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Uniform distribution of microarray P values<p>Estimating the <it>P </it>value from the overall distribution of scores on the microarray can produce <it>P </it>values that are much closer to a uniform distribution.</p>

Abstract

Methods to control false-positive rates require that P values of genes that are not differentially
expressed follow a uniform distribution. Commonly used microarray statistics can generate P
values that do not meet this assumption. We show that poorly characterized variance, imperfect
normalization, and cross-hybridization are among the many causes of this non-uniform distribution.
We demonstrate a simple technique that produces P values that are close to uniform for
nondifferentially expressed genes in control datasets.

Background
Microarray data typically involve tens of thousands of genes
but only a handful of replicates. It is therefore difficult to
establish appropriate P value thresholds for significance. For
example, consider the response of 40,000 genes to two differ-
ent experimental conditions, say diseased and healthy tissue.
If a significance level of P < 0.05 is chosen, then one would
expect an unacceptable number (2,000 [40,000 × 0.05]) of
false positives. A conceptually simple procedure, the Bonfer-
roni correction, would set a threshold of P = 1.25 × 10-6 (0.05/
40,000). Using this P value as the threshold for significance,
there is only a 0.05 chance of any false positives across all of
the 40,000 comparisons between the two conditions. Such
metrics are said to control the 'family-wise error rate'. Family-
wise error rate is often assumed to be too conservative for
microarray experiments, because there are often no results
with P values below the threshold for the modest number of
samples that make up most microarray experiments.
Recently, 'false discovery rate' (FDR) was proposed as an
alternative, more permissive approach to estimating signifi-
cance of microarray experiments [1-4]. This metric acknowl-

edges that biologists are often able to tolerate some error in
gene lists. For example, a FDR could be set at 10%, in which
case a list of 100 genes would be expected to have as many as
10 false positives.

No matter what threshold is used to control significance in
microarray experiments, there is an inherent assumption that
the P values of genes that are not differentially expressed fol-
low a uniform distribution. For example, genes that are not
differentially expressed should have a P value of 0.01 or
smaller only 1% of the time. The uniform distribution of null
P values seems like a safe assumption that is guaranteed by
the laws of statistics. However, if for some reason this
assumption is not met, then attempts to determine a thresh-
old of significance may yield meaningless results [2,5].

In this report we show that commonly used statistics can in
fact generate distributions of P values for non-differentially
expressed genes that are far from uniform. We demonstrate a
simple method for producing P values that are much closer to
the expected uniform distribution.
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Results and discussion
RMA summation and quantile-quantile normalization 
suppress the pooled variance of each gene
Our central argument is that it is a rational choice to assume
that, when comparing two conditions, the pooled variance of
each gene on the array is approximately constant. If this
assumption is true, then the distribution of scores under a t
test or variant approaches the normal distribution. We begin
our assertion that this assumption is reasonable by examining
a control dataset released by Affymetrix. The Affymetrix HG-
U133A Latin Square dataset consists of 14 'experiments'
(labeled 1 to 14), each with three replicates. Each of the 14
experiments contains 42 genes that are spiked in at known
concentrations against a constant background of human
RNA. Of the approximately 22,000 genes on the chip, the
only ones that should be different when comparing across
experiments are the 42 genes that were spiked in at different
concentrations. We shall refer to genes that were not spiked
in as null genes, because the null hypothesis of equal expres-
sion in all conditions is true for these genes.

For two experimental conditions with sample sizes in each
condition n1 and n2, we have our usual definition of a t test
assuming equal variance:

Affymetrix microarrays have multiple 25-mer probes for each

gene on the chip. In the Latin Square dataset, there are about

500,000 25-mer probes. These probes are organized into

probesets that target about 22,000 genes. Because there are

multiple probes in each probeset, we do not expect all the

probes to act independently of one another. Nonetheless, in

order to examine the distribution of variances on a micro-

array, it is informative to begin our analysis at the probe level.

Figure 1a shows the pooled error (σ2 from Equation 2) as a

function of the mean difference (  from Equation 1) of

the approximately 500,000 probes from probesets that rep-

resent null (not spiked in) genes from the comparison

between Latin Square experiments 1 and 2. In this case, there

are three chips in each condition so n1 = n2 = 3. To make this

figure consistent with the data shown in the rest of this report,

all of the data from all arrays in Figure 1a were log2 trans-

formed before calculation of  and σ2. We would

expect, based on previous literature, a relationship to exist

between probe intensity and probe variance on microarrays

[6]. We see in Figure 1a that such a relationship does in fact

exist and that  and σ2 are not independent at the probe

level.

We argue in our report that σ2 can be thought of as approxi-
mately constant. This is clearly not true at the probe level in
Figure 1a. Microarray analysis, however, is usually not per-
formed directly at the probe level. For many microarray
experiments, the desired analysis is at the gene level. A well
studied problem in the analysis of Affymetrix arrays is how
best to summarize the multiple probes in a probeset to pro-
duce a single value for each gene on each chip [7-10]. All of the
probeset data in this report were generated with the log2-
transformed Robust Multichip Average (RMA) summary sta-
tistic [8], which is a well regarded and robust measurement
that has been shown to work well in a variety of conditions
[11]. After transformation with the RMA statistic, our data
can be represented as a single spreadsheet or matrix in which
the columns represent experiments and the rows represent
genes.

Figure 1b shows σ2 as a function of  for the approxi-

mately 22,000 probesets generated by the comparison of

Latin Square experiments 1 and 2 after RMA summation. We

note immediately that RMA summation suppresses the

standard error. The values for probeset σ2 in Figure 1b are on

the order of 10 to 20 times smaller than the probe σ2 observed

in Figure 1a. In addition, we can tell by immediate inspection

that the estimates of σ2 in Figure 1b must contain errors

because they are not symmetrical. The data in Figure 1 are

from null (not spiked in) genes. The expected value of 

is therefore zero and there is no reason to believe that σ2

should deviate from symmetry around zero. Clearly, in Figure

1b, however, there is a strong tendency for σ2 to be larger

when  exceeds zero. This must be due to some system-

atic error in the underlying data. RMA summation is usually

accompanied by quantile-quantile normalization [8], which

is designed to correct for systematic errors in microarray

data. Figure 1c shows the relationship between σ2 and 

after both quantile-quantile normalization and RMA summa-

tion. We see that after quantile-quantile normalization, the

standard error approaches a constant across the range of

 scores. In the following section we show that the devi-

ations from a constant value of σ2 that remain after normali-

zation and RMA summation are likely to contain errors

because, even on normalized data, test statistics work better

if they assume that σ2 is constant.
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The measured standard error either before or after 
quantile-quantile normalization is unreliable
In order to produce a reliable list of differentially expressed
genes between two experimental conditions, we need a test
statistic and an appropriate way to produce P values from that
test statistic. It has recently become clear that the standard t
test (Equations 1 and 2) has serious shortcomings as a test
statistic for microarray data [11-13]. There has been a great
deal of recent interest in test statistics that ignore or 'shrink'
the variance of each individual gene. For example, a popular
alternative to the standard t test is the cyber t test [12], which
uses Bayesian statistics to weight the variance of each individ-
ual gene with the variance of other genes on the array with
similar intensities (see Materials and methods, below). In
addition to the cyber t test, we can follow Allison and cowork-
ers [11] and describe a universe of possible test statistics with
which to evaluate the null hypothesis that the expression of a
given gene is the same in conditions 1 and 2:

Here, σ2 is the estimate of standard error for each gene, as in
the denominator for the t statistic in Equation 1. On the other
hand, θ2 is an estimate of the standard error of every gene on
the array. We take as our θ2 simply the average of all σ2 values.
That is, if there are N genes on the array, then:

The shrinkage factor, B, can vary between 0 and 1 in Equation
3. When B = 0, Equation 3 reduces to the standard t test of
Equation 1. When B = 1, the statistic essentially ignores the
variance, in that it reduces to assigning a score based only on
the average difference between the genes divided by a
constant.

Standard error as a function of the difference in meansFigure 1

Standard error as a function of the difference in means. Shown is σ2 as a function of  (see Equation 1 in the text) for probes from null genes from 

the comparison of Latin Square experiments 1 and 2 for (a) all approximately 500,000 probes on the array, (b) approximately 22,000 probes after RMA 
summation but in the absence of quantile-quantile normalization, and (c) after background correction, quantile-quantile normalization, and RMA 
summation. A small number of outlying data points are excluded from each panel. RMA, Robust Multichip Average.

Probe X1-X2 (unnormalized)

 P
ro

be
 σ

2  (
un

no
rm

al
iz

ed
)

1.00.50-0.50-1.0

0.50

0.40

0.30

0.20

0.10

0

RMA score X1-X2 (unnormalized)

.050

.040

.030

.020

.010

0

 

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 R
M

A
 σ

2  (
un

no
rm

al
iz

ed
)

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

.050

.040

.030

.020

.010

0

.060

RMA score X1-X1 (normalized)

 R
M

A
 σ

2  (
no

rm
al

iz
ed

)

(a) (b)

(c)

x x1 2−

x x

B B

1 2
2 21

−

+ −θ ( )σ
(3)

θ 2
2

1

=
=
∑σ i

i

N

N

Genome Biology 2007, 8:R69



R69.4 Genome Biology 2007,     Volume 8, Issue 5, Article R69       Fodor et al. http://genomebiology.com/2007/8/5/R69
The consequences of choosing different summary statistics
are shown in Figure 2. A receiver operating characteristics
(ROC) graph is shown in Figure 2a, in which we use different
statistics to rank the most differentially expressed genes in
Latin Square experiment 8 versus experiment 9. To generate
an ROC curve for each statistic, we assign a score to each gene
on the chip and sort the resulting list. For each gene in the
sorted list we ask, if the threshold for significance were set to
include only the genes with scores equal to or greater than the
current gene, then how many true positives and false posi-
tives would be captured? An algorithm capable of perfectly

separating true and false positives would generate a curve
that would include a point in the upper left corner of Figure
2a, because there would exist a threshold cutoff in which all
42 spiked-in genes would be captured and all approximately
22,000 null genes would be excluded. We see in Figure 2a
that the standard t test performs poorly whereas the cyber t
test does well, as does the statistic defined by Equation 3 with
B = 1.

To explore the effects of variance shrinkage and normaliza-
tion on statistic performance across multiple Latin Square

The performance of test statistics in ranking the Latin Square dataFigure 2
The performance of test statistics in ranking the Latin Square data. (a) ROC curves for Latin Square experiments 8 versus 9. (b,c) The number of true 
positives captured for all 14 2× Latin Square experiments at a threshold that also captured four false positives (dashed line in panel a) in the absence (panel 
b) and presence (panel c) of background correction and quantile-quantile normalization. B refers to the 'shrinkage factor' in Equation 3 (see text). For this 
and the following figures in the report, data were summarized with RMA before application of the test statistic. RMA, Robust Multichip Average; ROC, 
receiver operating characteristic.
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comparisons, we choose an arbitrary threshold; we consider
how many true positives are captured by each statistic for a
threshold cutoff that also captures four false positives (Figure
2a, dashed vertical line). The box plots in Figure 2 show this
value for each statistic over the 14 Latin Square experiments
in which the spiked-in ratios differ by a factor of two in the
absence (Figure 2b) and presence (Figure 2c) of quantile-
quantile normalization. We note that whether one uses Baye-
sian statistic to weigh the variance of each gene (as in the
cyber t test) or shrinks the standard error according to Equa-
tion 3 (with B approaching 1), much better performance is
achieved than with the standard t test, regardless of normali-
zation schemes. This suggests that both before and after
quantile-quantile normalization, the variance reported for
each gene is unreliable.

In Figure 2, the B = 1 form of Equation 3 performs nearly the

same in the absence (Figure 2b) and presence (Figure 2c) of

quantile-quantile normalization. In contrast, the standard t

test performs much better under quantile-quantile normali-

zation (Figure 2c) than with un-normalized data (Figure 2b).

This improvement must occur because either  or σ2, or

both, improve after normalization. Figure 3 shows the rela-

tionship between  and σ2 before (Figure 3a) and after

(Figure 3b) quantile-quantile normalization for the compari-

son of experiments 1 and 2 in the Latin Square dataset. We see

that  is perturbed much less than σ2 by normalization.

The fact that the standard t test improves after normalization

(Figure 2), however, suggests that the σ2 values after normal-

ization are more appropriate. This is something of a paradox.

How can a transformation that discards about 90% of the

original estimates for σ2 improve performance? We argue that

the resolution to this apparent paradox is that the original

estimates of σ2 after RMA summation are highly unreliable.

Quantile-quantile normalization replaces the original esti-

mates of σ2 with values that approach a constant (Figure 1c).

This improves the performance of the standard t test (Figure

2). That is, quantile-quantile normalization suppresses the

original measured variance and therefore allows the standard

t test to move closer to the performance of algorithms, such as

cyber t test and the B = 1 form of Equation 1, that suppress the

importance of the original variance regardless of normaliza-

tion schemes.

Different analysis schemes yield very different 
distributions of P values
We have argued that quantile-quantile normalization is effec-
tive in part because it replaces the unreliable estimates of σ2

with a distribution that approaches a constant (Figures 1 and
3) and that, furthermore, test statistics appear to work better
when they assume that σ2 approaches a constant (Figure 2).
We now turn to the issue of how we can utilize this assump-

tion of constant standard error to produce more accurate esti-
mates of P values.

If the assumptions of normality, equal variance, and inde-
pendence were met, then we would of course expect the
standard t test in Equation 1 to follow a t distribution with
appropriate degrees of freedom for null genes. If any of these
assumptions are violated, however, then the distribution of
standard t scores may not follow a t distribution. We can
examine how well these assumptions are met for the standard
t test by using the t distribution to produce P values for null
genes. If all the assumptions are met, then the P values pro-
duced from the t distribution should follow a uniform
distribution. Figure 4a (blue lines) shows that the P values
produced by the t distribution for the standard t test (with
four degrees of freedom, because n10 = n11 = 3) compared with
the expected P values under a uniform distribution for the
comparison of Latin Square experiments 10 versus 11 after
RMA summation and quantile-quantile normalization. We
see that the actual distribution of P values produced by the
standard t test deviates considerably from the expected P val-
ues. Clearly, one or more of the assumptions of the standard t
test is violated in this case.

Given the poor performance of the standard t test in ranking
differentially expressed genes (Figure 2), it is perhaps not
surprising that the P values generated by the standard t test
fall so far from uniform. Does the cyber t test, which clearly
outperforms the standard t test in ranking differentially
expressed genes (Figure 2), produce P values closer to a uni-
form distribution? Rather than determining σ2 independently
for each gene, the cyber t test uses Bayesian statistics to weigh
the variance of each gene by the variance of genes on the array
with similar intensities. Because the estimate for the variance
of each gene is not independent, the authors of the cyber t test
do not expect the cyber t test to follow a simple t distribution
with n - 2 degrees of freedom. Indeed, the P values reported
by the R implementation of the cyber t test that we used are
generated with an assumption of 22 degrees of freedom, given
three experiments in each condition and the default parame-
ters (see Materials and methods, below). Figure 4a (black
lines) presents the P values reported by the R implementation
of the cyber t test. We see that, despite the correction for lack
of independence by increasing the number of degrees of
freedom, the P values reported by the cyber t test are also
poorly described by a uniform distribution.

If the cyber t test does not appear to follow a t distribution,

then can we find a more appropriate distribution that it does

follow? In Figure 1c, we have seen that σ2 approaches a con-

stant for null genes after RMA summation and quantile-

quantile normalization. The cyber t test estimates the prior

variance of each gene as a function of that gene's intensity.

After RMA summation and quantile-quantile normalization,

that prior variance should be close to constant. Because in the

x x1 2−

x x1 2−

x x1 2−
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Latin Square dataset we have small sample sizes, the Bayesian

cyber t estimate gives a good deal of weight to the prior vari-

ance, and therefore the cyber t estimate of variance for each

gene will also approach a constant. As a distribution

approaches  divided by a constant, it will become nor-

mally distributed. We might anticipate, therefore, that the

distribution of all cyber t scores should approach a normal

distribution.

We can check the validity of the above line of reasoning by

generating P values for the cyber t scores under the assump-

tion that they are normally distributed. For the comparison of

null genes between Latin Square experiments 10 and 11, we

calculate the mean ( ) and standard deviation (σcyberT)

of all the cyber t scores. We can then easily calculate the P

value from the cumulative distribution function (cdf) of the

standard normal distribution for each cyberT score as

follows:

Figure 4a (red line) shows that the P values produced by the
normal distribution of Equation 4 fall very close to a uniform
distribution. This provides strong evidence that our assertion
that the cyber t estimate of σ2 is approximately constant is
reasonable. For the rest of this report, we refer to the method
of generating P values from the cyber t test by assuming a nor-
mal distribution as 'cyber-t-Normal'. We emphasize that
there are two differences between P values produced by
cyber-t-Normal and the P values reported by the cyber t test.
One is that we assume a normal distribution rather than a t
distribution. The other is that we calculate the P value for
each gene by comparison with a distribution of all genes on

Estimates of standard error do not survive quantile-quantile normalizationFigure 3

Estimates of standard error do not survive quantile-quantile normalization. (a,b)  (panel a) and σ2 (panel b) before and after background 

correction and quantile-quantile normalization for the comparison of the Latin Square experiments 1 and 2. Fits shown are to a linear regression. (c) Box 
plot showing the R2 values from a linear fit for all 14 2× Latin Square comparisons.
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the array. That is, we assume that all the genes on the array
follow a single distribution whereas the P values produced by
the cyber t test are generated under the assumption that each
gene follows its own independent distribution based on the
Bayesian estimate of σ2 for that gene.

How close are the P values produced by the cyber-t-Normal
scheme to a uniform distribution? We can use the Kol-
mogorov-Smirnov test to evaluate the null hypothesis that the
distribution of P values from each statistic is identical to the
uniform distribution of P values. The Kolmogorov-Smirnov
test is a nonparametric test and can therefore suffer from low
power. On the other hand, we are using the test to evaluate a
distribution with over 22,000 data points, and so we are con-
fident that even small deviations from our assumptions will

produce small P values. Figure 4b,c shows the -log10 of the P
value of the Kolmogorov-Smirnov test for all 14 possible 2×
Latin Square comparisons. We see that, although there is con-
siderable variability across all 14 pairs of experiments, P val-
ues produced by the cyber-t-Normal method are a good deal
closer to uniform than P values produced by either the stand-
ard t or cyber t methods.

Imperfect normalization contributes to deviations 
from a perfectly normal distribution
The red lines in Figure 4b,c represent a P value of 0.05 for the
null hypothesis that a statistic produces P values that are uni-
form. Figure 4c contains the same data as Figure 4b with a
magnified scale. We see that even though the cyber-t-Normal
method produces P values that are a good deal closer to uni-

Actual versus expected P values under uniform distribution for null genes of Latin Square 2× comparisonsFigure 4
Actual versus expected P values under uniform distribution for null genes of Latin Square 2× comparisons. (a) Actual versus expected P values for the 
comparison of experiment 10 versus 11. Black dashes indicate the y = x diagonal. (b) Box plots showing the results of the Kolmogorov-Smirnov test for 
each of the 14 Latin Square 2× comparisons under the null hypothesis that the observed distribution of P values was the same as a uniform distribution of 
P values. The red line is the P = 0.05 level. (c) Same data as in panel b but with a magnified y-axis.
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form than the other methods, there is still significant devia-
tion from a perfectly uniform distribution. One possible
explanation for this deviation is imperfect normalization
from the quantile-quantile procedure. The top panels in
Figure 5 show cyber t scores after RMA summation in the
presence (top right panel) and absence (top left panel) of
quantile-quantile normalization for the null genes for a com-
parison of Latin Square experiments 8 and 9. We see that
even after quantile-quantile normalization, there remain
systematic differences in the null genes (top right panel).
Such systematic differences even after normalization have
been observed in other datasets [13-15]. To correct for these
differences, we can perform an additional normalization,
which we call 'statistics-level normalization'. To do this, we
simply fit a local (Loess) regression line to the data in the top
panels of Figure 5 with a window size of 1,000 data points. We
then subtract from each gene the value for that gene from the
Loess regression line. The results of this subtraction are
shown in the bottom panels of Figure 5. We see in Figure 4b,c

that when we perform this additional normalization, the P
values produced by cyber-t-Normal become slightly closer to
uniform. For the rest of the report, we refer to the calculation
of P values by cyber-t-Normal after RMA summation, quan-
tile-quantile normalization, and statistic-level normalization
as 'scheme 4'.

Cross-hybridization also contributes to deviations 
from a perfectly normal distribution
Another possible cause of deviations from the normal distri-
bution in Figure 4 is 'off-target' or cross-hybridization. We
might expect that some probe sets respond to changes in
genes other than those that they were designed to detect. If
genes that are annotated as null are in fact responding to
changes in spiked-in genes, this would cause P values to be
smaller than expected under a uniform distribution. We can
examine the effect of cross-hybridization by taking advantage
of the experimental design of the Latin Square dataset. For
each of the 91 possible pairs of experiments in the Latin

Fitting data to a local regression removes systematic variations present after quantile-quantile normalizationFigure 5
Fitting data to a local regression removes systematic variations present after quantile-quantile normalization. Shown is a comparison of cyber t scores for 
the null genes of the Latin Square comparison of experiment 8 versus 9 in the presence and absence of quantile-quantile and statistics level normalization 
(see text). Red lines are Lowess regression lines with a window size of 1,000.

No statistic-level
  normalization

  Statistic-level
  normalization

No quantile-quantile 
     normalization

  Quantile-quantile 
     normalization

1210864

1210864

-8

-6

-4

-2

0

2

4

6

6

4

2

0

-2

-4

-6
-8

-6

-4

-2

0

2

4

121086

-6

-4

-2

0

2

4

121086
Average RMA Score

Average RMA Score

Average RMA Score

Average RMA Score

cy
be

r 
t s

co
re

cy
be

r 
t s

co
re

cy
be

r 
t s

co
re

cy
be

r 
t s

co
re
Genome Biology 2007, 8:R69



http://genomebiology.com/2007/8/5/R69 Genome Biology 2007,     Volume 8, Issue 5, Article R69       Fodor et al. R69.9

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Square dataset, we can compute the average difference
between spike-in concentrations. That is, if the spike-in con-
centrations for the 42 genes in experiment X are ([X1], [X2],
[X3] ... [X42]) and for experiment Y are ([Y1], [Y2], [Y3] ...
[Y42]), then we define the average difference in concentration
as follows:

Figure 6 shows the -log10 (pValues) from the Kolmogorov-
Smirnov test as a function of this average difference in spike-
in concentration. As in Figure 4, the Kolmogorov-Smirnov
test evaluates the null hypothesis that the distribution of P
values produced by each statistic follows a uniform distribu-
tion. As we go from left to right on the x axis, we find experi-
ments in which the arrays were exposed to greater differences
in RNA concentrations. The data in this figure were con-
structed from a dataset containing only null genes. Despite
the fact that the spike-in genes are removed from this dataset,
we see an increase in the deviation from a uniform distribu-
tion as spike-in concentration increases. This must be due to
nonspecific hybridization. That is, probes that target null
genes are responding to changes in the spiked-in genes.
Because even in the 2× comparisons, the chips in the two con-
ditions are exposed to some differences in RNA, we can
explain some of the deviations from the normal distribution
in Figure 4 by cross-hybridization.

Experiments consisting of technical replicates are 
closer to a normal distribution
Technical replicates consist of arrays that have been exposed
to identical RNA. Every gene within a comparison of technical
replicates is therefore a null gene. If some of the deviation
from a uniform distribution in Figure 4 were caused by cross-
hybridization, then we would anticipate that experiments
consisting entirely of technical replicates would be closer to a
uniform distribution. The sample sizes in the Latin Square
experiment shown in Figure 4 are n = 3 for each condition,
however, which does not allow for comparison within an
experimental condition by either the cyber t or standard t test.
Fortunately, a dataset with six technical replicates has been
published [16]. This dataset, which was designed to measure
the effect of different RNA amplification schemes, consists of
six technical replicates in each of four distinct groups for a
total of 24 arrays. Within each of the four groups, there are 10
possible ways to split the six technical replicates into two
groups of three. There are therefore a total of 40 distinct com-
parisons of technical replicates with n1 = n2 = 3 within the 24
arrays of this dataset.

For each of these 40 possible n = 3 versus n = 3 comparisons
of technical replicates, we used the Kolmogorov-Smirnov test
to evaluate the null hypothesis that the P values produced by
various schemes were identical to the uniform distribution of
P values. The box plots in Figure 7 show the results of this
calculation. Figure 7b is identical to Figure 7a except the y axis
has been magnified. We see that for more than half of the 40
comparisons under 'scheme 4' there is no statistical
difference between the generated P values and the uniform
distribution at a P value cutoff of 0.05. The fact that the dis-
tribution of P values produced by 'scheme 4' for these techni-
cal replicates is closer to a uniform distribution than for the
null genes of the 2× Latin Square experiments in Figure 4
suggests that some of the deviation from a uniform distribu-
tion in Figure 4 is caused by cross-hybridization.

'Scheme 4' should be conservative in real experiments
The graphs in Figures 4 to 7 were created using data from only

null genes, which we know are not differentially expressed. In

'real' experiments, of course, we will have a mixture of null

and not-null genes and we will not know which genes are null

and which are differentially expressed. When we compare

genes in two conditions, we assume that null genes will follow

a normal distribution of scores whereas genes that are not

null will not follow this same distribution. Because the major-

ity of genes are probably null, the overall distribution of

scores from a test statistic will largely reflect null genes. We

measure the significance of genes as deviations from this

background distribution of presumably null genes. Of course,

not all of the genes will be null, and we will therefore not be

able to measure  and σcyberTNulls (the average and

standard deviation of cyber t scores from null genes) but only

Cross-hybridization distorts P values for null genes in the Latin Square datasetFigure 6
Cross-hybridization distorts P values for null genes in the Latin Square 
dataset. Shown are the results of the Kolmogorov-Smirnov test for the 
null genes for all 91 Latin Square comparisons as a function of the average 
difference in spike concentration (see text). The null hypothesis for the 
Kolmogorov-Smirnov test is that the observed P values are identical to a 
uniform distribution. Error bars are standard errors. The red line is the P 
= 0.05 level.
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 and σcyberTAll, which we define as the observed

mean and standard deviation of cyber t scores for all genes.

We would still expect, however, the number of upregulated
genes to be approximately equal to the number of downregu-
lated genes. We expect, therefore, that:

Moreover, cyber t scores will be higher for not-null genes than
for null genes, and we therefore expect:

σcyberTAll > σcyberTNulls

Estimates of P values generated by Equation 4 with

 and σcyberTAll will therefore tend to be larger than P

values that would be calculated with  and σcyberT-

Nulls from only the null genes. As more and more genes are dif-

ferentially expressed between two samples, conclusions

based on the P values generated by Equation 4 should there-

fore become more conservative.

Scheme 4 has attractive sensitivity and specificity when 
controlling false discovery rate
In order to compile a list of genes that are differentially
expressed between conditions, one requires not only a set of
P values but also some way to set a significance threshold con-
trolling for family-wise error rate or FDR. There are a large
number of reasonable choices that one could make in deter-
mining a threshold for significance [3,4,11,17]. In this report,

we choose to set a threshold for significance using the Ben-
jamini and Hochberg algorithm [18], which is a simple and
popular method for controlling FDR.

Figure 8 shows sensitivity and specificity for all 91 possible
pair-wise comparisons in the Latin Square dataset at a FDR of
10%, as calculated using the Benjamini and Hochberg metric.
We define sensitivity as the number of true positives recov-
ered at the 10% FDR threshold divided by the total number of
true positives in the Latin Square dataset. We define specifi-
city as the number of true positives recovered at this thresh-
old divided by the total number of genes recovered. At a 10%
FDR, we expect a specificity of 0.9 or greater. We see that the
P values generated by scheme 4 lead to appropriate balancing
of sensitivity and specificity. For nearly all of the 91 compari-
sons, scheme 4 provides control of FDR at greater specificity
than the expected 0.9, while maintaining an overall median
sensitivity of about 0.9. In contrast, the P values generated
using the standard t test and cyber t test lead to specificity
that is considerably worse than the predicted FDR. We con-
clude that, at least for the Latin Square dataset, Benjamini
and Hochberg control of FDR fails under standard t and cyber
t but succeeds under scheme 4. These findings suggest that
the P values produced by scheme 4 can lead to more appropri-
ate cutoffs for gene lists than either the standard t or cyber t
tests.

On biologic replicates, scheme 4 yields conservative, 
but reasonable, estimates of significant genes
To assess the performance of scheme 4 on real, as opposed to
spike-in data, we here present a previously unpublished data-
set involving isogenic biologic replicates of untransformed

Actual versus expected P values for a technical replicate datasetFigure 7
Actual versus expected P values for a technical replicate dataset. Shown are results of the Kolmogorov-Smirnov test for all 40 possible n = 3 versus n = 3 
combinations of the technical replicates from the dataset of Cope and coworkers [16]. The null hypothesis for the Kolmogorov-Smirnov test is that the 
observed P values are identical to a uniform distribution. The red line is the P = 0.05 level. (a,b) The same data are shown in both panels but panel b has a 
magnified y-axis.
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mouse cell lines derived from a single individual. In these
experiments, two cell lines, myeloid (MY) and embryoid blast
(EB), were exposed for 60 min to either dimethyl sulfoxide
(DMSO) along or DMSO plus the chemotherapeutic agent
etoposide at 50 μmol/l. Cells were allowed to recover for
either 4 hours or 24 hours. Five biological replicates (distinct
plates of cells) in each condition were hybridized to the
Mouse430_2 chip for a total of 40 experiments (two time
points × two experimental conditions × two tissue types × five
biologic replicates). For each time point at each tissue type,
we consider how many genes are differentially expressed
when comparing the cells exposed to drug with control cells.
Table 1 shows the number of differentially expressed genes at
a 10% FDR, as calculated in four different ways. For the
standard t test, cyber t statistic, and scheme 4, we fed the P
values generated by these tests into the Benjamini and Hoch-
berg [18] FDR algorithm. For the significance analysis of
microarrays (SAM) statistic [1], we used the implementation
of SAM provided by TIGR mev (see Materials and methods,
below). As might be expected based on the results from the
Latin Square control dataset (Figure 5), we see in Table 1 that
the P values from scheme 4 lead to a much more conservative
estimate of significance than do the P values from cyber t test
or the standard t test.

How reasonable are the various predictions of differentially
expressed genes shown in Table 1? Of course, because this is
not a 'spike in' dataset, we do not know how many genes were
truly differentially expressed. Nonetheless, we can still make
some assessment of how the various algorithms perform. Fig-
ure 9 shows the average RMA score in treatment versus con-
trol for myeloid (MY) samples at 4 hours. The red symbols
show the genes marked significant at 10% FDR under the
standard t test (Figure 9b) and scheme 4 (Figure 9a). We note
that the Pearson r2 correlation between baseline and experi-

ment averages in Figure 9 is 0.991. Given the subtle sources
of noise in a microarray experiment such as cross-hybridiza-
tion (Figure 5) [19] and the tight correlation between baseline
and experiment samples, our findings of 7,154 differentially
expressed genes through the standard t route in Table 1 seems
unreasonable, as does the 10,349 genes found through P val-
ues reported by cyber t and the 16,644 genes found significant
through the SAM analysis. We also note that in all four exper-
imental conditions, there were no gross morphologic changes
or obvious differences in growth between drug exposed and
control groups (data not shown). If there really were many
thousands of genes differentially expressed between drug and
control groups, then one would expect to see large differences
in the appearance and the behavior of the cells. The lack of
such differences reinforces our argument that the more mod-
est number of genes predicted to be differentially expressed
by scheme 4 seems more reasonable than the results pro-
duced using other methods.

Although we have argued that the scheme 4 route to FDR
should be conservative, given the tight correlation shown in
Figure 9, it seems possible that we have over-estimated the
number of genes that are truly differentially expressed. Is an
assertion that there are in fact no differentially expressed
genes in these experiments correct? We can take advantage of
our experimental design to rule out that possibility. Of the 90
genes that are significant by scheme 4 based FDR between
treatment and control (Table 1) for EB samples at 4 hours, 15
are also differentially expressed in the 87 found significant by
scheme 4 in the EB samples at 24 hours. We can use the
hypergeometric distribution to reject the null hypothesis that
the genes found to be significant in EB samples at 4 hours are
unrelated to the genes found to be significant in EB samples
at 24 hours with P < 10-25. A significant fraction of the genes
found to be significant with scheme 4 are therefore
reproducibly differentially expressed across the 4-hour and
24-hour time points.

Likewise, of the 38 genes found to be significant by scheme 4
for MY samples at 24 hours, 15 are also differentially
expressed in the 268 genes found to be significant by scheme
4 in the MY samples at 4 hours (P < 10-24). We have some evi-
dence, therefore, that the scheme 4 route was not inappropri-
ately anticonservative in this analysis. That is, at least some of
the genes described by scheme 4 were indeed differentially
expressed.

Conclusion
In this paper we argue that microarray statistics work best
when the estimate of standard error from each gene on the
array is ignored or suppressed. We are not the first group to
suggest that estimates of variance from individual genes are
unreliable. Previous studies have noted improved statistics
when a constant is added to the variance [1,11] or weighted by
the variance from neighboring genes [12]. We argue that if the

Sensitivity and specificity of different statistics for the Latin Square datasetFigure 8
Sensitivity and specificity of different statistics for the Latin Square dataset. 
Sensitivity and specificity using the Benjamini and Hochberg algorithm to 
control false discovery rate at 10% using the P values supplied by the 
various schemes for all 91 possible pair-wise comparisons in the Latin 
Square dataset.
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variance from each gene is truly unknown, then it makes
sense to consider all of the genes on the array as arising from
a single, normal distribution. We have demonstrated that this
assumption of a single normal distribution of all genes comes
much closer to producing a uniform distribution of P values
than does production of P values from the t distribution (Fig-
ures 4 and 7).

It is not immediately clear why algorithms, such as the stand-
ard t test, that attempt to estimate the standard error of each
individual gene perform so poorly. Difficulties in accurately

estimating the variance of each individual gene may arise
because of the modest sample sizes in typical microarray
experiments. It has also been shown that the normalization
process may distort the variance of genes [20,21]. We have
seen, however, that the standard t test does much better on
quantile-quantile normalized data than on non-normalized
data (Figure 2), even though only about 10% of the original
estimate of standard error survives normalization (Figure 3).
The distortion of variance by normalization is apparently
helpful. We argue that it is helpful because it replaces the
original estimate of standard error for each gene with a distri-

Table 1

Number of genes called significant at 10% false discovery rate on isogenic biologic replicates

Statistic Embryoid blast Myeloid

4 hours 24 hours 4 hours 24 hours

Standard t (scheme 1) 32 8,038 7,154 331

Cyber t (scheme 2) 1,288 9,769 10,349 4,464

Scheme 4 90 87 268 38

SAM 4,954 14,239 16,644 9,392

Each entry in this table is the number of significant genes when comparing treatment (DMSO + drug) with control (just DMSO) for a cell type 
(embryoid blast or myeloid) and a time point (4 or 24 hours). All data were subject to quantile-quantile normalization and summarized using RMA. 
The Benjamini and Hochberg algorithm was used on P values generated by the standard t test, cyber t, and scheme 4 to calculate false discovery rate. 
The values for SAM were generated by the TIGR Multiple Array Viewer (see Materials and methods) with 100 permutations and the default 
parameters. DMSO, dimethyl sulfoxide; RMA, Robust Multichip Average; SAM, significance analysis of microarrays.

Positives at 10% FDR identified by scheme 4 and the standard t testFigure 9
Positives at 10% FDR identified by scheme 4 and the standard t test. Shown are the averages of RMA scores across the five replicates comparing baseline 
(DMSO only) and experiment (DMSO + drug) for myeloid cells 4 hours after treatment. The same data are shown in both panels. (a,b) Red symbols show 
genes called significant in Table 1 from (panel b) the standard t test (scheme 1) and (panel a) under scheme 4 at a 10% false discovery rate (FDR), as 
calculated using the Benjamini and Hochberg algorithm.
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bution that approaches a small constant (Figure 1). This is
consistent with the true variance for each gene being
unknown regardless of normalization procedures.

The cyber t test uses Bayesian statistics to weigh the variance
of each gene by the variance of genes with similar intensities
on the array (see Materials and methods, below). As the
experimental sample size increases, the weight given to the
measured variance is increased while the weight given to the
variance shared among similar genes is decreased. At large
sample sizes, the performance of the cyber t test will therefore
approach the performance of the standard t test. This behav-
ior of the cyber t test is appropriate if the measured variance
approaches the true variance as sample size increases. If,
however, there are other factors at work in addition to small
sample size that cause the measured variance to be unrelia-
ble, then the performance of the cyber t test may degrade as
the sample size increases and the weight assigned to the back-
ground variance is therefore diminished. There is an urgent
need for control datasets with larger sample sizes to deter-
mine whether the unreliability of the measured variance is
primarily a function of small sample size or is somehow being
caused by other aspects of microarray technology.

A recent controversy in the microarray literature has centered
directly on the assumption of the uniform distribution of null
P values. In analyzing a spike in dataset, Choe and coworkers
[13] found that predicted FDRs from the SAM [1] algorithm
appeared to be greatly anticonservative when compared with
actual FDRs. In response, Dabney and Storey [5] noted that
the anticonservative behavior of the SAM algorithm could be
explained by the non-uniform distribution of P values among
the non-spiked-in genes. In the Choe dataset, non-spiked-in
genes had a surprising tendency to have P values too close to
zero. Dabney and Storey argued that this non-uniform distri-
bution was caused by errors in the experimental design of the
spike-in dataset, a charge that was echoed somewhat by a sec-
ond reanalysis of the Choe dataset [22]. These charges have
been vigorously disputed by the authors of the Choe dataset,
who argue that the non-uniform distribution of P values may
be a common feature of microarray data [14,15].

Our study lends support to the arguments presented by Choe
and coworkers. There are only 42 genes spiked in to the Latin
Square dataset, but even this modest number of genes can
produce detectable distortions in the distribution of P values
among null genes (Figure 6). Given that the Choe dataset
includes more than a thousand spiked-in genes, it is not sur-
prising that the null genes in the Choe dataset have
profoundly distorted P values. Moreover, the original analysis
of the Choe dataset used cyber t [13], whereas the reanalysis
used a standard t test [5]. We have shown that both of these
tests can distort the distribution of null P values (Figure 4 and
7). In their reports [13,15], Choe and coworkers suggest mul-
tiple normalization steps as a way to avoid bias in the test sta-
tistics. We find that a second normalization step does make a

small difference in producing uniform P values (Figures 4 and
7). We argue, however, that a larger difference can be made by
finding a more appropriate distribution of microarray scores
than the t distribution.

A problem with all microarray statistics papers is that they are
dependent on the datasets analyzed. It is a constant worry
that the assumptions made with regard to one dataset will not
apply to new datasets in the future, that is to say that one has,
in effect, constructed a statistic that is 'over-trained' to the
datasets considered. The main assumption that we have made
in this paper is that it reasonable to treat the standard error
from each gene as a constant. This assumption appears to be
reasonable for the Latin Square and technical replicate data
we have examined (Figures 4 and 7). It is not, however, a per-
fect assumption. The distribution of P values observed in Fig-
ures 4 and 7 are not perfectly uniform. This assumption is
clearly more reasonable, however, than the assumptions used
to generate the P values for the standard t and cyber t tests,
because P values produced by these tests are far from uniform
(Figures 4 and 7). Genes in datasets that contain biologic rep-
licates will, of course, exhibit a greater degree of variance than
genes in the technical replicates that, by necessity, make up
control datasets. Despite this, our assumptions appear to pro-
duce more reasonable results when applied to a 'real' biologic
dataset than the assumptions of the cyber t, standard t, or
SAM procedures (Table 1).

We have seen that even within the Latin Square dataset,
cross-hybridization can affect probe sets that are annotated
as null, distorting P values and complicating FDRs (Figure 6).
Microarray experiments are prone to other artifacts, which
are incompletely understood. These include saturation of
probes at high signal [23], nonequilibrium hybridization con-
ditions [24], and artifacts that arise from the dyes used in
microarray experiments [25]. A recent study found that dif-
ferent laboratories performing the same microarray experi-
ment on the same RNA sample obtained large differences in
their results, although the results from the best performing
laboratories exhibited a greater degree of correlation [26].
Given such a challenging environment, calculation of accu-
rate FDRs remains a difficult proposition. We argue that
because FDR calculations are liable to be distorted by subtle
artifacts, one should err on the conservative side. We have
taken a simple approach and shown that it is possible to gen-
erate a reasonable set of P values in a way that should become
more conservative as differences increase between sets of
chips. In the many cases where a conservative statistic is
appropriate, we believe this approach may yield more reason-
able gene lists than other currently employed methods.

Materials and methods
Implementation of statistics
The uniform distribution of P values in Figures 4, 6, and 7 was
calculated as simply the inverse of the gene index. So, for
Genome Biology 2007, 8:R69
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example, if there were 22,000 genes in a list ordered by sta-
tistic score, then the expected P value for the first gene under
a uniform distribution was 1/22,000. The expected P value
for the second gene was 2/22,000 and so forth.

Background correction, quantile-quantile normalization, and
RMA summary values were calculated with RMA express
[27]. In cases in which data were not normalized, background
subtraction was also not performed, but RMA summary val-
ues were still generated on non-normalized data with RMA
express. All RMA values are reported on a log2 scale.

The HG-U133A Latin Square dataset was downloaded from
Affymetrix (Santa Clara, CA, USA) [28]. For the Latin Square
data sets, probe sets 209374_s_at, 205397_x_at, and
208010_s_at were excluded for all analyses, as instructed by
the HG-U133A_tag_Latin_Square.xls spreadsheet. We also
excluded any probe set not in the spike-in probe sets that
started with AFFX-. This left 42 true positives and 22,182 true
negatives.

For the cyber t algorithm we used implementations available
in the R Bioconductor package with the default parameters.
The cyber t code was downloaded from the cyber t web page
[29]. The cyber t test compares arrays for genes in two
conditions producing a P value for each gene for the null
hypothesis that the mean intensity in each condition is the
same. For each gene in each of the two conditions, the cyber t
test with the default parameters calculates a weighted stand-
ard deviation as follows:

Where n is the sample size (the number of arrays in the con-
dition), SD is the standard deviation as it is usually calculated,
and SDWindow is the average of the standard deviation of the
100 genes with the average intensity closest to the average
intensity of the gene under consideration. The cyber t score is
then calculated in the same way as the standard t test, with
the SDcyberT value for each condition replacing the conven-
tional standard deviation for each condition and an adjusted
degrees of freedom of 20 + n1 + n2 - 4 (where n1 is the number
of array is condition 1 and n2 is the number of arrays in condi-
tion 2). For more details, see the cyber t report [12] and web
page [29].

The Benjamini and Hochberg algorithm [18] was imple-
mented in Java. The predicted FDR rate for a given gene in a
gene list ordered by statistic P value is given by N × p(k)/k,
where N is the number of genes in the list and p(k) is the P
value produced by the test statistic under the null hypothesis
of no differential expression for gene k in the list.

For SAM, we used the implementation in the Multiple Exper-
iment Viewer [30,31] provided by TIGR [32].

The cdf (cumulative distribution function) function in Equa-
tion 4 was evaluated using the pnorm function in the class
StatFunction.java implemented by Sundar Dorai-Raj and
downloaded from the Dorai-Raj web page [33]. This function
yields equivalent values to the R function pnorm with
lower.tail = FALSE.

The Kolmogorov-Smirnov test was ported to Java from the
Numerical Recipes in C++ text [34]. The Java port was tested
against the ks.test method in R. In cases in which the Kol-
mogorov-Smirnov test returned a zero, the -log10 value was
set to 200 (Figure 4) or 350 (Figures 6 and 7).

Loess regression lines were generated by the Java class Low-
ess. java in the package org.tigr.midas.engine distributed as
part of the TIGR midas engine [32].

All statistics except cyber t and the results of RMA express
were implemented in Java. Implementations of the equations
presented in this report can be found in the supplementary
materials (Additional data file 11) and at the author's web
page [35].

Etoposide treatment
Mouse embryonic stem cells were differentiated into isogenic
bursting embryoid body (EB) cells or isogenic myeloid (MY)
hematopoietic cells. A population of about 106 EB or MY
hematopoietic cells were seeded onto five replicate dishes and
expanded to obtain the appropriate number of cells per plate
for treatment. About 1.5 × 107 EB or MY hematopoietic cells
were exposed to either DMSO plus etoposide at a final con-
centration of 50 μmol/l or to DMSO (control) for 60 min.
Each etoposide or DMSO control was performed on the five
replicate dishes. The etoposide stock solution or DMSO (con-
trol) was diluted in Iscove's modified Dulbecco's medium
supplemented with 10% non-ES-qualified fetal bovine serum.
Following etoposide or DMSO (control) exposure, all samples
were washed twice in 1× phosphate-buffered saline and
plated in fresh medium for a recovery period of 4 or 24 hours.
Following recovery all cells were washed twice in 1× phos-
phate-buffered saline and harvested for RNA isolation.

RNA isolation and processing for microarrays
Control and etoposide-treated cells were pelleted by centrifu-
gation and lysed in TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA; 1 ml per 10 × 106 cells) by repetitive pipetting followed
by incubation at room temperature for 5 min. Total RNA was
recovered by phenol-chloroform extraction and isopropyl
alcohol precipitation. Extracted RNA was further purified
using the RNeasy mini kit (Qiagen, Valencia, CA, USA).
Biotin-labeled cDNA was prepared from the purified RNA
samples using the Ovation™ Biotin RNA Amplification and
Labeling System (NuGEN Technologies, Inc., San Carlos, CA,
USA), in accordance with the manufacturer's protocol.
Briefly, first-strand and second-strand cDNA synthesis was
followed by amplification of the double-stranded DNA tem-
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plate. Amplified cDNA was then fragmented and labeled with
biotin. Biotin-labeled cDNA was purified using the DyeEx 2.0
Spin Kit (Qiagen), and product yield and purity were deter-
mined u A260, A280, and A320 spectrophotometric meas-
urements. Fragmented, biotin-labeled cDNA (2.2 μg) from
each sample was hybridized to a GeneChip Mouse Genome
430 2.0 array (Affymetrix, Inc.). The Mouse Genome 430 2.0
array contains 45,000 probe sets used to analyze the expres-
sion level of over 39,000 transcripts from over 34,000 mouse
genes. Hybridization, washing, staining, and scanning of
microarrays was performed by the Gene Chip Analysis Facil-
ity in the Institute for Cancer Genetics, Columbia University
Health Sciences Division, New York, USA.

Additional data files
The following additional data are available with the online
version of this manuscript.Raw data (in the form of 40 .cel
files) for the Etoposide experiments described in Table 1 can
be found in the supplementary materials in this paper (Addi-
tional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 compressed with bzip2).
Filenames within the zip files that start with MY indicate
myeloid hematopoietic cells while filenames starting with EB
indicate bursting embryoid bodies. The third character of
each file indicates treatment with drug + DMSO ("E") or just
control DMSO ("C"). The next character of each filename
indicates the replicate number. The final characters indicate
the time point. So, for example, "MYE34.CEL" indicates a
myeloid hematopoietic cells ("MY") treated with drug ("E"),
replicate number 3, 4 hour time point. "EBC124.CEL" indi-
cates bursting embryoid bodies ("EB"), treated with only
DMSO ("C"), replicate number 1, 24 hour time point. Addi-
tional data file 11 provides implementations of the equations
presented in this report in R.
Additional data file 1CEL files for the EB samplesThis file contains EBC14.CEL, EBC24.CEL, EBC34.CEL, and EBC44.CEL.Click here for fileAdditional data file 2CEL files for the EB samplesThis file contains EBC54.CEL, EBE14.CEL, EBE24.CEL, and EBE34.CEL.Click here for fileAdditional data file 3CEL files for the EB samplesThis file contains EBE44.CEL, EBE54.CEL, EBC124.CEL, and EBC224.CEL.Click here for fileAdditional data file 4CEL files for the EB samplesThis file contains EBC324.CEL, EBC424.CEL, EBC524.CEL, and EBE124.CEL.Click here for fileAdditional data file 5CEL files for the EB samplesThis file contains EBE224.CEL, EBE324.CEL, EBE424.CEL, and EBE524.CEL.Click here for fileAdditional data file 6CEL files for the MY samplesThis file contains MYC14.CEL, MYC24.CEL, MYC34.CEL, and MYC44.CEL.Click here for fileAdditional data file 7CEL files for the MY samplesThis file contains MYC54.CEL, MYE14.CEL, MYE24.CEL, and MYE34.CEL.Click here for fileAdditional data file 8CEL files for the MY samplesThis file contains MYE44.CEL, MYE54.CEL, MYC124.CEL, and MYC224.CEL.Click here for fileAdditional data file 9CEL files for the MY samplesThis file contains MYC324.CEL, MYC424.CEL, MYC524.CEL, and MYE124.CEL.Click here for fileAdditional data file 10CEL files for the MY samplesThis file contains MYE224.CEL, MYE324.CEL, MYE424.CEL, and MYE524.CEL.Click here for fileAdditional data file 11Implementations of equations in RProvided are implementations of the equations presented in this report in R.Click here for file
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