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Transcription analysis of transposable-element-related genes in rice<p>A genome-wide survey of the transcriptional activity of TE-related genes that were associated with fifteen developmental stages and stress conditions revealed clear, albeit low, general transcription of TE-related genes.</p>

Abstract

Background: Transposable element (TE)-related genes comprise a significant portion of the gene
catalog of grasses, although their functions are insufficiently characterized. The recent availability
of TE-related gene annotation from the complete genome sequence of rice (Oryza sativa) has
created an opportunity to conduct a comprehensive evaluation of the transcriptional activities of
these potentially mobile elements and their related genes.

Results: We conducted a genome-wide survey of the transcriptional activity of TE-related genes
associated with 15 developmental stages and stress conditions. This dataset was obtained using a
microarray encompassing 2,191 unique TE-related rice genes, which were represented by
oligonucleotide probes that were free from cross-hybridization. We found that TE-related genes
exhibit much lower transcriptional activities than do non-TE-related genes, although representative
transcripts were detected from all superfamilies of both type I and II TE-related genes. The
strongest transcriptional activities were detected in TE-related genes from among the MULE and
CACTA superfamilies. Phylogenetic analyses suggest that domesticated TE-related genes tend to
form clades with active transcription. In addition, chromatin-level regulations through histone and
DNA modifications, as well as enrichment of certain cis elements in the promoters, appear to
contribute to the transcriptional activation of representative TE-related genes.

Conclusion: Our findings reveal clear, albeit low, general transcription of TE-related genes. In
combination with phylogenetic analysis, transcriptional analysis has the potential to lead to the
identification of domesticated TEs with adapted host functions.

Background
The completion of the rice (Oryza sativa) genome sequence
allowed further functional classification of the coding
sequences of this important crop and model of grass species
[1,2]. Detailed annotation of the rice genome revealed that
nearly a quarter of the rice open reading frame (ORF) coding
capacity has features of transposable elements (TEs) and are

therefore defined as TE-related genes [3]. Like other genes,
these TE-related genes have predicted normal gene structure
with protein coding capacity. However, they share significant
sequence similarity with known TEs in either or both of the
following ways: they have TE signature sequences in The
Institute for Genomic Research (TIGR) Oryza Repeat Data-
base [4] or they contain TE-related protein domains [3]. By
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this definition, TE-related genes can include potentially
active TEs (based on the existence of a functional ORF) as
well as cellular genes derived from TEs. Many of these TE-
related genes encode reverse transcriptases, transposases, or
other related proteins [5], and they can be further classified
based on protein domain and other sequence features [3,4].
Those TEs overwhelming in number that lack functional
ORFs are not considered to be genes [3]. Although there are
many TE-related genes, the biologic functions of these genes
remain elusive [6].

TEs are considered to be important for the maintenance and
diversification of genomes. TEs are usually separated into two
classes that differ in the mode of propagation: retrotrans-
posons, or type I elements, which transpose by reverse tran-
scription of an RNA intermediate; and type II elements,
which only use a DNA intermediate in movement within the
genome. Both classes can be further divided into several
superfamilies, each with a unique evolutionary history. Rep-
resentatives of virtually all superfamilies of TEs have been
detected in grass genomes [7-9]. Accumulating evidence sug-
gests that TE activities have profound impact on the genome
[5], influencing genome size, genome rearrangement, chro-
matin transcription, and gene evolution [10-15]; many of
these factors relying specifically on the transposition activity
of TEs.

Although most TEs are considered inactive [16,17], there have
been isolated reports of TE transposition in rice and other
grasses [18]. A common condition promoting transposition is
stress, including that which occurs in in vitro cell or tissue
culture [19-22]. Developmental regulation of transposition
has also been reported in intact plants [23,24].

Transcription of TE-related genes is required for their own
transposition and that of other related TEs, although tran-
scription itself may not be sufficient for transposition
[20,25,26]. Analysis of TE-related genes from certain sub-
groups of the type I class and the Mutator-like superfamily of
the type II class suggests that their transcripts are widely
present in grasses [27,28]. Most of these transcribed TEs have
coding capacity and are therefore considered TE-related
genes. A recent study of expressed sequence tags (ESTs) in
sugarcane identified 267 active TE-related transcripts [29].
Transcription of TE-related genes was also reported in an
unbiased survey of the transcriptional activity of a single rice
chromosome using a tiling microarray [30].

Apart from the potentially active TEs among these TE-related
genes, domesticated TE-related genes, which acquire new
functions for the host, have also been found to exist. Although
our current classification for distinguishing TE-related genes
from non-TE-related genes is not definitive [31], two recent
studies in Arabidopsis identified domesticated TE-related
genes contributing to cellular processes [32,33]. Similar
examples were also found in animals [34,35]. Such findings in

part support the hypothesis that TE-related genes may influ-
ence the evolution of their host by providing a source of novel
coding capacity.

The potential impact of domesticated TE-related genes on the
evolution of genomes requires systematic investigation. One
attempt to identify further domesticated TE-related genes is
sequence mining [36]. Because a change of position through
transcription can be detrimental to the host, transposon-
derived genes with known host function usually lack mobility.
As a consequence, they may be devoid of transposon-specific
terminal sequences [32,36]. By employing this criterion in a
search, one particular member of the MULE superfamily was
identified as a domesticated gene candidate [36]. Transcrip-
tion is an important feature of domesticated TE-related
genes, because it is generally required in cellular functions of
the host [32,33]. By surveying transcriptional activity and
combining other approaches, we would be able to identify
domesticated TE-derived gene candidates.

Another mechanism for the evolution of new genes from TEs
is through their ability to acquire and fuse fragments of genes
to new genomic locations, as seen in plant Pack-MULE and,
more recently, in certain Helitron-like and CACTA elements
[13,14,37,38]. However, many of these Pack-MULEs have
been suggested to possess pseudogene-like features [39].
Pack-MULE, as a unique group of TE-related genes, is rela-
tively well annotated and is a current focus of interest regard-
ing the origin of genes [37].

Given the paucity of information on TE-related genes, a sys-
tematic study of their transcriptional activity in a well charac-
terized genome is required to enhance our understanding of
the activity of TE-related genes. That the sequence of the rice
genome is now completely annotated makes it a good
resource for such a genome-wide survey [3]. Recent advances
in microarray technology allow us to study the transcriptional
activity of genes in a high-throughput manner. It is therefore
possible to conduct a genome-wide survey of the transcrip-
tional activity of rice TE-related genes, especially those more
divergent ones for which unique oligomer probes can be
designed. Different from simple TEs composing mostly repet-
itive sequences, many TE-related genes are diverged enough
to have short oligomers representing their unique sequence
regions. Such an approach has recently been utilized to ana-
lyze transcription of TE-related genes in plants and animals
[11,30,40]. In addition to TE-related genes, TEs without pro-
tein-coding capacity and other tandem repeats may also
exhibit transcriptional activity [26,41]. Transcripts derived
from tandem repeats in the heterochromatin can give rise to
small RNAs, which in turn direct the modification of histones
and DNA in TE-related sequences and nearby regions by
means of RNA interference [16]. Although transcripts from
tandem repeats are important for the genome, their highly
repetitive nature prohibits characterization of their unique
Genome Biology 2007, 8:R28
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identities in chromosomal organization on a genome-wide
scale [42,43].

We conducted an expression analysis for rice TE-related
genes using 70-mer oligonucleotide microarrays. Expression
profiles from 4,728 oligonucleotides covering organs from
rice plants were analyzed under both normal conditions at
various developmental stages as well as under stress condi-
tions. Clear but restricted transcription of TE-related genes
were found for all major superfamilies of TE-related genes.
Mechanisms controlling representative TE transcription
were further analyzed.

Results
Representation of TE-related genes by an 
oligonucleotide microarray
A 70-mer oligonucleotide set was previously developed to
span the rice genome [44]. Many TE-related genes are
included in this oligomer set design, allowing survey of a large
number of rice TE-related genes. However, for the sake of
simplicity, those oligonucleotide probes representing TE-
related genes were removed from analysis in all prior genome
profiling analyses [44-47]. Here, we collected all of our avail-
able datasets and systematically examined the transcriptional
activities of TE-related genes in various tissues and growth
conditions. In particular, we included datasets representing
cell cultures and stress-exposed tissues.

According to the rice genome annotation at TIGR [3] and a lit-
erature review [27,48], a total of 14,404 genes were identified

as TE-related genes, based on the presence of TE signature
sequences in the TIGR Oryza Repeat Database [4] or TE-
related Pfam domains. Among these TE-related genes, 9,493
were classified as type I (retrotransposons) TE-related genes
and 4,159 were classified as type II (DNA transposon) TE-
related genes. These TE-related genes were further classified
into superfamilies according to sequence signatures (Table 1).
The classification at TIGR was followed, modified in accord-
ance with recently published studies [27,48]. There were
another 752 TE-related genes without further classification. A
remapping of oligonucleotides in our microarray [44] to
annotated genes indicated that 2,191 (15.2%) TE-related
genes were represented by at least one 70-mer oligonucle-
otide that was free from cross-hybridization (see Materials
and methods, below). Most oligomers, if not all, mapped to
unique coding regions instead of repetitive sequences. In
addition, 1,966 70-mer oligonucleotides mapped to more
than one TE-related gene while remaining cross-hybridiza-
tion free from non-TE-related genes. These oligonucleotides
covered another 9,396 (65.2%) TE-related genes.

Transcriptional activity of TE-related genes
To obtain a comprehensive picture of the transcriptional
activity of TE-related genes, we assembled their transcription
profiles into a collection of 15 datasets acquired from various
tissues and under various physical conditions (Table 2). Five
tissues grown under normal conditions from different
developmental stages, four cell cultures, and six tissue sam-

ples under conditions of salinity or drought were included
[44-47]. Three or more independent biologic replicates for

Table 1

Summary of annotated TE-related genes in rice and coverage by (cross-hybridization free) microarray probes

Number of TEs in TIGR Number of TEs in TIGR and literature review Covered by microarray

Type I

Ty1/copia 1,273 1,469 235

Ty3/gypsy 3,904 4,218 362

LINE 56 62 34

Undetermined 4,158 3,744 691

Subtotal 9,391 9,493 1,322

Type II

hAT-like 13 184 42

CACTA 2,392 2,276 231

MULE 452 607 155

PIF/Pong-like 122 238 67

Mariner-like 48 48 15

Helitron-like 0 19 7

undetermined 999 787 128

Subtotal 4,026 4,159 645

Unclassified 779 752 224

Totala 14,196 14,404 2,191

aThe two subtotals plus Unclassified. TE, transposable element.
Genome Biology 2007, 8:R28
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each sample were analyzed. In order to assemble a compen-
dium of transcription profiles with minimal sample variation,
quantified microarray hybridization signals from different
experiments were pulled together and subjected to an auto-
matic processing pipeline, with manual inspection to correct
for slide background, normalize experimental variations, fil-
ter problem spots, and check data quality. A previously
described method, which takes into account both negative
and positive controls as well as data reproducibility, was
applied here to determine the expression threshold [44].
Such an experimental expression threshold was also sup-
ported by reverse transcription (RT)-polymerase chain reac-
tion (PCR) of randomly selected genes.

Examination of the expression of TE-related genes in each
sample indicates that heading stage panicle has the greatest
level of detected expression at 33%, whereas expression per-
centage in somatic shoot culture is the lowest, at 26% (Figure
1a). We also found that DNA transposons (type II) have 11%
to 18% higher expression percentage than retrotransposons
(type I) in all samples analyzed (Figure 1a).

By monitoring the expression of 2,191 TE-related genes using
unique oligomer probes, we identified expression of 1,084
(61.7%) TE-related genes in at least one of our 15 samples.
This is in contrast to findings in non-TE-related genes, 85.8%
of which are expressed in at least one sample and 22.6% in all
samples, using the same selection criteria. Expressed TE-
related genes tend to exhibit transcription in a relatively small
number of samples. The percentages of expressed TE-related
genes in a wide range of samples are markedly lower than
those of non-TE-related genes (Figure 1b). For those oligonu-
cleotide probes that match multiple TE-related genes, 73.7%
and 5.1% had hybridization signals in at least one sample or

in all samples, respectively. Considering that those probes
match multiple repetitive genes, a smaller portion of those
TE-related genes that they represent is expected to be
transcribed.

To probe quantitatively for the transcriptional activity of TE-
related genes, the expression intensities of those 1,084 tran-
scribed TE-related genes and an similar number of randomly
selected transcribed non-TE-related genes are visually
juxtaposed after clustering (Figure 2). Even though only tran-
scribed genes are being compared here, it is clear that the
transcription of TE-related genes was in general weaker than
that of their non-TE-related counterparts. Furthermore, a
large portion of the transcribed TE-related genes exhibited
detectable transcription in fewer rice samples than was the
case for non-TE-related genes. However, there are clearly a
few clusters of TE-related genes with rampant transcription
in most rice samples, and some of this transcription is quite
marked (Figure 2). A few organ-specific clusters, such as one
for cultured cells (lanes 7, 8 and 9 in Figure 2), were also
found.

To gauge the reliability of our microarray data for TE-related
genes, we first compared rice cDNA and EST collections with

Table 2

Summary of rice samples used in this study

Sample Abbreviation

Seedling shoot SS

Tillering stage shoot TS

Tillering stage root TR

Flag leaf FL

Heading panicle HP

Filling panicle FP

Suspension cultured cells SC

Somatic root in culture CR

Somatic shoot in culture CS

Tillering stage shoot under drought stress TSD

Tillering stage shoot under salt stress TSS

Flag leaf under drought stress FLD

Flag leaf under salt stress FLS

Heading panicle under drought stress HPD

Heading panicle under salt stress HPS

Summary of expression of TE-related genesFigure 1
Summary of expression of TE-related genes. (a) Percentage of the 
transcribed type I and type II TE-related genes and non-TE-related genes in 
different samples. Percentages of transcribed genes in each category are 
shown for all samples. (b) Levels of transcription can be inferred based on 
how often (in how many different samples) expression was detected for 
TE-related and non-TE-related genes. TE, transposable element.
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our data. We found 496 TE-related genes in the cDNA/EST
collection in TIGR database [3]. These cDNAs and ESTs were
derived from six rice samples: callus, seed, shoot and stem,
leaf, root, and flower (heading panicle). We have similar
(although not identical) rice samples with microarray expres-
sion profiles for all of them except seed. A survey of these TE-
related cDNAs/ESTs indicates that 80% of those covered by
our microarray also had detectable transcription. We further
used RT-PCR to verify the microarray data. An attempt to
amplify a series of TE-related genes with different levels of
microarray signals supported our choice of threshold used to
determine expression. Of the 10 genes with expression level
within 100 units above the threshold, seven were amplified by
RT-PCR; in contrast, only two out of 10 with expression below
the threshold were amplified. Moreover, 34 randomly
selected TE-related genes identified through microarray anal-
ysis as being shoot expressed were tested with RT-PCR using

seedling shoot RNA samples. Twenty-nine (85%) of them
were clearly detected. An independent tiling microarray anal-
ysis of rice transcriptome also covered a significant portion of
the TE-related genes [43]. A preliminary survey of the tran-
scriptional activities of TE-related genes in this dataset gives
a similar portion of expression (about 30%) among tissues
examined [49], although a different platform and hybridiza-
tion detection procedure were used [43].

Transcription of type I TE-related genes
In addition to taking an inventory of transcribed TE-related
genes in various tissues and under multiple growth condi-
tions, the availability of high-quality complete genome
sequence provided an opportunity to elucidate how transcrip-
tional activities evolve following sequence divergence. To this
end, phylogenic trees were generated for all major TE-related
gene superfamilies and were integrated with their members'
expression profiles.

The type I TE-related genes can be classified into two groups
according to the presence or absence of long terminal repeats
(LTRs). TE-related genes without LTRs belong to the long
interspersed elements (LINEs) type, which may encode retro-
transposase and mobilize noncoding short interspersed ele-
ments (SINEs). Only 34 LINE-type TE-related genes were
identified in rice (Table 1). We found a relatively small por-
tion (usually below 20%) of this family transcribed (Figure 3).
One rice LINE-type retrotransposon named Karma with
active transposition has been reported [20]; its transcrip-
tional activity was detected in a wide range of organs and cul-
tured cells. A 5'-truncated version of Karma was also
identified in the rice genome [20], which lacks transcriptional
activity in all samples we tested (Figure 3).

LTR-type TE-related genes belong to two superfamilies,
namely Ty1/copia and Ty3/gypsy, which are both ubiquitous
throughout plants and believed to have contributed signifi-
cantly to the evolution of genome structure and function [10].
Both families are quite diverse in rice, with Ty3/gypsy ele-
ments outnumbering Ty1/copia elements [48]. Our expres-
sion data indicate that both families are similarly transcribed
at low levels at around 25% in most samples, but there are
members in both families with strong transcription in wide-
spread tissues. However, they are spread in different clades
with only remote similarity (Additional data files 1 and 2). A
few active LTR retrotransposons have been reported in rice.
Among them, Tos17 is the best characterized and is known to
exhibit active transposition in tissue culture [19]. We found
active transcription of Tos17 not only in cultured cells but also
in a wide range of organs (Additional data file 1), suggesting
that tissue culture may provide a way to propagate somatic
transposition events to progeny. Sireviruses are a plant-spe-
cific lineage of the Ty1/copia retrotransposons that interact
specifically with proteins related to dynein light chain 8 [50].
We found one member of this lineage with ubiquitous strong

Global expression map showing transcriptional activity of TE-related and randomly selected non-TE-related genesFigure 2
Global expression map showing transcriptional activity of TE-related and 
randomly selected non-TE-related genes. Only 1,353 TE-related genes 
with transcription in at least one sample are included. Another 1,353 non-
TE-related genes randomly picked from those with transcription in at least 
one samples are shown in parallel. Each lane represents one sample in the 
same order as in Table 2. Shades of gray indicate the magnitude of 
transcription signals, which are based on microarray hybridization signals 
without units. TE, transposable element.
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transcription and several others with transcription in selected
rice samples (Additional data file 1).

A large number of type I TE-related genes have not yet been
further classified (Table 1). We detected transcription of a

smaller proportion of this group of genes than for Ty1/copia
and Ty3/gypsy superfamilies.

Transcription of type II TE-related genes
Type II TE-related genes are in general more actively tran-
scribed than type I TE-related genes. Different from type I,

Degrees of lineage-specific transcription in the LINE superfamilyFigure 3
Degrees of lineage-specific transcription in the LINE superfamily. The phylogenetic tree was generated from a multiple alignment of conceptually translated 
sequences by using neighbor-joining methods and rooted with human L1. Bootstrap values were calculated from 1,000 replicates. Sample numbers are 
identical to those in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on microarray hybridization signals without 
units. Names of previously reported members are shown. *Previously reported members with transcription or transposition. † Previously reported 
inactivate members. LINE, long interspersed element.
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type II TE-related genes are highly variable among major
superfamilies with respect to transcriptional activity.
Whereas CACTA and MULE superfamilies are actively tran-
scribed, hAT-like, PIF/Pong-like, Mariner-like, and Heli-
tron-like superfamilies have transcriptional activities similar
to or lower than those of type I TE-related genes.

Mutator-like superfamily (MULE) is one of the first groups of
identified transposases with a few reported transcriptionally
active members in rice [27]. There are 607 autonomous
members of this superfamily (Table 1), which has one of the
strongest transcription levels, at 35% to 40% in each sample
(Figure 4). The MULEs can be further divided into three
branches: MuDR-like, Jittery-like, and TRAP-like [27]. The
TRAP-like branch may have recently been amplified, and
high similarity among family members has resulted in lack of
unique oligo probes with which to examine their expression
profiles. Interestingly, we have found at least three clades
with clear active transcription in MuDR-like and Jittery-like
branches (Figure 4). The one highly transcribed clade in the
MuDR-like branch included MUG1, an evolutionarily con-
served MULE sequence found in diverse angiosperms and a
candidate for categorization as a domesticated transposase-
related gene [36]. The larger, highly transcribed clade in the
Jittery-like branch includes homologs to Arabidopsis genes
FAR1 and FHY3, both of which are transposon-derived genes
with demonstrated host function as transcription factors
downstream of phytochrome A [32,51,52]. There are no
reports on any members of the other highly transcribed clade
in the Jittery-like branch, which has rampant transcription
(Figure 4, middle).

The CACTA superfamily is a diverse group of high-copy repet-
itive genes in grasses [53,54]. CACTA transposons with active
transcription or even transposition have been reported in rice
and other grass genomes [54-57]. A total of 2,276 intact
CACTA transposase-coding genes are identified in rice, mak-
ing it the largest superfamily in type II TE-related genes
(Table 1). The CACTA superfamily is also highly active, with
more than 40% transcribed in each sample. Several clades
with active transcription were identified (Additional data file
4). Among them, two clades include over 20 members. No
members within these actively transcribed CACTA trans-
posons have previously been characterized.

The hAT-like superfamily is another widespread superfamily
in grasses [58]. It is a medium-sized superfamily in rice with
184 autonomous members (Table 1). About 20% of this
superfamily is transcribed in a single sample (Figure 5). Inter-
estingly, we found a small clade of four genes that exhibited
relatively uniform and strong transcription across a wide
range of samples. A sequence comparison indicates that these
genes have high similarity with a recently identified domesti-
cated Arabidopsis transposase DAYSLEEPER, which is a
pleiotropic regulator of development through its specific
DNA-binding activity [33]. There is one reported hAT-like

transposon group in rice, Dart, which is capable of active
transposition in plants [24,59]. Sequence analysis indicates
that Dart is a recently amplified clade with 30 almost identi-
cal members. Although no oligonucleotide probes have been
developed to represent individual members, there are a few
probes that can detect all or most of them. Clear hybridization
signals have been found for these probes in all shoot and cell
culture samples. This finding suggests that some or all mem-
bers of Dart are highly transcribed in a large number of rice
samples.

Both PIF/Pong-like and Mariner-like TE-related genes are
autonomous partners of nonautonomous miniature inverted
repeat transposable elements (MITEs), which are ubiquitous
in the rice genome [12]. Low proportions of both families
have detectable transcription (<20%) in each sample (Figure
6 and Additional data file 4). Two transpositionally active
PIF/Pong-like elements were recently reported: maize PIF
and rice Pong [22,23,60]. Interestingly, the rice homolog of
PIF, namely OsPIF1 [60], was not expressed in any samples
(Figure 6). There are six almost identical Pong elements in
the rice genome, which are represented by a single probe in
the microarray. This probe detected transcription activity in
tillering shoot and drought-exposed panicles only (Figure 6),
suggesting rigorous regulation at the transcriptional level for
members of this family. We did not detect any transcriptional
activity of the Pong element in cultured cells. The Mariner-
like superfamily has a much smaller member size [61]; this
superfamily includes a small proportion of transcribed genes,
similar to that for the PIF/Pong-like superfamily (Additional
data file 4).

A recently identified unique type II TE superfamily, Helitron-
like, is relatively under-characterized in the rice genome [62].
Strikingly, Helitron-like transposons have the potential to
move and shuffle genes or exons in maize [13,14]. In rice, we
found only one member with transcriptional activity in all the
samples. There is no other Helitron-like transposon among
the seven examined ones with transcriptional activity in any
samples (Additional data file 5).

We were unable to further classify another 787 type II TE-
related genes into any superfamilies (Table 1). Interestingly, a
large percentage (>40% out of 128 with unique oligomer
probes) was found to be transcribed.

Transcription of Pack-MULE
Genes or exons can be transduplicated by MULEs [9,63],
which have recently been suggested to be important
facilitators of the evolution of genes in higher plants, and have
therefore been termed Pack-MULE [37]. However, a detailed
sequence analysis suggests that the products of this process
are more likely to be pseudogenes than novel functional genes
[39]. To gain better insight into this group, we examined their
transcriptional activities using microarray analysis, because
transcription is usually a prerequisite for biologic function of
Genome Biology 2007, 8:R28
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a protein-coding gene. By testing the transcription of recently
identified 137 Pack-MULEs on chromosomes 1 and 10 that
are covered by our microarray [37], we found that the tran-
scription rates of Pack-MULEs fall between those of TE-
related gene models and non-TE-related gene models (Figure
7), being slightly closer to those of TE-related gene models.
On the other hand, more Pack-MULEs are transcribed in sev-
eral samples than for TE-related gene models and non-TE-
related gene models (Figure 7).

Association of transcription with DNA and histone 
modification
TEs, including TE-related ORF encoding genes, are under
multiple levels of epigenetic control, including DNA
methylation and histone modifications [26]. In Arabidopsis,
DNA methylation and histone H3 lysine-9 methylation
(H3K9m) correlates with the silencing of TEs, and histone H3
lysine-4 methylation (H3K4m) is associated with transcribed
genes [64]. However, H3K4m is also found in silenced genes
and therefore may not always be a marker for active tran-
scription [65].

To determine whether transcribed TE-related genes have dif-
ferent chromatin modification status, we selected nine tran-
scribed and three silenced TE-related genes, including both
autonomous TE genes and TE-derived genes, in order to
assess histone and DNA methylation (Figure 8a). These are
Tos17 and Tos3 of the Ty1/copia superfamily; Ty3/gypsy ele-
ments Os09g15460, Os03g32070 and OSR30; MULE super-
family DNA transposons MUG1, FAR1-like and Os11g05820;
CACTA DNA transposons Os10g31320, Os09g29980 and
Os04g08710; and DAYSLEEPER-like from the hAT-like
superfamily. Seedling shoot samples were used for all analy-
ses discussed here. To verify transcription independently, we
used PCR to amplify reverse-transcribed cDNA (RT-PCR).
Transcript accumulation assayed by RT-PCR is in general
consistent with microarray results (Figure 8a). Using chro-
matin immunoprecipitation (ChIP) analysis, we found that
only silenced genes were associated with high levels of
H3K9m. H3K4m was significant for all genes examined,
regardless of whether they were transcribed or silenced
(Figure 8a). Similar to H3K9m, only silenced genes were
heavily methylated at the DNA level (at cytosine, by McrBC
digestion assay; Figure 8a). These data imply that levels of
H3K9m and DNA methylation were lower in transcribed TE-
related genes. Similar correlations of histone and DNA meth-
ylation with transcription were also found in non-TE-related
genes (controls in Figure 8a). Furthermore, no distinction

was found between autonomous TE genes and TE-derived
genes from these data.

To explore these relationships further, we selected five TE-
related genes with transcription in cultured cells but not in
seedling shoots: the Ty1/copia retroelement Os10g22210;
Ty3/gypsy retrotransposons Os09g11940 and Os10g06250;
and CACTA DNA transposons Os07g23660 and Os08g32100
(Figure 8b). Three of these five genes were associated with
higher levels of H3K9m in shoots (silenced) as compared with
in cultured cells (transcribed), according to ChIP-PCR analy-
sis. Levels of H3K4m did not exhibit a clear difference
between shoots and cultured cells (Figure 8b). DNA methyla-
tion was reduced in three genes in cultured cells compared
with shoots (Figure 8b). Thus, lower levels of DNA
methylation and H3K4m tend to accompany TE-related gene
transcription under developmental regulation.

It has been shown that small RNAs derived from repetitive
genome sequences repress transcription by means of RNA
interference in Arabidopsis [16]. Small RNAs, both microR-
NAs (miRNAs) and small interfering RNAs (siRNAs), have
also been identified in rice, albeit at a small scale [66,67]. Six-
teen out of a total of 44 predicted siRNAs have at least one TE-
related gene as their target gene [66], whereas few miRNA
have a TE-related gene target [67]. For the five target TE-
related genes covered by microarray, we found active tran-
scription for only one. It is interesting to note that for siRNAs
targeting multiple genes, the transcriptional profiles of these
target genes may not be at all similar. For example, siRNA
P96-E12 has two targets: Os07g10770 (a cellulose synthase)
and Os01g05370 (a Ty1/copia family retrotransposon). The
cellulose synthase gene has strong transcription in almost all
samples we profiled. In contrast, the retrotransposon target
does not exhibit transcription in any sample.

Upstream gene transcription affects TE-related gene 
transcription
It was recently reported in Arabidopsis, as well as in several
other eukaryotes, that some adjacent genes tend to have co-
expression patterns [68-71]. Readthrough of TEs derived
from upstream genes is also reported in isolated studies
[41,72,73]. We therefore suspected that transcription of
neighboring genes might influence the transcription of a TE-
related gene. To test this hypothesis, we calculated the fre-
quency of transcribed TE-related genes relative to the
transcriptional activity of neighboring genes. Two scenarios
were considered: the upstream gene and the downstream TE-

Degrees of lineage-specific transcription in MULE superfamily (excluding the TRAP-like class)Figure 4 (see previous page)
Degrees of lineage-specific transcription in MULE superfamily (excluding the TRAP-like class). The phylogenetic tree was generated from a multiple 
alignment of conceptually translated sequences by using neighbor-joining methods and rooted with soybean Soymar1. Bootstrap values were calculated 
from 1,000 replicates. Sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on 
microarray hybridization signals without units. Names of previously reported members are shown. Names in parenthesis indicate members not covered by 
microarray. Transcriptional active clades are highlighted by bars. *Previously reported members with transcription or transposition.
Genome Biology 2007, 8:R28
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Degrees of lineage-specific transcription in hAT-like superfamilyFigure 5
Degrees of lineage-specific transcription in hAT-like superfamily. The phylogenetic tree was generated from a multiple alignment of conceptually translated 
sequences by using neighbor-joining methods and rooted with soybean Soymar1. Bootstrap values were calculated from 1,000 replicates. Sample numbers 
are identical to those given in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on microarray hybridization signals 
without units. Names of previously reported members are shown. *Previously reported members with transcription or transposition.
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related gene were in the same orientation (or the same
strand); and these two were in opposite orientations. In both
cases, there was a clear positive association between gene
transcription and the neighboring TE-related gene transcrip-
tion (Figure 9). However, the effect was more significant if the
non-TE-related and TE-related genes were in the same orien-
tation. An increase of 16% of downstream transcription was
found when transcribed upstream genes were in the same ori-
entation (P < 10-16, by Welch two-sample t-test). In the case of
opposite orientation, an increase of 9% in transcription level
was found (P < 10-16). By comparing the effects of transcribed
upstream gene orientation in these two scenarios, we found
that the same orientation corresponded to 6% more expres-
sion than the other scenario (P < 10-7). There is no clear dis-
tinction between the two scenarios for TE-related genes with
untranscribed upstream genes (26% versus 27%; P = 0.3).
The orientation of downstream non-TE-related genes did not
significantly affect the transcription of upstream TE-related
genes.

Functions of cis-elements in transcription
To explore further the possible underlying mechanisms that
control the transcription of TE-related genes, we attempted to
identify possible involvement of cis elements in transcription.
To this end, we searched for enrichment of cis elements in the
promoter regions of transcribed TE-related genes. We
grouped TE-related genes based on the number of samples
with transcription and searched for frequency of occurrence
of all reported cis elements within each group. Among 439
reported elements in plants [74], nine of them exhibited
marked enrichment in TE-related genes with active transcrip-
tion (Figure 10), whereas no element was found with similar
enrichment patterns from randomized datasets. In addition,
most of these elements were found by searching for enrich-
ment in active members in Ty1/copia, Ty3/gypsy, or the
CACTA superfamily. TATA box was identified, which is usu-
ally found in the 5'-upstream region of eukaryotic genes and
is critical for accurate initiation of transcription [75]. The T-
box is part of the scaffold/matrix attachment region, which
was recently found to regulate the transcription of nearby
genes in Arabidopsis [76]. We also identified the enrichment
of motifs (G-box, Myb binding site, and ATHB5-core) for the
major plant transcription factor families (bHLH, Myb, and
homeodomain-leucine zipper). In addition, enrichment was
also detectable from the light response motifs Hex-motif,
pathogen response motif GCC-core, gibberellin response
motif Pyrimidine-box, and meristem specific motif site IIa.

Discussion
Transcription profiles of TE-related genes in rice
TEs account for an overwhelming proportion of plant
genomes. To ensure the viability of their host and hence their
own survival, the transposition of TEs should be tightly con-
trolled [17]. Transcribed autonomous TEs among TE-related
genes have the potential to self-activate or activate transcrip-

tion of related nonautonomous TEs. Transcriptional
regulation is therefore one major control step used by plants,
but it remains insufficiently understood. The recently availa-
ble rice genome sequence has enabled us to characterize TE-
related gene transcription on a genome-wide scale.

Using 70-mer oligonucleotide microarrays covering more
than 2,000 rice TE-related genes, we surveyed the
transcription profiles under a wide range of organ samples
under various conditions. Considering that TE-derived cellu-
lar genes are relatively rare, autonomous TEs probably con-
tribute to most of these TE-related genes. Genome profiling
revealed that 25% to 30% of the TE-related genes were tran-
scribed in one sample, which was much lower than the corre-
sponding percentage of non-TE-related genes (Figures 1 and
2). Moreover, TE-related genes differed from their non-TE-
related counterparts in two additional aspects. First, TE-
related genes tended to be transcribed in only a subset of
organs or developmental stages, whereas non-TE-related
genes had transcription in more samples on average (Figure 1
and Figure 2). Second, transcribed TE-related genes exhib-
ited weaker transcription overall compared with non-TE-
related genes in all of the samples we profiled (Figure 2). It
worth noting that our estimation of TE-related gene tran-
scription was biased toward low-copy elements, because it
was difficult to distinguish transcripts among recently dupli-
cated high-copy TE-related genes, which share high sequence
similarity within clades. It has been reported in Arabidopsis
and Drosophila that the activity of TE elements may reduce as
the copy number increases [77,78]. Therefore, we expect the
transcriptional activity of those high-copy TE-related genes
will be lower than for low-copy ones.

Among TE-related genes, a smaller proportion of type I than
type II genes were transcribed (Figure 1a), a discrepancy that
resulted primarily from the strong transcription of MULE
and CACTA superfamilies as well as unclassified type II mem-
bers. It is interesting to note that all TE-related gene
superfamilies with potential to severely expand, including all
type I TE-related genes and PIF/Pong-like, Mariner-like and
Helitron-like type II TE-related genes, were more tightly
controlled at the transcription level. Type I TE-related genes
are amplified through a copy-and-paste mechanism [79].
PIF/Pong-like and Mariner-like superfamilies regulate the
activity of MITEs, which dominate the rice genome [12].
Members of the Helitron-like superfamily go through a
unique rolling cycle replication to rapidly amplify themselves
[62].

Many TE-related genes exhibit organ-specific, growth stage-
specific, and stress-specific expression profiles in our collec-
tion of samples. These genes exist in all superfamilies, as
shown in Figures 3 to 7. A number of them, again from vari-
ous superfamilies of both type I and type II TE-related genes,
exhibit clear induction in cultured cells, in certain organs, or
in certain stress challenged organs (Figure 2). The precise
Genome Biology 2007, 8:R28
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biologic significance for this observation remains to be
elucidated.

It is important to note that transcriptional activity does not
necessarily correspond to transpositional activity. Transcrip-
tion is just the first of several steps required for the
transposition of type I and type II TEs [79,80]. Active
transcription and even translation of TE-related genes has
been reported in several isolated cases [28], but only in a few
cases was transposition actually confirmed by observed copy
number change [20]. A two-step regulatory mechanism was
therefore proposed for retrotransposons [20]. In this model,
some elements may have slipped the leash of transcriptional
gene silencing [25]. Nevertheless, they can be controlled by
post-transcriptional gene silencing [18]. We observed tran-
scription of all major TE-related gene superfamilies in rice,
but it is probable that most of them, if not all, are not actively
transpositioned. It is therefore likely that such a two-step reg-
ulation exists not only for retrotransposons but also for other
classes. Post-transcriptional regulation, which is still largely
unexplored, is thought to repress transposition activity fur-
ther [81].

Transcription of domesticated TE-related genes in the 
rice genome
It is well accepted that some TE-related genes have actually
acquired host functions and play physiologic roles in the host.
They can either be derived from TEs or include hijacked TEs
or TE fragments by cellular genes. Not surprisingly, we have
discovered active transcription of all potential domesticated
TE genes previously described in Arabidopsis and rice. Inter-
estingly, domesticated TE genes tend to be within actively
transcribed TE gene clades. The rice homologs of the two
reported cases of domesticated transposons in Arabidopsis,
namely FAR1/FHY3 and DAYSLEEPER, were located in two
actively transcribed clades. MUG1, a putative domesticated
gene revealed by cross-species sequence comparison analysis,
was shown to be transcribed from our data and located within
an actively transcribed clade. These examples may suggest
that actively transcribed clades of TE-related genes are a rich
source for domesticated TE genes. In fact, several other
actively transcribed clades have been observed, especially for
the MULE and CACTA superfamilies, from our analysis (Fig-
ures 4 and 5). It is reasonable to suspect that those
transcriptionally active clades may contain genes co-opted by
hosts to serve adaptive functions. This notion will be worth
testing in future research. Clearly, the combination of tran-
scriptional analysis with phylogenetic analysis is

instrumental in identifying those TE-derived genes with
adapted host function.

A specific mechanism for the evolution of new genes by
mobile DNA elements is through their ability to acquire and
fuse fragments of genes to new genomic locations, as repre-
sented by Pack-MULE [37]. By exploring the transcriptional
activity of a subset of Pack-MULEs, we have shown that their
transcriptional activity falls in between the levels of TE-
related and non-TE-related gene models (Figure 7). This
result suggests that many of them might not have biologic
functions, and both pseudogenes and evolving new functional
genes exist among these annotated Pack-MULEs. Alterna-
tively, functional diversification of recently evolved genes
may be another explanation, because newly formed genes
usually have more specific expression profiles [82].

Mechanisms controlling TE-related genes transcription
The presence of such a diverse array of transcribed TE-related
genes raises questions regarding the mechanisms that control
the transcription. At the chromatin level, we found that
actively transcribed TE-related genes have reduced levels of
H3K9m and DNA methylation. This finding indicates that
proper chromatin modification status is usually required for
transcription of TE-related genes. However, histone and DNA
modifications are unlikely to be efficient markers for distin-
guishing between autonomous TE genes and TE-derived cel-
lular genes.

Consistent with the existence of chromatin-level control, we
found that transcribed TE-related genes tend to be located
near to transcribed neighboring genes. It is possible that the
status of a chromatin domain is marked by histone and DNA
modifications. Such chromatin status affects a few genes
located in the same or neighboring chromatin domains. The
orientation of upstream genes affects downstream TE-related
gene transcription (Figure 9). If both genes are in the same
orientation, then the downstream TE-related gene would
have a greater chance of being transcribed. Readthrough of
TE-related genes derived from upstream genes may account
for this difference, besides possible chromatin effects.

Small RNA has been suggested to be a key regulator to silence
TE elements transcriptionally and post-transcriptionally
[18,81]. However, only a few examples were found in our
dataset. Small RNAs are known to be highly abundant in the
Arabidopsis genome [83], whereas their counterparts in rice

Degrees of lineage-specific transcription in PIF/Pong-like superfamilyFigure 6 (see following page)
Degrees of lineage-specific transcription in PIF/Pong-like superfamily. The phylogenetic tree was generated from a multiple alignment of conceptually 
translated sequences by using neighbor-joining methods and rooted with soybean Soymar1. Bootstrap values were calculated from 1,000 replicates. Sample 
numbers are identical to those in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on microarray hybridization 
signals without units. Names of previously reported members are shown. Names in parenthesis indicate members not covered by the microarray. 
*Previously reported members with transcriptional or transpositional activity.
Genome Biology 2007, 8:R28
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Figure 6 (see legend on previous page)
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are yet to be discovered. A full catalog of small RNAs in rice
will provide a better picture of their role in TE transcription.

Another possible mechanism controlling TE transcription is
the existence of cis elements in their promoter regions. Exam-
ples have been found previously for LTR retrotransposons,
which employ alternating cis elements present in their LTRs
[29,84-86]. Here, we identified nine cis elements that were
clearly enriched in the promoter regions of transcribed TE-
related genes. Among them, both basic transcription-related
cis elements and elements that respond to developmental or
environmental regulation are found to be enriched in the
upstream regions of those transcribed TE-related genes (Fig-
ure 10). In addition, these enriched cis elements are probably
not limited to a certain superfamily but rather widely spread
in several superfamilies. Taken together, our data show that
transcription of TE-related genes, mostly autonomous TE
genes, in rice is a complex process, which is controlled, at
least in part, by chromatin-level regulation and cis elements
in promoters.

Materials and methods
Microarray analysis
The rice 70-mer oligonucleotide set was described previously
[44]. Briefly, 70-mer oligonucleotides were designed based
on a combination of FGENESH predicted genes from an
improved shotgun sequence [2] and the available full-length
cDNAs and ESTs [87]. Designed 70-mer oligonucleotides cor-
respond to the sequence within the coding region of genes,
and the design was corrected for such factors as oligo cross-
hybridization, uniform TM value, GC content, and hairpin/
stem nucleotide number. All oligonucleotides were remapped
to TIGR rice genome annotation version 3.1 genes [3] using
BLAST. We requested greater than 90% alignment of a 70-

mer oligonucleotide probe to a gene during the remapping.
Moreover, only those 70-mer probes without a greater than
80% second-best aligned gene were considered to be free
from cross-hybridization. These criteria were selected
because a mismatch of 20% removes more than 90% of the
hybridization signals, whereas a 10% mismatch retains at
least half of the hybridization signals [88].

TE-related genes were identified in accordance with TIGR
annotation, with supplemental literature review of published
TE-related genes. A total of 2,191 TE-related genes are repre-
sented by at least one oligonucleotide free from cross-hybrid-
ization. In addition, there are 1,966 70-mer oligonucleotides
mapped to several but only TE-related genes. These oligonu-
cleotides represent another 9,396 TE-related genes.

Oligonucleotides were custom synthesized by Operon Bio-
technologies Inc. (Huntsville, AL, USA) and printed onto
poly-L-lysin coated microscope slides using a contact micro-
arrayer. The same recommended set of 12 unique negative
control 70-mer oligonucleotides based on heterologous genes
[89] were included in all slides. There were 240 negative con-
trol spots on each slide.

Microarray data and plant materials
Microarray experiments and detailed rice sample preparation
were described previously [44-47]. Samples include organs
harvested under normal growth conditions (seeding stage
shoot, tillering stage shoot, tillering stage root, heading stage
flag leaf, heading stage panicle, and filling stage panicle),
organs under conditions of salinity or drought (tillering stage
shoot, heading stage flag leaf, and heading stage panicle), and
cultured cells (suspension-cultured cells, somatic root in cul-
ture, and somatic shoot in culture). A summary is provided in
Table 2. The microarray data discussed in this publication

Summary of expression of Pack-MULEs in comparison with other TE-related and non-TE-related gene modelsFigure 7
Summary of expression of Pack-MULEs in comparison with other TE-related and non-TE-related gene models. Levels of transcription can be inferred 
based on how often expression was detected in the different samples for each group. TE, transposable element.
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have been deposited in NCBI Gene Expression Omnibus [90]
and are accessible through GEO series numbers GSE2360,
GSE2691, GSE6533, and GSE6552.

Microarray data processing
Microarray spot intensity signals were acquired using Axon
GenePix Pro 3.0 software package (Molecular Devices, Sun-

nyvale, CA, USA). To identify and remove systematic sources
of variation, including dye and spatial effects, spot intensities
from the GenePix Pro output files of all repeats of a given
sample pair were normalized using limma, a software pack-
age for the analysis of gene expression microarray [91]. This
normalization process identified and ameliorated spatial,
intensity-based, and dye-specific artifacts using multiple step
corrections. To determine objectively whether a gene exhib-
ited significant expression in a given sample, we followed a
method that relied on negative control spots and data repro-
ducibility [44]. To estimate nonspecific hybridization, a dis-
tribution of normalized intensities was obtained from the
subset of negative control spots present on each array slide.
From this distribution, we chose an intensity cutoff at which
less than 10% of the distribution was greater than or equal to
this threshold. Expression of a gene was only considered
detectable if it was above the threshold in two or more repeats
out of the three. These criteria had been demonstrated suita-
ble for oligonucleotide arrays with an error rate range of 1% to
3% false negatives [44]. RT-PCR results and independent
analysis using different microarrays and statistical
approaches [43] further supported this threshold.

Sequence analysis
TE family classification was according to TIGR annotation
[3]. Hand analysis led to the identification of another 208 TE-
related genes according to published sequences and BLAST
search. Multiple sequence alignments were conducted using
Clustal W [92]. The weighing matrix used was Gonnet Pam

Chromatin-level modifications of TE-related genesFigure 8
Chromatin-level modifications of TE-related genes. Reverse-transcribed 
cDNA, DNA from ChIP, and McrBC-digested genomic DNA were 
amplified by PCR for TE-related genes (a) with and without transcription 
in seedling shoots, and (b) with transcription in cultured cells but not 
seedling shoots. Primers corresponded to transcribed ORFs. Mock RT-
PCR was performed without reverse transcriptase (w/o RT). ChIP was 
carried out with histone H3 anti-dimethyl lysine-4 (H3K4m) or anti-
dimethyl lysine-9 (H3K9m) antibodies together with total DNA input (T) 
and no antibody (Mock) controls. McrPCR was performed on McrBC 
digested (+) and untreated (-) total genomic DNA. Actin was used as a 
positive control and Os10g35890, a gene of unknown function without 
transcription in seedlings, as a negative control. The same gray scale was 
used to indicate magnitude of transcription signals from microarray 
(Array). ChIP, chromatin immunoprecipitation; ORF, open reading frame; 
PCR, polymerase chain reaction; TE, transposable element.
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Effects of relative orientation of upstream genes on transcription of downstream TE-related genesFigure 9
Effects of relative orientation of upstream genes on transcription of 
downstream TE-related genes. All TE-related genes were divided into two 
groups according to the relative orientations of themselves and upstream 
genes. Portions of transcribed TE-related genes were calculated for those 
with transcribed upstream genes and those with silent upstream genes in 
both groups. TE, transposable element.
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250 with the penalty of gap opening 10 and gap extension 0.2.
Phylogenetic trees were generated based on the neighbor-
joining method, using PAUP* version 4.0b10 with default
parameters [93].

Cluster analysis
Cluster analysis was applied to all TE-related genes and 1,353
randomly selected non-TE-related genes showing expression
in at least one sample. Average normalized log-transformed
expression intensities were subjected to cluster analysis. For
hierarchical clustering, Pearson correlation was used to com-
pute similarities, and a complete linkage clustering algorithm
was used. Cluster analysis was performed using the software
Cluster [94] and visualized using custom scripts.

RT-PCR analysis
Total RNA was extracted from independently prepared rice
seedling shoots using Qiagen RNeasy kit (Qiagen, Valencia,
CA, USA). After DNase I treatment, total RNA was used for
cDNA synthesis using Superscript II (Invitrogen, Carlsbad,
CA, USA) in accordance with the manufacturer's protocol.
PCR primers were designed according to sequence using
Primer3 [95]. The amplification reaction was carried out for
35 cycles and at an annealing temperature of 55°C. Products
were separated by 1% agarose gel electrophoresis. Negative
controls using mock cDNA synthesis products without

reverse transcriptase were included for all genes to detect
potential genomic DNA contamination.

Histone and DNA methylation
ChIP was carried out as described elsewhere [64] using seed-
ling shoots and cultured cells. Histone H3 anti-dimethyl
lysine-4 or anti-dimethyl lysine-9 antibodies (Upstate, Avon,
NY, USA) were used to precipitate genomic DNA, which was
resuspended in water for PCR analysis. The same PCR and gel
electrophoresis conditions were used as for RT-PCR analysis.

Methylation of DNA was assessed by McrBC digestion follow-
ing a previously published protocol [81]. Genomic DNA was
isolated from seedling shoots and cultured cells using Qiagen
DNeasy plant kit and divided into two equal samples. One
sample was digested with McrBC, a methylation-dependent
restriction enzyme that cuts the sequence A/G 5 mC (New
England Biolabs, Beverly, MA, USA). Both digested and
untreated samples were subject to PCR amplification as
described previously. Successful amplification after digestion
indicates lack of methylation.

Motif search
The genome sequences 2 kilobases upstream of the annotated
translation start site were retrieved from the TIGR database.
Both DNA strands were searched for known plant motifs

Motifs with enrichment in transcribed TE-related gene promotersFigure 10
Motifs with enrichment in transcribed TE-related gene promoters. Genes were grouped according to the number of samples that show transcriptional 
activity. Enrichment was measured as the frequency of a motif in gene promoters of a certain group. TE, transposable element.
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using the PLACE database [74]. Enrichment levels were fur-
ther calculated using custom scripts [45].

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 shows degrees of
lineage-specific transcription in the Ty1/copia superfamily.
Additional data file 2 shows degrees of lineage-specific
transcription in the Ty3/gypsy superfamily. Additional data
file 3 shows degrees of lineage-specific transcription in the
CACTA superfamily. Additional data file 4 shows degrees of
lineage-specific transcription in the Mariner superfamily.
Additional data file 5 shows degrees of lineage-specific tran-
scription in the Helitron superfamily.
Additional data file 1Degrees of lineage-specific transcription in the Ty1/copia super-familyThe phylogenetic tree was generated from a multiple alignment of conceptually translated sequences by using the neighbor-joining methods and rooted with human L1. Bootstrap values were calcu-lated from 300 replicates. The sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of tran-scription signals, which are based on microarray hybridization sig-nals without units. Names of previously reported members are shown. Names in parenthesis indicate members not covered by microarray. *Previously reported members with transcription or transposition.Click here for fileAdditional data file 2Degrees of lineage-specific transcription in the Ty3/gypsy super-familyThe phylogenetic tree was generated from a multiple alignment of conceptually translated sequences by using neighbor-joining meth-ods and rooted with human L1. Bootstrap values were calculated from 300 replicates. Sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of transcription sig-nals, which are based on microarray hybridization signals without units. Names of previously reported members are shown. Names in parenthesis indicate members not covered by microarray. *Previ-ously reported members with transcription or transposition.Click here for fileAdditional data file 3Degrees of lineage-specific transcription in the CACTA superfamilyThe phylogenetic tree was generated from a multiple alignment of conceptually translated sequences by using neighbor-joining meth-ods and rooted with soybean Soymar1. Bootstrap values were cal-culated from 300 replicates. Sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on microarray hybridization signals with-out units. Names of previously reported members are shown. Names in parenthesis indicate members not covered by micro-array. *Previously reported members with transcription or transposition.Click here for fileAdditional data file 4Degrees of lineage-specific transcription in the Mariner super-familyThe phylogenetic tree was generated from a multiple alignment of conceptually translated sequences by using neighbor-joining meth-ods and rooted with soybean Soymar1. Bootstrap values were cal-culated from 300 replicates. Sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of transcription signals, which are based on microarray hybridization signals with-out units.Click here for fileAdditional data file 5Degrees of lineage-specific transcription in the Helitron super-familyThe phylogenetic tree was generated from a multiple alignment of conceptually translated sequences by using neighbor-joining meth-ods and rooted with C. elegance CeHEL1. Bootstrap values were calculated from 300 replicates. Sample numbers are identical to those in Table 2. Shades of gray indicate the magnitude of tran-scription signals, which are based on microarray hybridization sig-nals without units.Click here for file
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