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Predicting novel protein interactions<p>A new approach to identifying interacting proteins based on gene-expression data uses hypergeometric distribution and Monte-Carlo simulations.</p>

Abstract

We propose a new approach to identify interacting proteins based on gene expression data. By
using hypergeometric distribution and extensive Monte-Carlo simulations, we demonstrate that
looking at synchronous expression peaks in a single time interval is a high sensitivity approach to
detect co-regulation among interacting proteins. Combining gene expression and Gene Ontology
similarity analyses enabled the extraction of novel interactions from microarray datasets. Applying
this approach to p21-activated kinase 1, we validated α-tubulin and early endosome antigen 1 as its
novel interactors.

Background
The cell is a complex system involving a heterogeneous and
highly dynamic set of proteins whose ability to interact and
form complexes is critical for cellular activity and regulation
[1]. A major goal, therefore, is the complete identification of
the interactome. Different high-throughput experimental
approaches have been developed to characterize the interac-
tomes of several organisms. Yeast two hybrid screens allow
binary interactions to be defined while tandem affinity purifi-
cation (TAP)-tag followed by mass spectrometry analysis is
used to purify and identify components of multi-protein com-
plexes [2-5]. Up to now, data have been mostly generated by
studying simple organisms such as Saccharomyces cerevi-
siae, Caenorhabditis elegans and Drosophila melanogaster
[6,7]. For human cells, published experimental results are

collected in databases like MINT (Molecular Interactions
database) and HPRD (Human Protein Reference Database)
[8,9], but the amount of information is still largely limited.
Moreover, data have been obtained from different cellular
models and using different techniques, thus rendering it dif-
ficult to build a global network of interactions or to extrapo-
late information about the composition of multi-protein
complexes.

Computational approaches may help to address these crucial
issues [10-17]. The current idea is that proteins forming a
supra-molecular complex are transcribed simultaneously and
standard Pearson's analysis has been extensively applied to
gene expression datasets to support this concept
[12,14,15,17,18]. In general, good results are obtained with

Published: 4 December 2007

Genome Biology 2007, 8:R256 (doi:10.1186/gb-2007-8-12-r256)

Received: 24 August 2007
Revised: 14 November 2007
Accepted: 4 December 2007

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2007/8/12/R256
Genome Biology 2007, 8:R256

http://genomebiology.com/2007/8/12/R256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053208
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


http://genomebiology.com/2007/8/12/R256 Genome Biology 2007,     Volume 8, Issue 12, Article R256       Zanivan et al. R256.2
this method if protein interactions of stable protein com-
plexes are studied, but it is less efficient in other cases [12,14].
A paradigmatic example is the application of Pearson's anal-
ysis to gene expression datasets of the yeast cell-cycle. A
strong and significant correlation can be obtained for perma-
nent protein complexes, but only weak correlations are seen
for the transient ones [14]. A similar conclusion resulted from
the analysis of some human gene profiles [12].

In this paper we present a new approach for the detection of
putative protein interactions based on expression data.
Besides the identification of permanent complexes, it is also
capable (at least for well synchronized samples) of reliably
identifying interactions among proteins belonging to tran-
sient complexes. This approach is based on two observations.
Firstly, protein-protein interactions are more easily identified
if the interacting protein pair belongs to a multi-protein com-
plex. This is a direct consequence of the fact that the features
used to identify the interactions (that is, correlations in
expression data) display a much higher signal to noise ratio if
multiple correlations are looked for simultaneously. There-
fore, we focused on tracking interactions within protein com-
plexes, even though our algorithm can, in principle, identify
any type of protein-protein interaction. The second observa-
tion is that while Pearson's correlators are very effective at
identifying permanent complexes, which remain assembled
throughout most experimental time-points, they are less suit-
able for transient complexes, which are assembled for only
one or a few time-points. To overcome this problem, we pro-
pose a new method to extract putative human interacting pro-
teins from microarray gene expression data by looking at the
presence of synchronous expression peaks in time course
experiments of synchronized HeLa cells [19]. This is further
supported by the recent observation in yeast that the timing
of transcription during the cell-cycle is indicative of the tim-
ing of protein complex assembly [20].

This approach allowed us to address interactions character-
ized by low, but not negligible, statistical significance, which
would instead be completely filtered out in the Pearson-based
analysis. To further enhance the signal to noise ratio we com-
bined this analytical procedure with a standard Gene Ontol-
ogy (GO) [21] search. This filter turns out to be very effective,
since it is based on input information completely independ-
ent from data exploited in the previous analysis step.

To test the performance of our approach and compare it with
the standard Pearson-based one, we established and tested a
set of 32 permanent and transient complexes. The application
of our method shows its effectiveness in detecting protein
interactions in permanent and transient complexes. We also
observed that, as expected, the proposed technique performs
better as the synchronization of the dataset improves. To spe-
cifically test the applicability of our method in a precise bio-
logical context, we used it to explore novel putative
interacting partners for serine/threonine p21-activated

kinase (PAK)1. PAK1 is a kinase downstream of the Rho fam-
ily of small GTPases, which participates in the formation of
several dynamic and transient transductosomes [22]. We also
provide experimental evidence confirming the interactions
predicted by our algorithm between PAK1 and α-tubulin as
well as PAK1 and early endosome antigen (EEA)1, a coiled coil
dimer that is crucial for endosome fusion in vitro [23].

Results
Starting data: known protein complexes and 
microarray datasets
Up to now there are no databases for genome-wide multi-pro-
tein interactions in mammals. Thus, we focused our study on
11 permanent and 21 transient human complexes of different
sizes that are well characterized in the literature (Table 1, and
see Materials and methods). Since transient complexes dis-
play dynamic properties, we analyzed microarray data from
several temporal series describing a dynamic cellular condi-
tion. For this, we selected from the Stanford Microarray Data-
base [24] three independent datasets analyzing the cell-cycle
of HeLa cells synchronized either with double thymidine
(Thy-Thy) or thymidine-nocodazole (Thy-Noc). In particular,
only data from the first full cell-cycle (14 hours long) after
synchronization were considered.

Gene expression analysis of human protein complexes 
by Pearson correlation coefficient
To extract putative protein-protein interactions from gene
expression data, we first evaluated the Pearson's correlation
for each pair of genes in the above described HeLa datasets.
To assess if the number of highly correlated components had
been obtained by chance, results were compared with the glo-
bal behavior of the dataset by a standard hypergeometric test
(Materials and methods).

Among the 32 analyzed protein complexes, 23 showed a p
value lower than 0.05, including 5 in Thy-Thy dataset 2 (Thy-
Thy2; Additional data file 1a), 10 in Thy-Thy dataset 3 (Thy-
Thy3; Additional data file 1b) and 8 in the Thy-Noc dataset
(Table 2). Among them (in particular in the very low p value
range), a dominance of permanent with respect to transient
protein complexes was observed. As an example, proteasome
and small ribosomal subunit (SRS), which are well known
stable complexes, were both characterized by very low p val-
ues in at least two datasets. However, we also found several
complexes in which the number of highly correlated genes
was clearly not statistically significant (that is, with a p value
≥ 0.7). In particular, this occurred in 15, 11 and 12 complexes
in the Thy-Thy2, Thy-Thy3, and Thy-Noc datasets, respec-
tively, including both permanent and transient complexes.
RNA polymerase III is an example of a permanent complex
without a significant p value in all three datasets.
Genome Biology 2007, 8:R256
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Gene expression analysis of human protein complexes 
by expression peaks method
As previously observed, the Pearson-based method was una-
ble to detect significant correlations (that is, with a p value not
≥ 0.7) for almost half of the tested complexes. To improve the
level of detection, we set up an alternative approach, which
we call the 'expression peaks method'. Gene expression was
analyzed every one (for Thy-Thy datasets) or two (for the Thy-
Noc dataset) hours by computing the variation of mRNA lev-
els between consecutive time points. A threshold was then
defined on computed differences, which represents the value

above which we considered the increase of expression
between two consecutive time points a peak of expression.
Next, we placed all computed expression values in a binary 1-
0 system where 1 represents an expression peak. By calculat-
ing the expression peaks for each gene along the cell-cycle in
each dataset, we found that a high percentage of genes partic-
ipating in the same complex peaked synchronously at least in
one temporal interval (Table 3 for the Thy-Noc dataset, and
Additional data file 3 for the Thy-Thy datasets). Since there
was more than one peak of expression per gene, we estab-
lished the peak of expression of each complex as the time

Table 1

Set of known human multi-protein complexes analyzed

Number of genes

Protein complex Complex type Thy-Thy2 Thy-Thy3 Thy-Noc

ATP_F0 Permanent 7 10 10

ATP_F1 Permanent 4 3 3

COX Permanent 7 6 8

SRS Permanent 16 20 20

LRS Permanent 15 18 18

MLRS Permanent 22 36 37

MSRS Permanent 20 30 30

Proteasome Permanent 21 21 23

PD Permanent 6 7 7

RNA Pol II Permanent 10 10 10

RNA Pol III Permanent 4 6 5

AP2 Transient 2 4 4

APC Transient 5 8 8

Arp2-3 Transient 6 3 5

ARC Transient 4 5 5

Centrosome Transient 42 50 51

Dynactin Transient 7 9 7

Exocyst Transient 7 7 7

Exosome Transient 3 5 5

FA Transient 37 46 47

GTC Transient 5 6 6

Nucleopore Transient 27 29 30

Nucleosome Transient 17 24 24

ORC Transient 4 5 6

RFC Transient 3 4 4

SRP Transient 3 5 4

SCF Transient 3 3 3

SNARE complex Transient 7 7 7

SWI-SNF Transient 12 10 12

TAFIID Transient 8 13 13

TRAPP Transient 2 5 6

VHL Transient 4 4 4

The number of genes representing each protein complex is reported for the three analyzed HeLa cell-cycle datasets. AP2, adaptor-related protein 
complex 2; APC, anaphase promoting complex; ARC, axin related complex; ATP_F0, ATP synthase, H+ transporting, mitochondrial F0 complex; 
ATP_F1, ATP synthase, H+ transporting, mitochondrial F1 complex; COX, cytochrome c oxidase; FA, focal adhesion; GTC, golgi transport complex; 
MSRS, mitochondrial small ribosomal subunit; ORC, origin recognition complex; PD, pyruvate dehydrogenase; RNA Pol II, RNA polymerase II; SRP, 
signal recognition particle; TRAPP, trafficking protein particle complex; VHL, von Hippel-Lindau complex.
Genome Biology 2007, 8:R256



http://genomebiology.com/2007/8/12/R256 Genome Biology 2007,     Volume 8, Issue 12, Article R256       Zanivan et al. R256.4
interval in which the genes of the complex peaked synchro-
nously with the best p value (see below). To exclude that the
number of synchronously peaking genes had been obtained
by chance, we performed the same analysis on the Pearson's
case described above by using a hypergeometric test. Among
the 32 protein complexes analyzed, 14 in Thy-Thy2, 13 in Thy-
Thy3 and 13 in Thy-Noc showed a p value lower than 0.05 in
at least one time interval along the cell-cycle. As stable com-

plexes we detected the mitochondrial large ribosomal subunit
(MLRS), SRS, the proteasome and RNA polymerase II. Inter-
estingly, low p values appeared for a large number of tran-
sient protein complexes in all three datasets; dynactin,
exocyst, the nucleosome, the replication complex (RFC) and
the skp1-cull-F-box complex (SCF) are transient complexes
with a significant p value in two out of three datasets (Table 2
for the Thy-Noc dataset, and Additional data file 1 for the Thy-

Table 2

P values for Thy-Noc dataset

Peaks of expression (p value) Pearson
(p value)

Protein 
complex

2 h-0 h 4 h-2 h 6 h-4 h 8 h-6 h 10 h-8 h 12 h-10 h 14 h-12 h Cell-cycle

AP2 3.67E-01 7.47E-01 7.05E-01 1.00E+00 4.78E-01 6.26E-01 3.73E-01 1.00E+00

ARC 3.49E-02 1.00E+00 1.00E+00 6.95E-03 1.00E+00 7.28E-02 1.00E+00 1.00E+00

Arp2-3 1.00E+00 1.51E-01 3.95E-01 1.00E+00 5.56E-01 1.00E+00 5.00E-01 1.00E+00

ATP_F0 1.00E+00 9.68E-01 9.53E-01 6.30E-01 8.03E-01 1.00E+00 2.21E-03 3.29E-03

ATP_F1 1.00E+00 6.43E-01 1.00E+00 4.92E-01 1.00E+00 1.00E+00 6.77E-01 1.00E+00

APC 2.14E-01 7.26E-01 6.65E-01 2.07E-01 7.28E-01 8.60E-01 6.95E-02 7.16E-01

COX 1.00E+00 7.26E-01 3.54E-01 1.00E+00 3.43E-01 1.00E+00 2.20E-01 1.96E-06

Centrosome 7.58E-01 9.13E-01 9.90E-01 5.96E-01 7.11E-02 7.27E-02 1.46E-01 1.79E-03

Dynactin 9.26E-01 1.00E+00 8.82E-01 7.94E-01 6.80E-01 8.21E-01 3.50E-02 2.35E-01

Exocyst 6.93E-01 3.32E-01 5.87E-01 3.44E-02 6.80E-01 1.81E-01 3.85E-01 2.35E-01

Exosome 8.44E-01 8.20E-01 3.95E-01 1.00E+00 1.00E+00 1.00E+00 1.82E-01 3.62E-01

FA 3.81E-01 6.38E-01 1.49E-01 7.64E-02 9.37E-01 1.27E-01 1.21E-01 1.53E-01

GTC 6.02E-01 8.73E-01 4.97E-01 7.41E-01 2.24E-01 3.89E-01 6.10E-01 4.90E-01

LRS 9.99E-01 8.14E-01 9.96E-01 9.83E-01 9.46E-01 1.00E+00 4.42E-04 2.79E-07

MLRS 9.26E-01 6.68E-01 6.69E-01 4.78E-01 4.17E-02 9.74E-01 1.11E-04 9.41E-01

MSRS 9.40E-01 2.33E-01 2.47E-01 5.82E-01 9.52E-01 9.73E-01 3.11E-04 6.32E-03

Nucleopore 3.14E-01 3.68E-01 1.40E-01 8.82E-01 9.92E-01 3.24E-01 1.13E-03 3.60E-01

Nucleosome 9.91E-01 8.62E-03 9.71E-01 3.53E-01 8.94E-01 9.79E-01 3.28E-01 4.46E-33

ORC 2.75E-01 8.73E-01 8.40E-01 1.01E-01 6.23E-01 3.89E-01 1.00E+00 1.00E+00

PD 6.93E-01 9.10E-01 8.33E-02 4.28E-01 6.80E-01 4.73E-01 7.00E-01 6.11E-01

Proteasome 6.03E-01 9.96E-01 4.02E-01 9.62E-01 6.92E-01 1.00E+00 5.18E-08 1.99E-03

RFC 3.67E-01 1.00E+00 2.84E-01 1.84E-01 1.10E-01 6.26E-01 1.00E+00 1.00E+00

RNA Pol II 6.45E-01 5.92E-01 4.79E-03 1.00E+00 1.00E+00 1.00E+00 3.88E-01 8.68E-01

RNA Pol III 8.44E-01 1.00E+00 3.95E-01 2.66E-01 1.00E+00 7.28E-02 8.48E-01 1.00E+00

SNARE 9.26E-01 1.14E-01 5.87E-01 7.94E-01 2.83E-01 4.73E-01 9.29E-01 6.11E-01

SWI-SNF 5.40E-01 9.04E-01 3.92E-01 9.33E-01 1.00E+00 7.73E-01 3.14E-01 7.92E-01

SRP 9.19E-02 7.47E-01 7.05E-01 1.00E+00 1.00E+00 6.26E-01 9.47E-02 1.00E+00

SCF 6.72E-01 6.43E-01 6.00E-01 1.00E+00 3.86E-01 1.00E+00 3.10E-02 1.00E+00

SRS 9.94E-01 2.00E-01 2.57E-01 9.33E-01 5.95E-01 9.93E-01 7.69E-03 1.67E-11

TAFIID 8.20E-01 3.18E-01 9.81E-01 5.05E-01 3.08E-01 1.00E+00 1.96E-01 4.49E-01

TRAPP 6.02E-01 8.73E-01 1.00E+00 7.41E-01 6.23E-01 1.00E+00 2.82E-01 1.00E+00

VHL 1.00E+00 1.00E+00 2.84E-01 1.00E+00 1.00E+00 1.00E+00 3.73E-01 1.00E+00

P values obtained with the expression peaks method in each time interval of the cell-cycle or with Pearson correlation coefficient throughout the 
cell-cycle. AP2, adaptor-related protein complex 2; APC, anaphase promoting complex; ARC, axin related complex; ATP_F0, ATP synthase, H+ 
transporting, mitochondrial F0 complex; ATP_F1, ATP synthase, H+ transporting, mitochondrial F1 complex; COX, cytochrome c oxidase; FA, focal 
adhesion; GTC, golgi transport complex; MSRS, mitochondrial small ribosomal subunit; ORC, origin recognition complex; PD, pyruvate 
dehydrogenase; RNA Pol II, RNA polymerase II; SRP, signal recognition particle; TRAPP, trafficking protein particle complex; VHL, von Hippel-Lindau 
complex.
Genome Biology 2007, 8:R256
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Thy datasets). Another remarkable difference with respect to
the Pearson-based method is that we never found complexes
with a p value ≥ 0.7.

The expression peaks method displays a higher 
sensitivity compared to Pearson correlation coefficient
To assess the quality of the expression peaks method in find-
ing co-regulated genes that encode interacting proteins, we
estimated false discovery rates (FDRs; see Materials and
methods, and Additional data file 2). We plotted the FDRs for
the Pearson correlation coefficient and the expression peaks

methods as a function of the Bonferroni corrected p value
(Figure 1). The results from the Thy-Noc dataset (Figure 1)
indicate an additional benefit of the expression peaks
method. Clearly, for each p value, the expression peaks
method displayed a smaller FDR than the Pearson method. In
particular, the p value that corresponds to a 10% FDR for the
expression peaks method (p = 0.1, that is, -log10(p value) = 1)
corresponds to a 30% FDR for the Pearson's method.

Furthermore, we also compared the sensitivity of the Pearson
and expression peaks methods (Figure 2). At a fixed FDR, the

Table 3

Percentage of synchronously peaking genes in the Thy-Noc dataset

Peaks of expression (% of peaking genes per complex)

Protein complex 2 h-0 h 4 h-2 h 6 h-4 h 8 h-6 h 10 h-8 h 12 h-10 h 14 h-12 h

AP2 50 25 25 0 25 25 50

ARC 80 0 0 80 0 60 0

Arp2-3 0 60 40 0 20 0 40

ATP_F0 0 10 10 20 10 0 80

ATP_F1 0 33 0 33 0 0 33

APC 50 25 25 38 13 13 63

COX 0 25 38 0 25 0 50

Centrosome 27 22 14 20 24 31 39

Dynactin 14 0 14 14 14 14 71

Exocyst 29 43 29 57 14 43 43

Exosome 20 20 40 0 0 0 60

FA 34 28 34 30 9 30 40

GTC 33 17 33 17 33 33 33

LRS 6 22 6 6 6 0 72

MLRS 22 27 24 22 27 11 62

MSRS 20 37 33 20 7 10 63

Nucleopore 37 33 37 13 3 27 60

Nucleosome 13 54 13 25 8 8 38

ORC 50 17 17 50 17 33 0

PD 29 14 57 29 14 29 29

Proteasome 30 9 30 9 13 0 87

RFC 50 0 50 50 50 25 0

RNA Pol II 30 30 70 0 0 0 40

RNA Pol III 20 0 40 40 0 60 20

SNARE 14 57 29 14 29 29 14

SWI-SNF 33 17 33 8 0 17 42

SRP 75 25 25 0 0 25 75

SCF 33 33 33 0 33 0 100

SRS 10 40 35 10 15 5 60

TAFIID 23 38 8 23 23 0 46

TRAPP 33 17 0 17 17 0 50

VHL 0 0 50 0 0 0 50

For each protein complex the percentage of its synchronously peaking genes in each time interval is reported. AP2, adaptor-related protein complex 
2; APC, anaphase promoting complex; ARC, axin related complex; ATP_F0, ATP synthase, H+ transporting, mitochondrial F0 complex; ATP_F1, 
ATP synthase, H+ transporting, mitochondrial F1 complex; COX, cytochrome c oxidase; FA, focal adhesion; GTC, golgi transport complex; MSRS, 
mitochondrial small ribosomal subunit; ORC, origin recognition complex; PD, pyruvate dehydrogenase; RNA Pol II, RNA polymerase II; SRP, signal 
recognition particle; TRAPP, trafficking protein particle complex; VHL, von Hippel-Lindau complex.
Genome Biology 2007, 8:R256
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number of identified real complexes using either of the two
methods was assessed. For the Thy-Thy datasets, with a low
FDR, the Pearson's coefficient had a higher sensitivity in
detecting high co-regulation among components of the same
complex, while the expression peaks method clearly per-
formed better across the different FDR ranges for the Thy-
Noc dataset and at high FDRs for the Thy-Thy datasets.

The Pearson's coefficient analysis and the expression peaks
method were also used to study protein complexes in addi-
tional time series datasets analyzing non-synchronized HeLa
cells subjected to several stresses [25]. Similar sensitivity for
both synchronized and non-synchronized cells were obtained
with the former method, while, as expected, the latter was
more powerful in analyzing synchronized cells. Figure 3 and
Additional data file 4 show the sensitivity of both methods for
non-synchronized cells.

PEGO: a web based computational tool that combines 
the expression peaks method with Gene Ontology 
annotations
To improve the ability of the expression peaks method to
identify new putative interactors of given genes, our approach
was combined with an extensive GO annotation analysis. We
developed a web based tool named PEGO (Peaks Expression
and Gene Ontology) [26] to provide public access to such an
analysis. PEGO selects two groups of genes; the first contains
all the genes that have the same expression peak pattern as
the input genes while the second includes all the genes with
the same GO categories as the input. The user can then inter-
sect the two sets of genes to identify the putative interacting
proteins in their input dataset. Moreover, the tool allows the
output data to be restricted, such as selecting preferred GO
annotation terms or isolating a given time point in the array
experiment [19,25]. In Additional data files 5-7 results are

shown that were obtained by querying PEGO with a list of
genes from a subset of the analyzed human complexes.

Generation of novel interaction candidates for PAK1
To test the predictive capability of our approach in detecting
novel protein interactions, PAK1 was selected as candidate for
study from the Thy-Noc dataset. PAK1 is a serine/threonine
kinase implicated in the control of a number of cellular activ-
ities, including regulation of adhesive and trafficking proc-
esses, apoptosis, cell-cycle, and cytoskeletal dynamics
[27,28]. We queried PEGO for PAK1 by using its ID [Entrez-
Gene:5058], Organelle organization and biogenesis
[GO:0006996] as the Biological process term and Cytoskele-
ton [GO:0005856] or Cytoplasm [GO:0005737] as the Cellu-
lar component term. According to this analysis, PAK1 was
associated with three peaks. The highest percentage of genes
with the same PAK1 GO annotation (Organelle organization
and biogenesis) peaked in the time interval 14 h-12 h. Among
them, 106 genes also displayed Cytoskeleton or Cytoplasm
GO annotation (Additional data file 8); 5 of these genes are
known interactors of PAK1 [29-33], 8 are similar to actin or
actin-binding proteins, 4 are tubulins or tubulin-related pro-
teins, 28 are proteins that localize also to the nucleus and 2
are involved in endocytosis. All these data largely match the
known roles of PAK1, including the F-actin binding activity
[28], the regulation of microtubule dynamics [34] and the
involvement in cellular trafficking [28,35,36].

Experimental validation
Using the described approach, α-tubulin and EEA1 were
selected as new interacting partners of PAK1 to be experimen-
tally validated in living mammalian cells. Using immunopre-
cipitation assays, we detected the physical interaction
between endogenous PAK1 and α-tubulin in HeLa cells (Fig-
ure 4, and Additional data file 9).

It is known that both PAK1 and EEA1 are involved in growth
factor stimulated [36,37] macropinocytosis [38] and that
PAK1 localizes to ruffling F-actin areas where
macropinosomes form [28,39,40]. Therefore, to investigate
the interaction between PAK1 and EEA1, murine embryo
fibroblasts (MEFs) were stimulated with platelet-derived
growth factor (PDGF) to produce F-actin ruffles [41,42].
Because there are no suitable antibodies for PAK-1 immun-
ofluorescence, the MEFs were transfected with PAK-green
fluorescent protein (GFP). Figure 5a-c shows the colocaliza-
tion of PAK-GFP with endogenous EEA1 in vesicle-like struc-
tures located in ruffling areas. A similar pattern was observed
also in MEFs transfected with PAK1-mRFP (data not shown)
to exclude any non-specific effect the fluorescent tag may
have on the colocalization.

To further demonstrate the direct interaction between PAK1
and EEA1, we screened a phage displayed peptide library with
the Cdc42/Rac interactive binding (CRIB) domain of PAK1
fused to the glutathione S-transferase (GST), in the presence

Comparison of the FDRs for the Pearson correlation coefficient (Prs) and expression peaks (Pks) methods as a function of p valueFigure 1
Comparison of the FDRs for the Pearson correlation coefficient (Prs) and 
expression peaks (Pks) methods as a function of p value. For the Thy-Noc 
HeLa cell-cycle dataset, estimated FDRs (y-axis) are reported as a function 
of the Bonferroni corrected p value (x-axis).
Genome Biology 2007, 8:R256
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of glutathione-derivatized sepharose beads. An increase in
phage binding over the negative control (GST/glutathione
beads) was observed after three rounds of selection. DNA
sequencing revealed the presence of a peptide insert corre-
sponding to amino acids 271-280 of EEA1 (Figure 5d). The
specificity of this peptide was confirmed by ELISA, where its
binding affinity was tested on GST-CRIB purified protein
compared to GST protein alone. Figure 5e shows that the
selected peptide had a specific affinity for GST-CRIB, sup-
porting the physical association between PAK1 and EEA1.

Discussion
Identification of protein complexes by in silico analysis 
of the expression profiles of human genes
In this work, we propose a new method to identify protein-
protein interactions using gene expression data. The ration-
ale behind our approach is the idea that a common transcrip-
tional program drives the formation of both transient and
permanent protein complexes in mammalian cells. It sug-
gests that a selected gene expression dataset may contain
useful information for de novo identification of protein
interactions.

Because the decay rates of individual mRNAs range from 15
minutes to 24 hours [43], we focused our analysis on gene co-
regulation in a single time interval to reduce noise. To asses
the performance of our method with respect to the standard
Pearson-based one we tested both of them with a set of 32
known complexes. To avoid problems due to multiple testing,
we evaluated FDRs by comparing our results with those of
thousands of randomly chosen sets of genes.

The main result of our analysis is that the study of synchro-
nous peaks of expression can successfully complement the
standard Pearson-based analysis of expression data. While
Pearson-based methods are more effective in the identifica-
tion of permanent interactions, our method is particularly
suited for transient interactions. This observation suggests
that it is best to use a combination of Pearson's and
expression peak analyses for computational evaluation of
protein complexes.

The higher sensitivity of the expression peaks method for
transient complexes seems to be connected with its ability to
detect quantitatively modest but functionally important
changes in gene expression, which would otherwise be
missed, especially in non-synchronized cell populations.
With Pearson's analysis, a high statistical significance is

Figure 2

(c)

(b)

(a) Comparison of sensitivity for the Pearson correlation coefficient (Prs) and expression peaks (Pks) methodsFigure 2
Comparison of sensitivity for the Pearson correlation coefficient (Prs) and 
expression peaks (Pks) methods. The number of complexes with best p 
value equal to or lower than the corresponding one on the x-axis is 
plotted for each HeLa cell-cycle dataset at a fixed FDR: (a) Thy-Thy2; (b) 
Thy-Thy3; (c) Thy-Noc.
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obtained only for a small subset of complexes. In contrast, the
expression peaks method gives statistically significant results
for a greater number of complexes, although with higher p
values than the Pearson's method.

Another important observation is that the expression peaks
method performs better for well synchronized datasets (that
is, the Thy-Noc treatment). On the basis of our methodologi-
cal assumptions (that is, the half-life of mRNA [43]), this is
not surprising as it restricts the application of this method to
highly selected datasets. However, the current technical
efforts to improve cell synchronization will extend the
reliability of the expression peaks method to a larger number
of gene expression datasets.

Improvement of the expression peaks method by Gene 
Ontology analysis
The analysis of co-regulation during only a single time point
increases the sensitivity of the expression peaks method, but
also increases the noise. We therefore combined this method
with GO analysis and found that this association reduced the
number of false positives generated by the exclusive use of the
expression peaks method. Combining both analyses reduced
the number of potential candidate interactors to a few dozen
while the output lists obtained by using either one of these
approaches alone contained up to a thousand genes
(Additional data file 6). A similar improvement was also
recently observed by Corà et al. [44], who successfully com-
bined GO and gene expression analyses in HeLa cell-cycle
datasets to extract putative co-regulated genes for the identi-
fication of candidate transcription factor binding sites.

It is worthwhile to note that in several cases not all genes of
the same complex were strictly co-regulated (Table 3, and
Additional data file 3). This represents an intrinsic limitation

Figure 3

(a)

(c)

(b)

Non-synchronized HeLa cellsFigure 3
Non-synchronized HeLa cells. The number of complexes with a best p 
value equal to or lower than the corresponding one on the x-axis is 
plotted for three non-synchronized and stressed HeLa datasets at a fixed 
FDR: (a) dithiothreitol (DTT); (b) heat shock; (c) tunicamycin.

PAK1 physically interacts with α-tubulinFigure 4
PAK1 physically interacts with α-tubulin. HeLa cell lysate was 
immunoprecipitated with anti-PAK1 antibody and blotted with anti-α-
tubulin antibody. The figure is representative of three experiments 
obtained with similar results.

IP Total Rabbit
PAK1 lysate serum

WB: PAK1

WB: -tubulinα
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of any approach based on gene expression data to identify
protein interaction. Of course, subcellular localization, and
post-transcriptional and post-translational modifications
also play a key role in the assembly of both permanent and
transient complexes [45-48]. Thus, the addition of further
information, such as post-translational modifications, could
greatly improve the quality of the results, an approach we
plan to use in the future.

PEGO public software
To enable researchers to test our computational approach, we
implemented our pipeline as a web-based, publicly available
tool named PEGO [26], which we have queried to identify
new protein interactions that we validated experimentally. It
is interesting to observe that the PEGO outputs contained
additional interacting partners whose genes were not
included in our query list. For instance, in the case of the dyn-
actin complex (Additional data file 6c) five new candidates
emerged, and two of these, that is, non-erythrocytic spectrins,
turned out to be previously characterized interactors of the
dynactin complex [49,50] (data not shown). While this result
confirms the capability of our method to detect functional
units, PEGO may actually be applied to a broader class of data
types, in particular, to groups of genes without any known
and obvious relationship. For example, one could analyze a
list of genes that, if silenced, produce the same phenotype and
use PEGO to detect any interactions among those candidates.
Thus, unlike starting with a list of genes that have similar GO
annotation, this approach excludes any prior bias for detec-
tion of protein-protein interactions. However, after a list of
potential interactors has been generated, further GO analysis
will increase the likelihood of detecting new complexes.

Discovery of new interactors of PAK1 by combining 
PEGO with 'wet' biological experiments
The potential of PEGO has been confirmed by 'wet' biological
experiments testing the in silico results obtained by submit-
ting PAK1, as a single gene. We selected PAK1 due to our
interest in cytoskeleton dynamics in vascular cells. PAK1
relates best to the GO biological process 'Organelle organiza-
tion and biogenesis', because this category includes both
cytoskeleton- and vesicular-related functions that fit well
with the subcellular localization of PAK1 in living cells (data
not shown). Among the three expression peaks of PAK1 in the
Thy-Noc dataset, we selected the 14 h-12 h one because a high
percentage of 'Organelle organization and biogenesis' anno-

tated genes peaked there, thus suggesting a novel intriguing
role of PAK1 in this process.

PEGO indicated a list of genes to be considered as potential
new interactors of PAK1. In light of the PAK1-related litera-
ture, we evaluated α-tubulin and EEA1 as potential interac-
tors to be experimentally confirmed. Previous work showed a
co-localization of microtubules and PAK1 [51] and identified
tubulin cofactor B (a cofactor associating with α- and β-tubu-
lin) as an interacting substrate of PAK1 [34]. These data hint
at an interaction between PAK1 and α-tubulin, although no
experimental evidence has been obtained for this. We there-
fore used immunoprecipitation experiments in HeLa cells to
demonstrate the physical interaction between PAK1 and α-
tubulin supporting the immunofluorescence co-localization
data previously reported [34].

The PAK1- EEA1 interaction, however, has not been reported
before, and it represents a novel finding highlighting the
potential of PEGO to predict unknown protein-protein inter-
actions. Interestingly, we observed that PAK1 and EEA1 co-
localize at sites resembling large vesicular structures. This
hypothesis is supported by Dharmawardane et al. [36], who
described the formation of large macropinocytic vesicles
lined by PAK1 in PDGF-stimulated cells. Although the co-
localization at these sites suggested a functional relationship
between PAK1 and EEA1, the small amounts of overlayed pro-
teins were not sufficient to test their physical interaction by
immunoprecipitation. To overcome this technical problem,
we screened a phage library to find specific peptides able to
bind the CRIB domain of PAK1. Besides binding the small
GTPases Cdc42 and Rac1, which trigger the catalytic activity
of PAK1, the CRIB domain is also known to bind other
transducers [22]. The selection of a peptide encompassing an
amino acid region of EEA1 (Figure 5d) clearly showed that the
observed co-localization in immunofluorescence studies
between EEA1 and PAK1 indeed reflects a true interaction.

Future perspectives
Our statistical approach to identify protein complexes could
be improved by taking into account a greater number of
microarray gene expression data obtained by in vitro experi-
ments performed on specific models of cell activation. The
same approach applied to in vivo animal models should also
allow the discrimination of changes in a putative complex
caused by the tissue microenvironment or during develop-

Experimental evidence for the interaction of PAK1 with EEA1Figure 5 (see following page)
Experimental evidence for the interaction of PAK1 with EEA1. Confocal analysis of the cross section (a) and the vertical section (c) of PDGF-induced MEF 
cell reveals that endogenous EEA1 colocalized (yellow) with PAK1-GFP. (b) Quantification of the colocalization where the x-axis represents the white line 
in the inset (rotated -90° compared to (a)) and the y-axis represents the fluorescence intensity. The first peak of intensity in both channels indicates that 
PAK1 (green) and EEA1 (red) were enriched at the same site. (d) Sequence matching (computed with the multiple sequence alignment program ClustalW) 
obtained for the phage-display selected peptide QLRSEGPF and the aminoacidic sequence of EEA1. (e) Binding of the selected peptide (QLRSEGPF) to 
GST-CRIB and the negative control performed with GST alone. Binding of the insertless phage was tested with either GST or GST-CRIB, which showed 
no differences in affinity. The y-axis represents the absorbance (OD 450 nm). Results are the mean of triplicate experiments.
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Figure 5 (see legend on previous page)
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ment. More interestingly, the comparison of microarray data
obtained before and after silencing a specific gene by small
RNA interference could allow the identification of new
protein complexes and not just simply the identification of
new interacting partners.

Finally, a further and relevant progression of our expression
peaks method would be the inclusion of other information
besides GO to reduce the number of false positives. This could
include sequence analysis, evolutionary data or the use of the
same experimental design to generate expression data from
different animal species.

Conclusion
We have presented a computational methodology to statisti-
cally analyze gene expression of several known human multi-
protein complexes in a single time interval. With the obtained
results we developed an approach to explore novel protein
interactions by studying synchronously peaking genes with
similar GO annotations from microarray datasets. By apply-
ing our method to PAK1, we found five previously known
interactors, confirming the validity of our approach. Next, we
validated the predicted interactions with two other proteins,
α-tubulin and EEA1.

On the basis of these results, we would like to encourage
researchers to use PEGO for their proteins of interest as an
additional selection screen for the identification of potential
interacting candidates to be experimentally validated.

Materials and methods
Microarray data
We studied HeLa cell time series [19,25] from the Stanford
Microarray Database [24]. The analysis was performed for
every dataset separately to evaluate gene expression strictly
related to specific cellular conditions. Datasets were normal-
ized such that the Euclidean norm of each expression profile
was 1 and the average was 0. To evaluate changes in expres-
sion level at each step during the cell cycle, for each clone, we
built a new expression vector containing differences of
expression values computed between two consecutive time
points. Since the HeLa cell-cycle datasets were published in
2002, we associated with all IMAGE clones new Entrez Gene
IDs according to UniGene database version 183 [52], and we
excluded from our analysis: clones with an ID different from
the IMAGE ID or all numerical IDs; clones with more than
one associated Entrez Gene ID; clones whose expression,
measured as the log ratio between Cy5 (synchronous cells)
and Cy3 (reference sample) channels, varied between -0.2
and +0.2.

Human multi-protein complexes data set
The analyzed data set was composed of 32 permanent and
transient protein complexes, in which interactions among dif-

ferent components are or are not maintained, respectively
[14]. Complexes were selected from the following sources: the
KEGG database [53] for SRS, large ribosomal subunit (LRS),
proteasome, anaphase promoting complex, von hippel-lindau
complex, SCF, signal recognition particle, RNA polymerase
II, RNA polymerase III, and TAFIID; NCBI [54] for traffick-
ing protein particle complex, nucleopore, mitochondrial
small ribosomal subunit, MLRS, adaptor-related protein
complex 2, origin recognition complex, pyruvate dehydroge-
nase, ATP synthase, H+ transporting, mitochondrial F0 com-
plex, ATP synthase, H+ transporting, mitochondrial F1
complex, and SNARE complex; literature for nucleosome
[19], focal adhesion [55], centrosome [56], dynactin [57],
Arp2/3 [58], exosome [59], exocyst [60], axin-related com-
plex (ARC) [61], SWI/SNF [62], cytochrome c oxidase [63],
RFC [64], and golgi transport complex [65]. To each protein
the corresponding Entrez Gene ID was assigned according to
UniGene database, version 183 [52] (Additional data files 10
and 11).

Analysis of multi-protein complexes by Pearson 
coefficient
We evaluated the gene expression correlation between clone
ID pairs of genes using the Pearson Coefficient, r:

where (x1...xn) is the expression profile vector of clone x,
(y1...yn) is the expression profile vector of clone y, n is the
number of time points in the analyzed dataset:

and r is the normalized scalar product of two vectors with its
value being in the range [-1, +1].

From the cumulative distribution of all the Pearson coeffi-
cients, we extracted the pairs of 'highly correlated' clones set-
ting a threshold, Pcutoff, having at its right 1% of the
distribution. To define the number of highly correlated genes
in each protein complex, we counted pairs containing both
clone IDs corresponding to genes (according to their Entrez
Gene ID) of the same complex. Pairs that appeared more than
one time were counted only once and pairs containing single
gene information (both clone IDs with the same Entrez Gene
ID) were excluded. The probability that the number of gene
pairs for each complex was recovered by chance was evalu-
ated using the hypergeometric distribution:
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where the index c runs over all the complexes we studied, N is
the number of all gene pairs in the dataset, M is the number
of genes pairs with r above Pcutoff, nc is the number of all gene
pairs in the analyzed complex, c, fc is the number of gene pairs
in complex c, with r above 1% Pcutoff.

To evaluate if a different threshold of the Pearson coefficient
could be useful to extract a larger and statistically significant
number of highly correlated gene pairs for protein complexes,
we performed Pearson analysis as described above with dif-
ferent Pcutoff. We found essentially no dependence of results
on Pcutoff and, therefore, used the standard value of 1% of the
right tail of the Pearson coefficient distribution as threshold
(data not shown).

False discovery rate for Pearson coefficient analysis
We estimated a FDR for each p value, Pc, by estimating the
probability that the result obtained is a false positive. We per-
formed 3,000 randomization cycles. For each cycle we
generated a set composed of the same number of genes per
complex as those analyzed, but randomly selected from the
dataset. For each random set we calculated its p values, p, as
described above. Then, we counted the number of real com-
plexes, n(p"), or random complexes, r(p") with a p value bet-
ter than p". In the random case we computed the average
number over all the randomizations. For each p" we defined
the FDR as:

Complexes composed of less than three components (that is,
with a number of genes lower than three in the analyzed data-
set) were not considered.

Definition of expression peak
We defined a threshold on computed differences of gene
expression between consecutive time points, indicating the
value over which the increase of gene expression has to be
considered an expression peak. Since we worked on datasets
with time intervals of different lengths (one hour for the Thy-
Thy datasets or two hours for the Thy-Noc dataset) and
number, for each dataset separately, we analyzed the distri-
bution of all computed differences and we selected that value
that has at its right 20% of the distribution.

According to different stoichiometric features of protein com-
plexes, the transcriptional machinery may produce different
amounts of specific transcripts. Actually, the stoichiometric
ratios of most complexes are still unknown [66,67]. To tackle

this problem by a computational method, we changed all
expression values to a binary 1-0 system [68]. Therefore, a
new dataset matrix was generated where we substituted dif-
ferences with '1' if corresponding to a peak of expression, or
with '0' otherwise.

In order to test the dependence of our results on the 20%
threshold, we performed expression peaks analysis on pro-
tein complexes using different thresholds and then compared
the corresponding distributions of best p values. The results
turned out to be largely independent from the chosen thresh-
old, thus showing that our results are not biased by our
threshold choice (data not shown).

Definition of expression peak at gene level
To apply our method of analysis to a single gene of interest
using the PEGO tool, for each gene a single pattern of peaks
along the cell cycle was assigned, grouping data for clones
annotated to the same Entrez Gene ID. First, we defined the
maximum number of peaks, m, that could be associated with
each gene by assuming that each clone has a single significant
peak of expression, and we then evaluated m as the mean
number of clones per gene considering all genes in the data-
set. For each gene, in every interval, we summed the differ-
ences in expression levels of all its clones to obtain a single
value and we selected only the m higher sums. By computing
the sum, the noise due to the discrepancy among values of
clones of the same gene was eliminated. Finally, to rebuild the
1-0 matrix, we transformed each of the m sums into '1', peak
of expression, if it was large enough compared to the distribu-
tion of all differences in expression level computed for clones
in the dataset (that is, if the value falls in the 20% tail of the
distribution). All other values were replaced with '0'.

Analysis of multi-protein complexes by the expression 
peaks method
To define synchronous peaks of expression, for each complex,
c, in each interval, i, we counted the number of peaking genes,
fic. Then we evaluated the probability, Pic, to obtain fic by
chance through the hypergeometric distribution:

where N is the number of genes in the analyzed dataset, Mi is
the number of genes in the analyzed dataset that peak in a
selected interval I, nc is the number of genes of a selected pro-
tein complex c in the analyzed dataset, and fic is the number of
genes of the selected protein complex c that peak in i. Pic rep-
resents the probability to obtain by chance at least fic peaking
genes, selecting randomly in the dataset a number of genes
equal to that of the analyzed protein complex.
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In order to compare (Figure 1) this definition of p value with
that introduced in the previous section for the Pearson's
method, the present p value has to be corrected for multiple
testing. The standard Bonferroni procedure was performed
by multiplying for the number of tested intervals (seven in the
Thy-Noc dataset).

False discovery rate for the expression peaks method
In order to estimate the FDR, we calculated for each random
complex (generated as described for the Pearson method) the
p value as discussed in the previous section and we counted
the number of complexes, both in the real, n(p"), and in the
random, r(p"), cases, that had a time interval with the best p
value better than p". For random complexes, we considered
the average number r(p") computed over all randomizations.
For each p" we defined the FDR according to equation 3.

Immunoprecipitation assay
Quiescent HeLa cells were harvested from plates by addition
of 500 μl ice-cold lysis buffer containing 1% Triton X-100/100
mm dish. The cell lysates were pre-cleared with pre-immune
rabbit serum and 50% (v/v) protein G-Sepharose (Amersham
Biosciences, Piscataway, NJ, USA) for 2 h at 4°C and were
then incubated with 50% (v/v) protein G-Sepharose and anti-
PAK1 (rabbit polyclonal; Cell Signaling Technology, Beverly,
MA, USA) for 2 h at 4°C. The immunoprecipitates were
recovered and washed three times with lysis buffer. The
washed immunoprecipitates were resuspended in 25 μl 2×
Laemli sample buffer and analyzed by SDS-PAGE and west-
ern blotting using anti-α-tubulin (mouse monoclonal, clone
B-5-1-2, Sigma) and anti-PAK1.

Confocal analysis
MEFs were transfected (Fugene, Roche, Basel, Switzerland)
with either PAK1-GFP (a gift from Dr G Bokoch, The Scripps
Research Institute, La Jolla, California) or PAK1 tagged with
the monomeric red fluorescent protein, PAK1-mRFP, (Addi-
tional data file 12). Twenty-four hours after transfection, cells
were incubated in DMEM 0.5 % fetal bovine serum for 7
hours and then stimulated with PDGF for 6 minutes. Subse-
quently, cells were fixed with 3.7% para-formaldheyde and
permeabilized with 0.01% saponin (Sigma, St. Louis, MO,
USA). Cells were incubated with goat anti-EEA1 antibody
(Santa Cruz, Biotechnology, Santa Cruz, CA, USA) and then
with rabbit anti-goat Alexa 555 (Invitrogen Molecular Probes,
Carlsbad, CA, USA). F-actin was stained by phalloidin Alexa
633 (Invitrogen, Carlsbad, CA, USA). Images were acquired
with a Leica DMIRE2 confocal microscope and the analysis
was performed with Leica Confocal software.

Phage-display analysis
We pre-adsorbed 1010 transducing units (TU) of a CX7C (C,
cysteine; X, any amino acid residue) phage display random
library on GST in the presence of glutathione-sepahrose
beads in Iscove's Modified Dulbecco's Medium, IMDM, 2%
fetal calf serum (binding medium), for 1 hour at room temper-

ature. The pre-cleared phage library was then incubated with
GST-fused PAK1 CRIB domain [69] in the presence of glu-
tathione-sepharose beads in binding medium for 1 hour at
room temperature. After five washes, bound phage were
recovered and amplified by infection of exponentially grow-
ing K91Kan Escherichia coli. Serial dilutions were plated on
LB agar plates with tetracycline and kanamycin. The numbers
of TU were determined by bacterial colony counting [70,71].

Peptide analysis and validation
After three rounds of selection, 20 phage clones were selected
from each experiment, and the displayed peptides were
deduced by sequencing the exogenous oligonucleotide
inserts. For sequencing, we used the following primer: 5'-
CCCTCATAGTTAGCGTAACG-3'. Sequence homologies were
evaluated by searching non-redundant human protein data-
bases (Additional data file 12).

The binding specificity of the selected peptides was evaluated
by ELISA. Wells of a 96-well plate were coated with 1 μg of
either GST or CRIB-GST in phosphate-buffered saline. We
incubated 108 TU of each clone per well in binding medium
for 1 hour at room temperature. After ten washes in the same
medium, bound phage was stained with an anti-M13 antibody
(anti-M13 bacteriophage; Sigma), detected by a secondary
anti-mouse horseradish peroxidase-conjugated monoclonal
antibody and quantified using the 1-Step Turbo TMB-ELISA
kit (Pierce, Rockford, IL, USA).

Abbreviations
CRIB, Cdc42/Rac interactive binding; GO, gene ontology;
EEA, early endosome antigen; FDR, false discovery rate; GFP,
green fluorescent protein; GST, glutathione S-transferase;
LRS, large ribosomal subunit; MEF, murine embryo fibro-
blast; MLRS, mitochondrial large ribosomal subunit; PAK,
p21-activated kinase; PDGF, platelet-derived growth factor;
PEGO, Peaks Expression and Gene Ontology; RFC, replica-
tion complex; SCF, skp1-cull-F-box complex; SRS, small
ribosomal subunit; Thy-Noc, thymidine-nocodazole synchro-
nized cell dataset; Thy-Thy2, thymidine-thymidine
synchronized cell dataset 2; Thy-Thy3, thymidine-thymidine
synchronized cell dataset 3; TU, transducing units.

Authors' contributions
SZ conceived the study, designed and coordinated it, per-
formed PAK1-related analysis and experiments and drafted
the manuscript. IC conceived the study, was involved in its
initial coordination and design, performed phage-display
peptide analysis and helped to draft the manuscript. CP per-
formed the statistical analysis. IM performed the statistical
analysis and developed the web based PEGO. SM performed
phage-display experiments and helped to draft the manu-
script. MC participated in the design of the project and coor-
dination of the statistical analysis and helped to draft the
Genome Biology 2007, 8:R256



http://genomebiology.com/2007/8/12/R256 Genome Biology 2007,     Volume 8, Issue 12, Article R256       Zanivan et al. R256.14
manuscript. FB participated in the design of the project and
coordination of the biological part and helped to draft the
manuscript. All authors read and approved the final
manuscript.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing p
values obtained from analyzing the Thy-Thy datasets with the
expression peaks method or with Pearson correlation coeffi-
cient throughout the cell-cycle. Additional data file 2 is a table
listing the FDR for each protein complex. Additional data file
3 is a table listing the percentages of synchronously peaking
genes in the Thy-Thy2 and Thy-Thy3 datasets. Additional
data file 4 is a plot representing the number of complexes with
a best p value equal to or lower than the corresponding one on
the x-axis for three non-synchronized and stressed HeLa
datasets at a fixed FDR. Additional data file 5 is a table listing
GO term and time interval with best p value for a subset of the
human protein complexes analyzed with PEGO. Additional
data file 6 is a table listing the number of recovered compo-
nents for a subset of the human protein complexes analyzed
with PEGO. Additional data file 7 is a table listing the GO
analysis results for a subset of the human protein complexes
analyzed with PEGO. Additional data file 8 is a table listing
the selected interaction candidates for PAK1. Additional data
file 9 is an image showing the specificity of anti-PAK1 and anti
α-tubulin antibodies. Additional data file 10 is a table listing
Entrez Gene IDs of all components of each protein complex
analyzed. Additional data file 11 is a table listing the IMAGE
IDs for each component of the analyzed protein complexes.
Additional data file 12 contains supplemental materials and
methods.
Additional data file 1P values for Thy-Thy datasetsP values obtained with the expression peaks method in each time interval of the cell-cycle or with Pearson correlation coefficient throughout the cell-cycle (Cell-cycle column). (a) Thy-Thy2; (b) Thy-Thy3.Click here for fileAdditional data file 2False discovery rates for protein complexes(a, d) Thy-Thy2 dataset; (b, e) Thy-Thy3 dataset; (c, f) Thy-Noc dataset. ND, not defined.Click here for fileAdditional data file 3Percentage of synchronously peaking genes in Thy-Thy datasetsFor each protein complex, the percentage of its synchronously peaking genes in each time interval is reported. (a) Thy-Thy2; (b) Thy-Thy3.Click here for fileAdditional data file 4Non-synchronized HeLa cells upon stress stimulation: crowding, H2O2, menadioneThe number of complexes with a best p value equal to or lower than the corresponding one on the x-axis for three non-synchronized and stressed HeLa datasets at a fixed FDR. (a) Crowding; (b) H2O2; (c) menadione.Click here for fileAdditional data file 5GO term and time interval with best p value for PEGO queriesA subset of the human protein complexes was analyzed with PEGO. For each protein complex, the GO Biological process term(s), G, and the time interval, T, if present, are indicated, displaying best p value lower than 0.05 after statistical analysis by means of hyper-geometric distribution (Table 2, and Additional data files 1 and 7). These are the input parameters used to obtain Additional data file 6. (a) Thy-Thy2; (b) Thy-Thy3; (c) Thy-Noc. An asterisk indicates that the p value for the expression peak was between 0.1 and 0.05.Click here for fileAdditional data file 6Recovery of protein complexes after querying Thy-Thy2, Thy-Thy3 or Thy-Noc datasets by PEGOTime interval (T) with best p value and GO Biological process term (G) with best p value were used to query PEGO (Additional data file 5). T genes, number of genes in the dataset with expression peak in T; G genes, number of genes in the dataset annotated at G; I genes, number of genes in the dataset with expression peak in T and GO G; T complex genes, number of genes of the protein complex with expression peak in T; G complex genes, number of genes of the pro-tein complex with GO G; I complex genes, number of genes of the protein complex with expression peak in T and GO G; T % complex genes, (T complex genes/T genes) × 100; G % complex genes, (G complex genes/G genes) × 100; I % complex genes, I complex genes/I genes) × 100; % complex genes, percentage of genes of the protein complex with expression peak in T and GO G. An asterisk indicates that the p value for the expression peak is between 0.1 and 0.05. (a) Thy-Thy2; (b) Thy-Thy3; (c) Thy-Noc.Click here for fileAdditional data file 7GO analysis of human protein complexes using the PEGO softwareThe first column lists the complexes (the same as analyzed in Addi-tional data file 5), and the second, third and fourth columns provide information on the ontology and GO category. In the following four columns we report the input information for p value evaluation using the hypergeometric distribution (Additional data file 12) and in the last column the corresponding p values. Only GO terms with a p value with exponent lower or equal to E-05 are reported. (a) Thy-Thy2; (b) Thy-Thy3; (c) Thy-Noc.Click here for fileAdditional data file 8Selected interaction candidates for PAK1Text: List of genes with an expression peak at the 14 h-12 h interval in the Thy-Noc dataset and annotated as Organelle organization and biogenesis [GO:0006996] for the Biological process term and as Cytoskeleton [GO:0005856] or Cytoplasm [GO:0005737] for the Cellular component term.Click here for fileAdditional data file 9Specificity of anti-PAK1 and anti α-tubulin antibodiesImages show a broader molecular weight range of the blots in Fig-ure 4. (a) HeLa cell lysate was immunoprecipitated with anti-PAK1 antibody or rabbit serum and blotted with anti α-tubulin antibody. (b) HeLa cell lysate blotted with anti-PAK1 antibody. The time exposure of (b) is higher than in Figure 4 to better evaluate the spe-cificity of the antibody.Click here for fileAdditional data file 10Human protein complex compositionEntrez Gene IDs of all components of each protein complex analyzed.Click here for fileAdditional data file 11Components of analyzed human protein complexFor each gene, indicated by its Entrez Gene ID, the corresponding IMAGE IDs present in each dataset is reported. (a) Thy-Thy2; (b) Thy-Thy3; (c) Thy-Noc.Click here for fileAdditional data file 12Supplemental Materials and methodsSupplemental Materials and methods.Click here for file
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