 50 bp and
step size 10 bp was used to find conserved regions (or blocks)
of at least 65% identity between human and each other
species. Each pair-wise alignment was extracted from the
MULTIZ multiple alignments. Sauer and coworkers [11] have
shown that the 65% identity threshold most effectively sepa-
rates TFBSs from background sequence in human-rodent
comparisons. The percentage of human 5 kb upstream
sequence that is located within conserved blocks is denoted
the 'conserved block coverage'. The 'average block conserva-
tion' is the percentage of identical bases in conserved blocks
over all bases in conserved blocks. A 'conserved site' is a
known human TFBS that overlaps a conserved block between
human and another species. Because we explore the effect of
sequence and pattern of conservation in the discovery of cis-
regulatory elements, this study does not make any assump-
tions about the biologic functionality of the human-equiva-
lent TFBSs in the other organisms. In other words, we cannot
address the issue of actual site turnover, but simply whether
a known human TFBS is located in a conserved block between
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human and one or more other species (regardless of whether
it is functional in these other species). 'Detectable TFBSs' are
those sites that are in the promoters of genes that have
orthologs in the other species (in terms of UCSC multispecies
alignments). A detectable site is considered to be 'conserved'
between two species if it is located in a conserved block in
their corresponding pair-wise alignment. When multiple spe-
cies are considered, a TFBS is considered to be conserved if it
is conserved in each of the species. The 'TFBS conservation
rate' between human and other species is defined as the per-
centage of detectable TFBSs found to be conserved. The con-
servation rate can be thought of as the upper limit of
sensitivity (at the site level) of a phylogenetic footprinting
algorithm if only the conserved regions are analyzed. Such
algorithms include ConSite and rVista [13,75]. In general, the
methods and thresholds used to define conserved blocks were
chosen to reflect those typically used by phylogenetic foot-
printing algorithms [6,13,46,75] and by other researchers
[9,11-13].

Base regulatory potential rate

A base position is called 'regulatory' if it is part of a TFBS. For
this report, bases in nonhuman species that are aligned to
human regulatory bases are also called regulatory. We under-
stand that this definition is only made for the purposes of this
analysis and does not imply any functional role. However, it
is expected that the majority of known human sites that are
conserved in various species would also be functional in these
species. Given a promoter alignment between two species, we
define the base regulatory potential rate (BRPR) as the condi-
tional probability of a base being regulatory given it is located
in a conserved region over the prior probability of being reg-
ulatory. Formally, BRPR is defined in the first part of the fol-
lowing equation:

BRPR - LRIC) _ P(C|R) @)
P(R) P(0)

where R denotes the base as regulatory (part of a known
human TFBS) and Cindicates that it is located in a conserved
region. The last part of the equation derives from the Baye-
sian rule and is the one we use for the calculation of BRPR
because P(R|C) cannot be reliably estimated, given our lim-
ited knowledge of mammalian TFBSs. In other words, BRPR
shows how much we improve our regulatory potential predic-
tion if we restrict our search space to conserved regions only.
P(C) and P(C|R) are directly estimated from the data. P(R) is
the a priori probability of a base being regulatory in a given
promoter, and it depends on the size of the promoter as well
as the number and size of cis-regulatory elements found
within. According to our current knowledge of transcriptional
control, P(R) decreases as one examines windows of sequence
more distal to the transcription start site. In this way, calcu-
lated BRPR values are dependant on the length of upstream
sequence examined from the transcription start. BRPR values
decrease as the examined regions become smaller (5 kb to 1
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kb or 500 bp from the TSS; Additional data file 1 [Supplemen-
tary Figure 1]) because, from Equation 1 above, P(R)
increases in these shorter regions while P(R|C) remains rela-
tively constant. The important point to note, however, is that
the relative BRPR rankings of different genome combinations
remain constant (Additional data file 1 [Supplementary Fig-
ure 1]).

Assessing significance of over-conservation or under-
conservation for sets of transcription factor binding
sites

The Fisher's exact test on 2 x 2 contingency tables is used to
estimate the significance of under-conservation or over-con-
servation of sites bound by particular transcription factors or
associated with certain GO categories (Tables 4 to 7). To
account for multiple testing we applied the Bonferroni correc-
tion, although the data dependencies among the tests make
that correction slightly conservative. Statistically over-repre-
sented and under-represented categories are presented in
Tables 4 to 7 in the corresponding column, and those values
that remain significant after the Bonferroni correction are
marked with asterisks.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 provides various
descriptions, generalized analyses, and supplementary data
that complement and extend those given in the main text.
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