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Abstract

Background: Predicting the phenotypic effects of mutations is a central goal of genetics research;
it has important applications in elucidating how genotype determines phenotype and in identifying

human disease genes.

Results: Using a wide range of functional genomic data from the yeast Saccharomyces cerevisiae, we
show that the best predictor of a protein's knockout phenotype is the knockout phenotype of
other proteins that are present in a protein complex with it. Even the addition of multiple datasets
does not improve upon the predictions made from protein complex membership. Similarly, we find
that a proxy for protein complexes is a powerful predictor of disease phenotypes in humans.

Conclusion: We propose that identifying human protein complexes containing known disease
genes will be an efficient method for large-scale disease gene discovery, and that yeast may prove
to be an informative model system for investigating, and even predicting, the genetic basis of both

Mendelian and complex disease phenotypes.

Background

Since the advent of genetic mapping, the approximate
genomic locations of the polymorphisms that cause thou-
sands of human phenotypes have been reported. As compiled
by the Online Mendelian Inheritance in Man (OMIM) data-
base, more than 1,500 human genes have been found to be
associated with over 3,000 disorders [1]. This impressive
level of success is tempered by the fact that more than 1,000
disorders have been mapped to a genomic region, but the
underlying 'disease gene' has not yet been identified for these
disorders [1]. Although some fraction of these 1,000 loci are
surely false positives, the statistical significance associated

with them indicates that most are likely to contain true Men-
delian disease genes that have yet to be pinpointed.

This set of mapped disease loci represents an exciting oppor-
tunity for rapid advancement in our understanding of human
disease genetics. Any method that can generate high-confi-
dence predictions for which genes within the mapped regions
are responsible for the diseases in question would be an
important step forward. Indeed, some such methods were
recently proposed, for example genomic screens for mito-
chondria-related genes identified several candidate disease
genes for mitochondrial disorders [2,3].
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Another route to gaining insights into a particular disease is
to study a model of the disease in a nonhuman organism.
Such models, if they are faithful reproductions of a specific
human disease, can be informative by revealing aspects of the
function of both wild-type and mutant versions of the disease
gene (or its ortholog in the model organism) and by providing
a testing ground for potential therapies. The mouse has been
a particularly useful model in this regard. In general, the
more diverged a model organism is from human, the more
difficult it is to create an accurate model of a human disease;
more deeply divergent lineages are less likely to have human
disease gene orthologs, and they are also less likely to have a
phenotype similar enough to humans to allow detailed study
of a particular disease phenotype.

It is unfortunate that most diseases cannot accurately be
modeled in species such as the bacterium Escherichia coli or
the budding yeast Saccharomyces cerevisise, considering the
ease of growing, storing, manipulating, and studying these
organisms. Indeed, largely because of the simplicity of genetic
manipulation in yeast, more functional genomic data have
been generated for this species than for any other. For most
genes/proteins, the mRNA expression level is known in thou-
sands of conditions, as are the protein subcellular localiza-
tion, the mRNA and protein decay rate, the mRNA translation
rate, the protein abundance, the growth rates of systematic
knockout strains across many conditions, a substantial frac-
tion of the physical and genetic interactions, and much more.

Despite the vast amount of published functional genomic
data, yeast and other unicellular organisms generally lack a
morphologic phenotype rich enough to allow for detailed phe-
notypic descriptions based on a single growth condition. For
example, even though different yeast strains may have dis-
tinct differences in their size, shape, and growth rate, in gen-
eral very little information can be gleaned about a gene's
knockout phenotype by observing growing cells in a single
environment. However, if multiple environments are utilized
in defining the phenotype, then even just one characteristic
(such as growth rate) can be used to describe the phenotype
with greater specificity, limited only by the diversity of envi-
ronments tested. The description of a phenotype is simply a
list of growth rates (or other measured characteristics) in all
conditions tested, and two genes can be said to cause the same
knockout phenotype if strains deleted for each gene exhibit
similar growth rates across all tested environments. It is
worth noting that this definition of phenotype is analogous to
human disease, because any disease is simply a specific phe-
notype of lowered fitness in some set of environments.

The concept of identifying genes whose mutation or deletion
leads to similar phenotypes is by no means novel. Indeed,
much of classical genetics is based on this idea. Since the
development of nearly comprehensive gene knockout or RNA
interference knockdown resources in yeast, Caenorhabditis
elegans, and Drosophila melanogaster, many researchers
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have systematically measured various phenotypes and identi-
fied clusters of genes with similar phenotypic profiles across
a set of conditions [4-6].

Given such a phenotypic profile, we can ask what other types
of data best predict 'phenotype pairs', that is, pairs of genes
whose loss leads to similar phenotypic profiles. If we could
identify an effective predictor of phenotype pairs, and if the
predictor is sufficiently generic to apply to other species, then
this predictor may be useful for elucidating human disease
phenotypes as well. If this predictor has been measured for at
least some human gene pairs, then it could then be used to
predict human disease genes simply by searching the genome
for gene pairs that score highly and for which one of the two
genes is a known disease gene. For example, if co-expressed
genes in yeast were found to be the best predictor of pheno-
type pairs, then it stands to reason that co-expressed human
genes may also lead to the same phenotype when mutated. If
so, then identifying all genes that are co-expressed with a
known disease gene would give a list of candidates for addi-
tional genes that cause the same disease. By combining the
candidate list with mapped but unidentified disease genes,
more confidence could be given to candidate genes that fall
within the mapped susceptibility loci. In this manner, genes
that are likely to be responsible for any type of disease could
be identified, as long as the disease has at least one known
causative gene. Others have previously used physical interac-
tions between proteins or multiple gene-ranking algorithms
to predict new disease genes from within mapped susceptibil-
ity loci [7-9]. However, because the functional genomic data
for humans is currently rather sparse (compared with what is
available for some model organisms), it remains to be seen
whether some type of data not yet explored in humans could
be even more predictive of human disease genes.

To discover what predictor(s) might be the most effective in
human, we turned to yeast as a model. We reasoned that if
quantitative phenotypes can be studied in yeast, then the vast
amount of functional genomic data available could be used to
predict the phenotypic effects of gene mutations or deletions.
Here, we utilize a general framework for studying phenotypes
to find what types of data are predictive of phenotypes in
yeast; we then apply this framework to human disease
phenotypes.

Results

Protein complexes as predictors of phenotype

Several groups have noted that subunits of the same protein
complex tend to have similar knockout/knockdown pheno-
types in both yeast and C. elegans [4,5,10]. However, other
potential predictors of phenotype pairs were not compared
with protein complexes, so from these studies it is not possi-
ble to conclude what type of information is the best available
predictor.
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To address this issue, we utilized the most comprehensive
phenotypic profiling dataset published to date: quantitative
growth rates of the yeast haploid deletion collection, includ-
ing more than 4,200 strains, in 82 diverse conditions [6]. The
conditions include seven crude antifungal extracts, 23 US
Food and Drug Administration approved drugs, and more
than 50 other synthetic compounds. The original authors did
not attempt to test any predictors of phenotypic profile simi-
larity. In this dataset, we defined a 'phenotype pair' as a pair
of genes whose knockout strains have growth rate correlation
coefficient r > 0.8 across all 82 conditions. This definition
resulted in approximately one phenotype pair for every 4,000
pairs of genes.

We compiled a list of 20 potential predictors of phenotype
pairs in yeast. The list included genetic interactions compiled
from the literature [11]; pairs of genes sharing a Pfam [12]
protein domain or bound by the same transcription factor
[13]; mRNA co-expression at several correlation cut-offs
using a large compendium of expression profiles [14]; protein
co-localization measured with a collection of green fluores-
cent protein tagged strains [15]; co-citation in the literature
[16]; similar phylogenetic profiles (that is, pattern of ortholog
presence and absence across species) [16]; all known yeast
metabolic pathways [17]; several datasets of physical interac-
tions and protein complexes, either from high-throughput
(HTP) screens or from the literature [10,11,18,19], and two
published classifications of gene 'modules’ or functional rela-
tionships defined using multiple data sources [16,20].

We then devised a test to use each of these data types as a sep-
arate predictor of phenotype pairs. We did not wish the test to
penalize data types that cover fewer pairs of genes than others
(for example, most gene pairs have not been tested for genetic
interactions, so this data type has low coverage); therefore,
our metric of predictive success was simply the enrichment
for phenotype pairs within the set of gene pairs satisfying the
criterion used. For example, gene pairs in the same metabolic
pathway form one set of predictions; another set consists of
genes co-expressed with correlation coefficient r > 0.3 in our
expression compendium. The enrichment within that set is
the number of phenotype pairs found within that set, divided
by the number expected by chance. Enrichments greater than
one indicate more predictive power than random.

Testing the enrichment for all 20 predictors, we found a strik-
ing pattern (Figure 1a); whereas 19 of the predictors gave at
least a twofold enrichment for phenotype pairs over the ran-
dom expectation (P < 10 for all 19), some yielded much
greater enrichments than others. The three datasets with
greater than 80-fold enrichment all consisted of protein com-
plexes: two different metrics of stable protein interactions
from a recent HTP screen [10] (see Materials and methods,
below), and the set of high-confidence manually curated pro-
tein complexes from the Munich Information Center for Pro-
tein Sequences (MIPS) database [19]. In fact, all seven
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predictors with greater than 20-fold enrichment (Figure 1a)
were protein complexes, physical interactions compiled from
the (non-HTP) literature [11], or 'modules' of co-expressed
proteins with many physical interactions among themselves
[20]. Considering that both the physical interactions com-
piled from the literature and the 'modules' [20] are expected
to be highly enriched for protein complexes, it appears that
the best predictors are united by the theme of stable protein
interactions.

We next sought to test whether combining different datasets
by taking their intersection might improve their predictive
power. For example, we could ask whether gene pairs that are
co-expressed and that also have similar phylogenetic profiles
are more enriched for phenotype pairs than are either of these
two predictor datasets alone. If the set of pairs matching both
criteria has a significantly higher frequency of phenotype
pairs than pairs matching either one of the two criteria alone,
then we can conclude that the two data sets contain inde-
pendent information; in other words, each dataset contains
some information that is not present in the other. If, instead,
the intersection yields an enrichment that is not greater than
the enrichment from either criterion alone, then there is no
evidence of independent information.

We first measured the predictive power of the intersections
between each of the 20 predictors and co-expression. We
found that intersecting with co-expression significantly (P <
0.01 after Bonferroni correction for multiple tests) improved
the enrichment for phenotype pairs in seven datasets, and it
did not significantly diminish the enrichment for any dataset
(Figure 1a [inset], compare enrichments before [red] and
after [green] intersection; asterisks indicate significant
improvement). Aside from these seven significant improve-
ments, no dataset scored better than P = 0.37 for improve-
ment in predictive power, indicating a clear distinction
between the datasets improved by intersecting with co-
expression and those not improved. Interestingly, six of the
seven improved datasets consisted of physical interactions
(the seventh was protein co-localization): three lists of HTP
protein complexes from two studies [10,18], one list of all
published HTP physical interactions (excluding the two HTP
protein complex screens treated separately here) [11], and
two lists (with different confidence levels) of all physical
interactions from non-HTP publications [11]. Because protein
complex subunits tend to be tightly co-expressed with one
another [21], one possible interpretation of this result is that
intersecting physical interactions with co-expression
improves enrichments by reducing false-positive results (not
expected to be uncommon among some HTP screens, as well
as among non-HTP interactions reported only once in the lit-
erature) and/or by decreasing the frequency of transient
interactions (which comprise many of the interactions in the
three noncomplex interaction datasets). One prediction of
this idea is that for a dataset consisting of protein complexes
with very few false positives, intersecting with co-expression
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Figure |

Predictors of phenotype pairs in yeast. (a) Enrichments for phenotype
pairs among 20 predictors. An enrichment value of | reflects random
performance (shown as 'all pairs', the left-most column) and greater than |
indicates better than random predictive power. Predictors are arranged in
order of increasing predictive power. Error bars indicate the
hypergeometric standard deviation, which reflects the range of expected
variation in the enrichment value. In the inset, red bars are the same as in
the main panel a, and are in the same order. Green bars indicate
enrichments in the intersection of each dataset with co-expression (r >
0.3). The seven datasets with significant improvements in predictive power
are indicated by asterisks. Note that the four co-expression datasets are
not counted in the multiple testing correction because they cannot
possibly show any improvement when intersecting with another dataset
that is a superset. (b) Green bars are the same as in Figure |a inset. Blue
bars indicate the level of enrichment that would be expected by chance, if
co-expression was entirely independent of each dataset. Green bars
significantly lower than the paired blue bar indicate a dataset that is not
independent of co-expression. Error bars indicate the hypergeometric
standard deviation, which reflects the range of expected variation in the
enrichment value. In the inset, red bars are the same as in panel a and are
in the same order as in both panels a and b. Green bars indicate
enrichments in the intersection of each dataset with Munich Information
Center for Protein Sequences (MIPS) complexes. Note that although many
green bars are significantly higher than the paired red bars, no green bars
are significantly higher than the MIPS complexes (rightmost) bars. This
indicates that no dataset adds to the predictive power of complexes
among the set of proteins in MIPS complexes. HTP, high-throughput; LTP,
low-throughput; TF, transcription factor.
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should not increase the predictive power. Consistent with this
idea, the high-confidence MIPS complexes are the only phys-
ical interaction data that were not significantly improved by
intersecting with co-expression (Figure 1a [inset]; P = 0.66).
As with Figure 1a, all of these results are consistent with pro-
tein complexes being the key predictors of phenotype pairs.

It is informative also to compare enrichments for phenotype
pairs seen in Figure 1a (inset) with what would be expected by
chance, if each dataset were entirely independent of co-
expression (two predictors are independent if the size of their
intersection, both within the set of phenotype pairs and
within the set of nonphenotype pairs, is no greater than
expected by random chance). The expected enrichment for
phenotype pairs within an intersection of two independent
criteria is a simple function of the frequencies of phenotype
pairs satisfying each criterion alone, and the background fre-
quency of all phenotype pairs (see Materials and methods,
below). Comparing these expected enrichments (Figure 1
[blue bars]) with the observed intersection enrichments (Fig-
ure 1b [green bars]), it is clear that in many cases the observed
enrichment is close to that expected under independence,
indicating that co-expression is adding nearly orthogonal
information. In no case, however, is there a significant
increase over the expectation assuming independence. In
summary, for a number of the datasets (in particular, the six
for which intersecting with co-expression significantly
improves the predictive power), the information added by
intersecting with co-expression is close to what would be
expected if co-expression contained entirely independent
information about phenotypes.

In stark contrast to co-expression, when intersecting the set
of MIPS complexes with all other datasets, there was no
improvement for phenotype pair enrichment above the
enrichment found in MIPS complexes alone. This is shown in
Figure 1b (inset), in which the observed phenotype pair
enrichments (green bars) can be compared with MIPS com-
plexes alone (the rightmost variable); although four intersec-
tions give slightly higher enrichments than MIPS complexes,
the improvement is not significant in any case. In sum, no
dataset tested here adds information about phenotypes when
we control for protein complexes, even though nearly every
predictor does have a significant level of predictive power on
its own. This is exactly what would be expected if all datasets
were predictive largely because they are themselves enriched
for members of the same complexes.

We next tested whether the intersection between any two of
our datasets had greater predictive power than MIPS com-
plexes alone. Strikingly, not a single intersection (out of all
190 combinations) gave a significant improvement over MIPS
complexes alone (not shown). The most predictive combina-
tion that did not include complexes as one of the predictors
was the intersection of co-expressed pairs with the high-con-
fidence literature-derived physical interaction data (an inter-
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section that is itself highly enriched for protein complexes),
which enriched for phenotype pairs 186-fold over random
(Figure 1a [inset]) at co-expression r > 0.3. At more extreme
co-expression cut-offs, the enrichment increased even more
(up to 310-fold at r > 0.6), although it was never significantly
better than MIPS complexes alone. These results indicate that
even in the absence of a reliable protein complex membership
list, phenotype pairs can be effectively predicted by using a
proxy for protein complex membership.

Predicting human disease genes

Having established that protein complexes are the most pow-
erful predictor of phenotype pairs in yeast, we reasoned that
this property might apply to other species as well. Two gen-
eral lines of evidence support this idea. First, other general
properties that characterize relationships between genes or
proteins (for example, that subunits of the same protein com-
plex are often co-expressed [21]) are usually conserved
between species. Second, there is evidence that subunits
within each of 11 well characterized protein complexes in C.
elegans exhibit similar RNA interference knockdown pheno-
types [5], as well as anecdotal evidence that subunits of the
same complex can sometimes cause the same human disease
(for instance, Fanconi anemia [22] and limb-girdle muscular
dystrophy [23]).

We therefore sought to test systematically how best to predict
human phenotype pairs. For human, we define a phenotype
pair in a similar although less quantitative manner as for
yeast: a pair of genes whose mutation leads to a similar phe-
notype. Similar disease phenotypes were compiled from the
OMIM database [1] and grouped into clusters, as described
previously [7], resulting in a list containing approximately
one out of every 26,000 gene pairs.

Because the range of human functional genomic data lacks
the breadth of published yeast data, it is not possible to com-
pare a large number of human phenotype pair predictors. In
particular, only a very small number of protein complexes
have been characterized, and so we were unable to test
directly whether complexes enrich for phenotype pairs to the
same extent as in yeast. Furthermore, transferring MIPS
complexes by orthology (assuming that all human orthologs
of yeast MIPS complex subunits have conserved interaction
partners) does not result in a large enough list of putative
interactions to be informative (not shown).

However, there do exist human gene expression data from
thousands of conditions, as well as tens of thousands of
known physical interactions. Considering how well the co-
expressed literature-derived interactions predicted pheno-
type pairs in yeast (Figure 1a [inset]), we decided to use co-
expressed physical interactions as a proxy for protein com-
plexes, with the understanding that this list is likely to contain
a large number of noncomplex pairs.

Genome Biology 2007,
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We assembled several human datasets for this analysis. To
calculate co-expression, we used a compilation of 2,642
Affymetrix U133a microarrays (see Materials and methods,
below). We also used two physical interaction datasets: liter-
ature-derived non-HTP human interactions from the Human
Protein Reference Database (HPRD) database [24] and HTP
interaction data from both human [25,26] and other species
whose interactions were mapped to human by orthology [7].

In agreement with previous results [7], we found that the
HPRD interactions (271-fold above random) were far more
predictive of phenotype pairs than were HTP interactions (17-
fold above random; Figure 2a). Co-expression was a relatively
weak predictor at a wide range of correlation cutoffs (for
example, 3.7-fold above random at r > 0.3); at high thresh-
olds, however, co-expression equaled or slightly exceeded the
HPRD interactions in predictive power (325-fold enrichment
at r > 0.8). All of these predictors gave highly significant (P <
10-8) improvements over random pairs.

As was the case in yeast, taking the intersection of physical
interactions and co-expression dramatically improved pre-
dictive power. For the HTP interactions, the enrichments
improved to 40-fold above random by intersecting with co-
expression r > 0.3 and 43-fold with r > 0.5 (at higher co-
expression cut-offs no disease pairs were present among the
HTP interactions). Taking the intersection of co-expression
with HPRD interactions resulted in an even better predictor
of disease gene pairs: approximately 500-fold above random
at r > 0.3 and 3,000-fold at r > 0.8 (Figure 2a [inset]). This
impressive approximate 3,000-fold enrichment results in
11% (10/92; listed in the Additional data file 1) of all gene
pairs satisfying these criteria being pairs known to cause the
same disease. We note that 11% may be an underestimate,
because many physical interactions and disease genes are yet
to be discovered; alternatively it may be an overestimate,
because of biases in the scientific literature (see Discussion,
below). All of the intersections with HPRD interactions had
significantly (P < 104 after Bonferroni correction for seven
tests) less enrichment than expected by chance under inde-
pendence (Figure 2b), indicating that neither co-expression
nor HTP interactions are completely orthogonal to HPRD
interactions. In fact, we found that much of the information
in the HTP data is redundant with HPRD, because this inter-
section was the only one with no significant improvement
over HPRD alone (P = 0.17).

Considering the magnitude of the enrichment among co-
expressed literature-based interactions for pairs of genes
involved in the same disease, it is possible to begin to make
predictions about novel disease genes. For example, among
our current predictions are six genes (COL4A1, COL4A2,
SPARC, BGN, DCM, and LUM) whose mutation may lead to
phenotypes similar to Ehlers-Danlos syndrome (which is
characterized by a range of problems related to skin, joints,
eyes, and other areas), based on their co-expression and

Genome Biology 2007, 8:R252
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Figure 2

Predictors of disease gene pairs in human. (@) Enrichments for disease
gene pairs among eight predictors. An enrichment value of | reflects
random performance (shown as "all pairs', the left-most column).
Predictors are arranged in order of increasing predictive power. Error
bars indicate the hypergeometric standard deviation, which reflects the
range of expected variation in the enrichment value. In the inset red bars
are the same as in the main panel a and are in the same order (note the
tenfold change in scale). Green bars indicate enrichments in the
intersection of each dataset with Human Protein Reference Database
(HPRD) interactions. Aside from HPRD intersected with itself or with all
pairs, all but one dataset (high-throughput [HTP] interactions) exhibit a
significant improvement in predictive power over HPRD interactions
alone when intersected with HPRD; this indicates that these datasets are
at least partially independent of HPRD. (b) Green bars are the same as in
panel a (inset). Blue bars indicate the level of enrichment that would be
expected by chance, if HPRD interactions were entirely independent of
each dataset. Green bars significantly lower than the paired blue bar
indicate a dataset that is not entirely independent of HPRD interactions.
The three right-most blue bars are truncated for clarity; their enrichment
values are written above each bar. Error bars indicate the hypergeometric
standard deviation, which reflects the range of expected variation in the
enrichment value.
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physical interactions with three proteins known to be
involved in this disease (FN1, COL3A1, and COL1A2). Other
predictions include involvement of MCM2 and MCM3 in
hypolactasia, S100B in Alexander disease, and CFHL1 in
chronic hypocomplementemic nephropathy. These predic-
tions, albeit few in number, serve to illustrate how a large-
scale protein complex membership list could be used to pre-
dict a much greater number of novel human disease genes.

Discussion

We have shown that protein complexes appear to be the most
effective predictors of similar phenotypic effects for gene
pairs. Despite the myriad types of functional and evolutionary
genomic data we tested, no dataset was able to increase the
predictive power of complexes alone. Furthermore, all of the
most effective predictors of yeast phenotype pairs were either
protein complexes (Figure 1a) or co-expressed physical inter-
actions (Figure 1a [inset]), which are themselves highly
enriched for complexes. Applying this idea to human data, we
found that co-expressed physical interactions are effective
predictors of gene pairs known to cause the same disease
(Figure 2a [inset]). This indicates that previous studies that
used only protein interactions to predict disease genes [7,9]
might have greatly improved their predictive power by incor-
porating co-expression information as well.

One possible concern is that the literature-based interactions
are not truly independent of the disease gene pairs. This situ-
ation could arise if investigators preferentially look for inter-
actions between proteins that are known to be involved in the
same disease, or if a protein's role in some disease was
discovered (at least in part) as a result of its interaction with
a known disease-related protein. Unfortunately, it is very
difficult to control for this possibility. For example, if a pro-
tein interaction is discovered after both proteins involved
have been found to cause the same disease, then one could in
principle read the publication reporting the interaction to see
if the authors cite the proteins' role in disease as a factor in
their research. However, even if the relation with disease is
not cited as a reason why the interaction was sought out, this
does not rule out the possibility that the proteins' role in dis-
ease contributed in some way to the discovery of the interac-
tion. In sum, conclusive evidence of either independence or
dependence between the discovery of the proteins' interac-
tions and their role in the same disease cannot usually be
found.

Fortunately, however, the enrichments for human disease
gene pairs that we observed are strong enough that even
extreme biases would not be sufficient to account for all of the
enrichment we observe. For example, if we were to find that
only half of all pairs of genes causing the same Mendelian dis-
ease were known, and that among the other half not even a
single pair involved a physical interaction, then our observed
enrichments would be reduced by twofold. Our strongest
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enrichment (Figure 2a [inset]) would thus be reduced to
about 1,500-fold over random, which is still a very useful level
of enrichment for predicting disease gene pairs.

If protein complexes are an even better predictor of disease
gene pairs than co-expressed physical interactions, as
appears to be the case in yeast, then a high-quality human
protein complex membership list could be even more predic-
tive that than the approximate 3,000-fold enrichment we
observed. For this reason, we propose that identifying human
protein complexes may be the most efficient method for iden-
tifying the genes responsible for many mapped disease loci.
Indeed, because of recent technologic advancements, identi-
fying the subunits of human protein complexes is not difficult
[27,28]; thousands of human open reading frames, cloned
into Gateway vectors [29], can easily be tagged for affinity
purification, transfected/infected into an appropriate human
cell line, purified, and subjected to mass spectrometry to
identify all proteins co-purifying with the tagged protein. The
most promising candidates for this approach would be pro-
teins that are known to cause a disease for which there are
many mapped susceptibility loci with unidentified causal
genes, because these present the best opportunity for discov-
ering the causal genes residing within susceptibility loci. If a
protein encoded by a gene within a mapped susceptibility
locus is found to be in a protein complex with a known disease
gene, then this prediction could be tested by sequencing the
gene in the DNA samples used for the original genetic map-
ping study. Also, in addition to revealing novel disease genes,
identifying the subunits of protein complexes containing dis-
ease-associated proteins may greatly improve our under-
standing of the biology underlying these diseases.

The general framework presented here could also be applied
to more complex, multigenic disease phenotypes. For exam-
ple, with a large enough set of unbiased genetic interactions
from yeast, the same 20 predictors used here could be applied
to identify the best predictor(s) of genetic interactions in
yeast. These predictor(s) could then be used to predict epi-
static interactions that are thought to be responsible for many
complex diseases [30-32]. Indeed, such a method could be
applied to any complex phenotype in any species, and could
possibly aid in our general understanding of how genotypes
determine phenotypes.

Materials and methods

Datasets

Yeast data were compiled from a number of sources. Expres-
sion data were from a compilation of 1,610 published micro-
arrays [14], and co-expression was calculated as the Pearson
correlation between pairs of genes across all experiments.
Increasing the co-expression cut-off above r > 0.6 did not
increase enrichments, so these cut-offs are not shown in Fig-
ure 1. Transcription factor binding sites [13] were required to
have both binding site conservation in at least three out of
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four Saccharomyces sensu stricto spp. and 'ChIP-chip’' (chro-
matin immunoprecipitation-chip) binding data at P < 0.005
in order to call a promoter as bound by a particular transcrip-
tion factor. Pfam domains present in every yeast gene were
downloaded from the Pfam database [12]. Co-localization
data were from Huh and coworkers [15]; two proteins were
called co-localized if they were present in exactly the same set
of subcellular locations. Genetic interactions, HTP interac-
tions, and literature-curated physical interactions were from
Reguly and colleagues [11]. Phylogenetic profile similarity,
co-citation, and 'finalnet' (a composite score calculated from
many datasets) were taken from Lee and coworkers [16]; cut-
off scores of 0.5, 2, and 3 were used for each dataset, respec-
tively (altering cut-offs did not greatly affect the results). Met-
abolic pathways were taken from Forster and colleagues [17].
Functional 'modules' of genes were defined by Lu and col-
leagues [20] as co-expressed groups of proteins with many
physical interactions among themselves. The four protein
complex datasets were from three sources [10,18,19]. Two dif-
ferent datasets of interactions were provided by Gavin and
coworkers [10]: a list of complexes (‘Gavin1') and a socio-
affinity score between pairs of proteins ('Gavin2'; cut-off = 5).
For the MIPS complexes, we used all pairs of proteins present
in the same complex, excluding the ribosome (since this sin-
gle complex has more protein pairs than all others combined,
so would be almost entirely responsible for any results we
found). Raw growth rate data across 82 growth conditions
were taken from [5]; a threshold of Spearman r > 0.8 was
used to define pairs of genes whose knockout causes the same
phenotype (all results were largely robust to changes in this
threshold; in general, increasing the threshold resulted in
stronger enrichments but smaller phenotype pair sample
sizes, whereas decreasing the threshold resulted in weaker
enrichments but larger sample sizes).

Human datasets were from two sources. For gene expression
data, we chose Affymetrix U133a (Affymetrics Inc., Santa
Clara, CA, USA) as the platform because this microarray has
more raw data (2,642 CEL files) deposited in the Gene
Expression Omnibus database [33] than any other (we did
not attempt to combine data from multiple different micro-
array platforms, because doing so can be problematic [not
shown]). CEL files were downloaded from Gene Expression
Omnibus in August 2006, and Robust Multichip Average nor-
malization [34] was performed (R Lee and B Hayete, personal
communication). Co-expression values were calculated as the
Pearson correlation between gene pairs. We obtained the
other datasets from Oti and coworkers [7]: disease data, in
which all diseases from the OMIM database [1] with known
causative genes were grouped by similarity (see Oti and cow-
orkers [7] for details); HTP physical interactions from both
human [25,26] and from other species (S. cerevisiae, C. ele-
gans, and D. melanogaster) transferred to human by orthol-
ogy using the Inparanoid algorithm [7]; and non-HTP
literature-based physical interactions from the HPRD data-
base [24]. All human data were mapped to Ensembl genes
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[35] for analysis; if multiple Affymetrix U133a microarray
probe sets matched a single gene, then their median value in
each microarray was calculated before calculating co-expres-
sion.

Statistics

All P values reported were calculated using the hypergeomet-
ric test for enrichment [36]. In all cases, this test was used to
calculate whether a given set of gene pairs had a different fre-
quency of phenotype/disease pairs than would be expected by
chance, given the sample sizes involved and the expected fre-
quency of such pairs. The expected random frequency
depended on what was being tested. For example, to compare
single predictors to random pairs, the expected frequency of
phenotype/disease pairs was that of random pairs. To com-
pare intersections of predictors to single predictors, the
expected frequency was the greater of the two predictors
alone. To compare intersections of predictors to the expecta-
tion under the assumption of independence, the expected fre-
quency was given by the following equation:

o (-f1)faf3
S1a-f2)a-f3)+(-f1)faf3

Where e is the expected frequency by random chance, f; is the
frequency of phenotype/disease pairs among all pairs of
genes, f, is the frequency among gene pairs satisfying one of
the criteria being used, and f, is the frequency among gene
pairs satisfying the other criterion.
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