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bHLH transcription factors in mouse brain.<p>A comprehensive regulatory module network of 15 bHLH transcription factors over 150 target genes in mouse brain has been con-structed.</p>

Abstract

Background: The basic/helix-loop-helix (bHLH) proteins are important components of the
transcriptional regulatory network, controlling a variety of biological processes, especially the
development of the central nervous system. Until now, reports describing the regulatory network
of the bHLH transcription factor (TF) family have been scarce. In order to understand the
regulatory mechanisms of bHLH TFs in mouse brain, we inferred their regulatory network from
genome-wide gene expression profiles with the module networks method.

Results: A regulatory network comprising 15 important bHLH TFs and 153 target genes was
constructed. The network was divided into 28 modules based on expression profiles. A regulatory-
motif search shows the complexity and diversity of the network. In addition, 26 cooperative bHLH
TF pairs were also detected in the network. This cooperation suggests possible physical
interactions or genetic regulation between TFs. Interestingly, some TFs in the network regulate
more than one module. A novel cross-repression between Neurod6 and Hey2 was identified,
which may control various functions in different brain regions. The presence of TF binding sites
(TFBSs) in the promoter regions of their target genes validates more than 70% of TF-target gene
pairs of the network. Literature mining provides additional support for five modules. More
importantly, the regulatory relationships among selected key components are all validated in
mutant mice.

Conclusion: Our network is reliable and very informative for understanding the role of bHLH TFs
in mouse brain development and function. It provides a framework for future experimental
analyses.
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Background
Transcription factors (TFs) play pivotal roles in brain devel-
opment by controlling the sequential generation of neurons
and glia from uncommitted progenitor cells [1]. However, lit-
tle is known about how gene expression programs are differ-
entially unfolded in various cell types. Recognition of specific
promoter sequences by transcriptional regulatory proteins is
one of the first steps in the initiation of gene expression pro-
grams [2-4]. Genome-wide expression profiles provide
important information about the transcriptional regulation of
various cellular and molecular processes. The basic/helix-
loop-helix (bHLH) proteins comprise a large TF family
involved in the regulation of a variety of biological processes,
including cell proliferation, specification and differentiation
during neurogenesis [5]. The bHLH TFs are abundantly
expressed in the developing mouse brain [6], and many sub-
families of bHLH proteins, such as the HES, OLIG, NPAS and
NEUROD families, have been demonstrated to play crucial
roles in the development of the central nervous system [7-11].
The bHLH domain has two functionally distinct regions, the
basic region and the HLH region. The DNA-binding basic
region at the amino terminus of the bHLH domain (approxi-
mately 15 amino acids) has a high content of basic residues,
whereas the carboxy-terminal HLH region is formed by two
amphipathic helices separated by a loop region of variable
length [12]. bHLH proteins can be subdivided into six distinct
groups (A to F) in the animal system [5,13]. Briefly, group A
proteins bind to the E-box (CAGCTG) and have a distinctive
pattern of amino acids (XRX) at sites 5, 8, and 13; group B
proteins bind to the G-box (CACGTG) and have a 5-8-13 con-
figuration of K/H-X-R; group C comprises bHLH proteins
that have the PAS domain, which bind to non-E-box sites
(NACGTG or NGCGTG); group D proteins lack the DNA-
binding basic region; group E proteins contain a carboxy-ter-
minal WRPW peptide that preferentially bind to N-boxes
(CACGCG or CACGAG); and group F comprises COE-bHLH
proteins [5,13,14].

At present, the increasing gene-expression profiles in public
databases provide us with opportunities to elucidate the pos-
sible transcriptional regulatory networks. Since the whole
regulatory network that controls mouse brain function is too
complex to be fully understood at the current time, we chose
to focus on the bHLH TFs and their related regulatory net-
work, which have been shown to play important roles in
mouse brain development. A module network of bHLH TFs
was constructed from mining of genome-wide gene expres-
sion data and partially validated experimentally. This module
network may provide an initial platform for the future study
of transcriptional regulation of bHLH TFs in the development
and function of mouse brain.

Results
Construction of the regulatory network
The module networks procedure identifies modules of co-reg-
ulated genes, their regulators and the conditions under which
regulation occurs [15]. To construct the module network and
understand the regulatory mechanisms of bHLH TF in mouse
brain, we inferred a regulatory network from the gene expres-
sion data with the module networks method proposed by
Segal et al. [15].

To provide a convincing and inclusive network, 1,338 tran-
scripts from the mouse genome, including 100 bHLH TFs,
were chosen as original candidate genes for constructing a
regulatory network from the genome-wide normalized gene
expression data [16], all of which have been proven to be
expressed in the mouse nervous system by gene cloning and
other expression assays [6,17,18]. As shown in Figure 1, we
selected 918 genes involving 61 bHLH TFs from the 1,338
candidate genes in the first selection step, which were
detected in at least one of 11 mouse brain tissues according to
the expression data [16]. These brain tissues included cere-
bellum, substantia nigra, hypothalamus, frontal cortex, cere-
bral cortex, dorsal striatum, hippocampus, olfactory bulb,
trigeminal, dorsal root ganglia and pituitary. At the begin-
ning, we tried to detect the interactions among different TF
families, but obtained unstable results since the number of
microarrays was limited to 22. Therefore, we decided to focus
on the regulatory relationships between the bHLH TF family
and their targets.

It is well known that recognition of binding sites (BSs) by TFs
is a prerequisite for the initiation of gene expression. There-
fore, the promoter sequences of the 857 candidate target
genes (excluding the bHLH TFs) were extracted from the Pro-
moSer database [19], including 1,000 bp upstream and 50 bp
downstream of each transcription start site. Of the 857 genes,
443 contained one or more reported BSs for bHLH proteins
and were further analyzed together with 61 bHLH TFs in the
second gene selection step (Figure 1). Here, BSs included both
the preferred BSs (E-box, G-box, non-E-box, N-box) of the
bHLH proteins of A to F groups and the experimentally con-
firmed BSs (TRANSFAC Professional 9.3) of bHLH proteins.
In the final selection process, both target genes and TFs with
expression levels below the average among the different brain
tissues were excluded and this yielded the final subset of 198
genes (Figure 1). This gene subset included 22 bHLH TFs and
was used to build a regulatory network of bHLH TFs in mouse
brain. As a result, the regulatory connections among 153 tar-
get genes and 15 bHLH TFs were discovered by the module
network approach. The remaining genes, 23 target genes and
seven bHLH TFs, were not considered here because no regu-
latory link among them was detected. With the aid of the
Pajek 1.15 program, a hierarchical scale-free network describ-
ing the regulations between TFs and their target genes was
drawn (Figure 2); this consists of 168 nodes (genes) and 339
directed connections. The nodes represent TFs or their target
Genome Biology 2007, 8:R244
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Overview of the gene selection process prior to the construction of the module networkFigure 1
Overview of the gene selection process prior to the construction of the module network.
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genes, whereas the connections represent regulatory interac-
tions. Every TF node has a large number of connections with
its target genes. The average number of target genes for each
TF is 22, with many target genes shared by more than one TF.

In the learned network, 26 coregulating TF pairs were also
detected. The hierarchical relationships between the TFs are
shown with red lines (Figure 2). Most common transcrip-
tional regulatory motifs described previously were found in
the connections between TFs [20]. For example, Olig1-Hey2-
Npas4-Ascl1 constitutes a regulatory chain, and Olig1-Hey2-
Npas4-Idb2-Olig1 is a multi-component loop. Neurod6 forms
a single input structure by regulating Neurod1, Olig1, Myf6,
Hes3 and Tcf4. We found that only a few steps are necessary
to join any two TFs. This presumably facilitates the efficient
propagation and integration of signals [21].

For the most basic network motif (regulatory pattern), three-
node and four-node motifs were detected with mfinder 1.2 in
the complete regulatory network [22]. Higher-order motifs
were too complex and not detected here. Six distinct three-
node motifs and 66 four-node motifs were detected in the net-
work. We applied a Z-score to quantify differences between
the network motifs of our regulatory network and 100 ran-
dom networks. The motifs with a Z-score greater than 3 or
less than -3 are listed in Figure 3. The distribution of two
three-node motifs and seven four-node motifs in our network
are significantly different from their randomized counter-
parts. The network motifs describe how a single node is con-
nected with its neighbours and demonstrate the complexity
and diversity of regulatory mechanisms. The network motifs,
in particular those listed in Figure 3, should play important
roles in performing sophisticated biological tasks.

The bHLH regulatory TF network in mouse brainFigure 2
The bHLH regulatory TF network in mouse brain. The graph depicts the inferred regulatory network of bHLH TFs (yellow ellipses) and their target genes 
(pink dots). Directed lines represent regulation relationship. Directed black connections between a regulator and its target gene are supported by the 
match analysis of DNA-binding sites. The regulatory relationship between transcription factors is shown by directed red connections.
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Comparison of the real network with randomized networksFigure 3
Comparison of the real network with randomized networks. We applied a Z-score to quantify the difference of the network motif between our 
regulatory network and 100 random networks. The motifs with Z-score greater than 3 or less than -3 are listed in Figure 3. Here, Nodes is the subgraph 
size; Motifs means subgraphs of the motif [22]; NREAL is the number of a motif in the real network; and NRAND is the average number of a motif in 100 
randomized networks.
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Modules in the regulatory network
Our regulatory network comprises 28 modules (Table 1 and
Additional data file 1), with the number of target genes in each
module varying from 1 to 18. It is worth noting that co-regu-
lating TF pairs or groups (more than two members) were also
detected in the module network (Table 1). For example, the
interaction between Id and Olig, inferred regulators in
module 21, have been reported in oligodendroglial differenti-
ation [23]. We analyzed each of the inferred modules with
regard to a variety of affiliated data sources and evaluated the
validity of their regulatory programs.

Module nomenclature
To name the modules and investigate their molecular func-
tion, we calculated the hypergeometric functional enrichment
score among the modules (Table 1) based on the Gene Ontol-
ogy (GO) database [24]. Only two modules represent func-
tional enrichments of the utmost significance (Benjaminni
correction, P < 0.05). Most of the modules identified here are
too small to represent significant functional enrichments.
Diversity of molecular functions within these modules sug-
gests, for example, that Neurod6 and Hey2 are TFs that mod-
ulate a wide spectrum of genes with diverse functions. Each

Table 1

Summary of module analysis

Regulators

No. Module* No. of
target genes

Coherence
(%)†

Significant gene 
annotations

R1 R2 R3 E‡ G§ L¶

1 Calcium-dependent cell-cell adhesion 12 8 Hey2 Npas4 √ √
2 Sialyltransferase activity 6 17 Neurod6 Neurod1 √ √
3 Transition metal ion binding 4 50 Neurod6 Max √ √
4 Monocyte differentiation 2 50 Tcf4 √ √
5 Endoplasmic reticulum 7 29 Npas4 Neurod6 √ √
6 Protein heterodimerization activity 2 50 Npas4

7 Eye development (sensu) vertebrata) 6 33 Npas4 Heatr1 √ √
8 Neurotransmitter metabolism 7 14 Hes5 Npas4 √ √
9 Anion channel activity 1 100 Npas4 Neurod6 √ √
10 Protein kinase activator activity 3 33 Hey2 Neurod6 √ √
11 Cation antiporter activity 5 20 Olig1 √ √
12 Cell surface receptor linked signal transduction 5 60 Neurod6 Max √ √
13 Regulation of cell proliferation 6 33 Hes3 Ascl1 √ √
14 Stem cell division and DNA repair 2 50 Tcf4 √ √
15 Cellular morphogenesis 5 60 P < 0.05 Neurod6 Hey2 √ √
16 Sequence-specific DNA binding 8 25 Olig1 √ √
17 Lipid biosynthesis 12 25 P < 0.05 Neurod6 √ √
18 Cytoskeletal regulatory protein binding 6 17 Ascl1 Bhlhb5 √ √
19 Negative regulation of metabolism 18 17 Olig1 Neurod6 Mitf √ √ √
20 Monovalent inorganic cation transporter activity 4 25 Nhlh2 √ √
21 Intracellular non-membrane-bound organelle 6 50 Mitf Npas4 √ √ √
22 Ribosome 8 13 Olig1 Max √ √ √
23 Calcium ion binding 9 33 Hey2 √ √ √
24 Menstrual cycle 7 14 Max Nhlh2 √ √
25 Cytokine activity 7 14 Bhlhb5 Myf6 √ √ √
26 Endosome 12 8 Olig1 Neurod6 Idb2 √ √
27 Morphogenesis of embryonic epithelium 5 20 Hey2 Neurod6 √ √
28 Carboxylic ester hydrolase activity 2 50 Npas4 √

*Each module was assigned a name based on the smallest P value for enrichment of GO categories of genes in the module. †GO coherence of each 
module, measured as the percentage of genes in the module covered by the category with the smallest P value. ‡E, experimental evidence showing at 
least one of the genes in the module is regulated by, or interacts with, the respective TF or the relationship between the TF and its target was proved 
by the match with an experimentally confirmed DBM. §G, TF-target pair was supported by the match with grouping-DBM in the promoter sequence 
of genes in the module. ¶L, literature data mining provided support for the relationship between a TF and its target gene.
Genome Biology 2007, 8:R244
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module was assigned a specific name based on the most
enriched (with the lowest P value) GO categories at layer 5.
The GO coherence of each module was measured to deter-
mine the percentage of genes in the module covered by the
GO category with the lowest P value (Table 1). For example,
module 15 is regulated by the co-regulating TFs Neurod6 and
Hey2 and is here named Cellular morphogenesis module
because cellular morphogenesis is the most significantly
enriched GO category in the module (P < 0.05). Consistent
with the module name, 60% of genes in this module play a
role in cellular morphogenesis.

In our constructed module network, a target gene can be clus-
tered into only one module. But some TFs can regulate more
than one module under different conditions with the same or
different co-regulating TFs. For example, Neurod6 regulates
modules 10, 15, and 27 with its co-regulator Hey2, but it also
regulates module 2 with another co-regulator, Neurod1. We
named these TFs as multiple-module (MM) regulators.
Npas4 and Neurod6 are representatives of MM regulators,
regulating 8 and 11 modules, respectively (Additional data file
1).

Modules controlled by MM regulators Neurod6 and 
Hey2
Another interesting point in our regulatory network is the
presence of co-regulating TF pairs. The most active co-regu-
lating pair, Neurod6 and Hey2, simultaneously regulates
modules 10, 15, and 27, which display dissimilar expression
patterns (Figure 4a–c). Based on the most enriched GO cate-
gories, these three modules are involved in protein kinase
activator activity, cellular morphogenesis and morphogenesis
of embryonic epithelium, respectively. As shown in Figure 4,
the expression profiles of these three clusters in brain tissues
are different, but all of them are controlled by Neurod6 and
Hey2. These results support the previous report that Neurod6
modulates a wide spectrum of genes with diverse functions
[25].

The regulatory motifs of these three modules are feed-for-
ward loops, in which the product of one TF gene regulates the
expression of a second TF gene, and both factors together reg-
ulate the expression of a third gene (target gene) [20]. In
these modules, Neurod6 can regulate target gene expression
either directly in some tissues or indirectly through first reg-
ulating Hey2 expression in other tissues (Figure 4d). Simi-
larly, Hey2 regulates expression of target genes either directly
in some regions or indirectly in other regions through regulat-
ing Neurod6. Apparently, the mode (positive or negative) and
site (tissue) of gene regulation or co-regulation are different
in these three modules. The roles of these two TFs could be
reversed and their target genes could be altered in different
modules (Figure 4d). Interestingly, the regulatory relation-
ships between Hey2 and Neurod6 in three modules are all
negatively correlated (Figure 4d). Based on their expression
profiles in three modules (Figure 4a–c), the expression of

Hey2 is apparently repressed in the frontal cortex, cerebral
cortex, hippocampus and dorsal striatum regions where
Neurod6 is expressed at a high level. Conversely, Neurod6 is
repressed in the olfactory bulb, trigeminal, dorsal root ganglia
and pituitary in which Hey2 is induced. Thus, we can clearly
observe opposite or complementary patterns of expression
for Neurod6 and Hey2 in various brain tissues. This phenom-
enon prompted us to propose that Neurod6 and Hey2 cross-
regulate each other's expression by switching their functions
in different brain regions. To confirm our hypothesis, we per-
formed further analyses on their DNA-binding motifs and
sequences. It was found that both Hey2 and Neurod6 have a
Glu9/Arg12 pair, which has been confirmed by site-directed
mutagenesis experiments and crystal structures to constitute
the CANNTG recognition motif [26-29]. Moreover, the CAN-
NTG motif is also found in both promoter regions of these two
TFs. The cross-repression between Neurod6 and Hey2 has
raised the possibility that they bind to the same target genes
and their expression is mutually cross-regulated at the same
time. As described above, the diversity of co-regulatory rela-
tionships between a pair of TFs allows them to have effects on
a variety of molecular activities.

Validity evaluation
It is well known that the binding of a TF to the promoter of its
target genes is a proof for the regulatory relationship. Site-
directed mutagenesis experiments and the crystal structures
of bHLH proteins have shown that the Glu9/Arg12 pair con-
stitutes the CANNTG recognition motif. The critical Glu9
contacts the first CA in the DNA binding motif (DBM), and
the role of Arg12 is to fix and stabilize the position of Glu9
[26-29]. Multiple protein sequence alignments with Multalin
[30] showed that 12 TFs of the regulatory network have the
Glu9/Arg12 pair in the basic region (Additional data file 1), so
those proteins should have the CANNTG recognition motif.
Moreover, bHLH proteins of different groups have their own
DNA binding specificities [5,13]. All TFs in the network were
classified into groups from A to F in agreement with the
nomenclature and the evolutionary analysis [5,13]. Therefore,
the preferred DBMs of the bHLH TFs of different groups
could be predicted (Additional data file 1). Here we named the
predictive DBMs of the TFs as group-DBMs. In order to vali-
date the relationships between bHLH TFs and their target
genes, we performed match analysis with the promoter
sequences of the respective target genes using experimentally
confirmed DBMs and the group-DBMs of bHLH TFs. The
experimentally confirmed DBMs include both that deter-
mined using TRANSFAC Professional 9.3 and the CANNTG
motif recognized by Glu9/Arg12 pair. The results show that
235 TF-target gene pairs are verified by experimentally con-
firmed DBMs, and 115 TF-target gene pairs are supported by
group-DBMs. In total, 71% of TF-target gene pairs (Figure 2),
distributed in most modules (27 of 28) in the network, are
validated by the match of BSs in the promoters. However, as
indicated in Figure 2, some TFs, such as Neurod6 and Olig1,
are highly supported by TFBSs, whereas other TFs, such as
Genome Biology 2007, 8:R244
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Diagrammatic representation of three modules regulated by Neurod6 and Hey2Figure 4
Diagrammatic representation of three modules regulated by Neurod6 and Hey2. (a-c) Expression profiles of genes in modules 10, 15, and 27 regulated by 
Neurod6 and Hey2. Each node in the tree represents a regulator (Hey2 or Neurod6), and the expression of the regulators themselves is shown below 
their respective nodes. Small boxes represent the gene expression profiles in different brain tissues. All arrays at the bottom are the expression of target 
genes in the module, in which a row denotes a gene and a column denotes a tissue. (d) Hey2 and Neurod6 regulate three modules in different ways among 
11 brain tissues. Red arrows refer to positive regulation, and green arrows refer to negative regulation.
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Npas4 and Idb2, have little or no support. One reason could
be that some TFs, like Idb2, do not bind DNA and instead
function by interacting with other TFs [5]. Another possibility
could be that the promoter regions of the genes or the DNA-
binding preference of the TFs we obtained have not been fully
determined.

As described above, 27 modules are supported by the match
of BSs. In order to obtain more support information, we per-
formed literature data mining via PubMed from almost 16
million available articles. Literature data mining was used to
predict relationships between genes [31]. The concurrence of
an inferred regulator and one of its target genes in published
abstracts is evident for five of the modules (Table 1). The
absence of concurrence of two given genes may only reflect a
lack of publications [31].

Experimental tests
Recent studies in the spinal cord showed that Olig1 comprises
the combinatorial code for the subtype specification of neu-
rons and glial cells (astrocytes or oligodendrocytes) together
with Olig2 [32], which is a target gene of Olig1 in the largest
module of the network. The regulatory module (Figure 5d)
shows that Olig1 positively regulates Olig2 in different brain
tissues. Otherwise, there are both direct (Olig1→Olig2) and
indirect regulatory paths (Olig1→Nuerod6→Mitf→Olig2)
connecting Olig1 and Olig2. An indirect connection would
presumably render Olig2 less sensitive to the inactivation of
Olig1while the directed connection would provide more
sensitivity.

To experimentally validate the regulatory relationship
between Olig1 and Olig2 in the largest module, we examined
the expression of Olig2 in the spinal cord of the Olig1 null
mutants at embryonic day 18.5. At this stage, Olig1 and Olig2
are primarily expressed in cells of the oligodendrocyte lineage
[33-35]. Consistent with the concept that Olig2 is regulated
by Olig1, the expression of Olig2 in the mutant spinal cord is
significantly reduced (Figure 5a–c). From the results that
show that Olig2 is not completely absent in the spinal cord of
the Olig1 null mutants, we infer that the regulatory pathway
between Olig1 and Olig2 in the spinal cord is indirect. A pre-
vious study demonstrated that Olig1 influences Olig2 expres-
sion in brain [36]. A recent study indicated that Olig2
influences susceptibility to schizophrenia [37]. As a regulator
of Olig2, Olig1 could be considered as another candidate gene
for the susceptibility to schizophrenia.

In addition, recent studies showed that both Olig1 and TCF4
(module 26) are expressed in mature oligodendrocytes [38].
In E18.5 mouse embryos, a small number of TCF4-expressing
oligodendrocytes could be detected in the wild-type spinal
cord sections but not in the mutant spinal cord (Figure 5e, f).
This result is consistent with our prediction that Olig1 is a key
regulator of TCF4 expression in oligodendrocytes.

To further test the regulatory relationships between Olig1 and
other predicted downstream targets, we compared the
expression of Zic1 and Tbr1 (module 11) in embryonic day 18.5
normal and Olig1 mutant brain. In E18.5 wild-type embryos,
Zic1 is specifically expressed in the ventral forebrain (Figure
6c), whereas Tbr1 expression is restricted to the cerebral cor-
tex (Figure 6d). Expression of Olig1 was observed in both
regions, overlapping with those of Zic1 and Tbr1 (Figure 6a).
Consistent with our predicted regulatory relationship,
expression of both Zic1 and Tbr1 was downregulated in Olig1-
/- mutant brain (Figure 6g, h). In contrast, Wnt10b is not the
predicted downstream gene of Olig1, and its expression level
in the brain was not affected by the Olig1 mutation (Figure 6b,
f).

Discussion
In this study, we have constructed a transcriptional regula-
tory network of bHLH TFs in mouse brain using microarray
data (gene expression profiles) and the module network
method. The Bayesian network method can be used to dis-
cover dependency structure between the observed variables,
and, therefore, this method is often used as an important
approach to infer molecular networks [39]. To some extent,
the module network method used in this work can be simply
viewed as a Bayesian network in which the variables in the
same module share common parameters. Module networks
out-perform Bayesian networks even though they are based
on the Bayesian network method [15]. Although other
approaches for inferring regulatory networks from gene
expression data or for identifying modules of co-regulated
genes and their shared cis-regulatory motifs have been
proposed [40-45], the module network can generate detailed
testable hypotheses concerning the role of specific regulators
and the conditions under which this regulation takes place.
Using the same approach, Segal et al. [15] accurately identi-
fied the module regulatory networks of S. cerevisiae with
2,355 genes from 173 microarrays [15]. In the gene-selection
process and DBM match analysis, we extracted only a 1,000
bp promoter; however, it is well documented that many neu-
ral promoters are much larger than 1 kb. Thus, it is possible
that some potential information could have been missed in
our analysis.

It is known that many other TF families also play pivotal roles
in brain development and it would be interesting and impor-
tant to study interactions not only within but also between
families. However, the amount of public microarray data
from brain tissues greatly limits the number of TFs or genes
that could be studied in one network. In other words, with
limited microarray data, the inclusion of too many genes in a
single network could lead to unstable results. So, to maintain
the accuracy and robustness of the constructed network, a
certain ratio between the number of genes and microarrays
should be considered. Considering the limited number of
microarrays in this study and the robustness of the potential
Genome Biology 2007, 8:R244
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Figure 5 (see legend on next page)
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inferred network, 198 genes with the greatest variance in their
levels of expression between different tissues were selected as
our final candidate genes in the regulatory network.

Since a relatively small number of TFs from a single family
and their target genes are included in this construction, the
resulting regulatory network (Figure 2) represents only a
small fraction of the whole genome regulatory network in
mouse brain. However, even with a limited amount of data
this small-scale network can reveal special regulatory fea-
tures of bHLH TFs.

Most of the modules identified in our network are too small to
represent significant functional enrichments. However, the
largest module in the network, the Negative regulation of
metabolism module (module 19), is composed of three bHLH
transcription factors (Olig1, Neurod6, and Mitf) and their 18
target genes (Additional data file 1), whose diverse functions
did not lead to function enrichment at a significant level (P <
0.05). Although the genes in the network of Saccharomyces
cerevisiae determined directly from motif occurrences in
promoters had better GO coherence [46], the results in this
study suggest that genes regulated by the same TFs, and even
having similar expression profiles, could have diverse func-
tions. In other words, for target genes, having shared TFs and
similar expression patterns does not necessarily indicate that
they have the same functions, but instead it suggests that the
various functions in the same module are coordinated. Thus,
further studies are required to place more emphasis on the
functional coordination of these genes.

Our network identified some MM regulators, as represented
by Npas4 and Neurod6, suggesting that they could be the core
elements of the network and have undoubted regulatory roles
in the development of mouse brain. This concept has been
substantiated by some recent reports. Npas4 belongs to group
C of the bHLH TF family, which features the DNA-recogni-
tion motif CACGAG. The Npas4 protein, also called limbic-
enhanced PAS protein (LE-PAS) or NXF, was identified in
mouse brain tissues independently by two research groups in
2004 [47,48]. At the same time, a novel Npsa4 signaling sys-
tem was found that may be related to the mental retardation
of Down's syndrome [48]. Neurod6, also called Nex, Atoh2 or
Math2, is a member of the NEUROD family that is a critical
effector of the nerve growth factor pathway and is required in
vivo for terminal neuronal differentiation [49]. Transcrip-
tional analysis revealed that Neurod6 modulates a wide spec-
trum of genes with diverse functions, many of which are key

downstream regulators of the nerve growth factor pathway
and critical to neuritogenesis [25]. Interestingly, the
homologs of four target genes of Neurod6 in rat (Chn1, Jag1,
Glud1 and Sort1) are also found in our regulatory network
and are scattered in four modules regulated by Neurod6. The
consistency between previous reports and our results pro-
vides additional support that the modules detected from our
network are tenable.

The cross-repression between the MM regulators Neurod6
and Hey2 was found from the gene expression profiles of
three modules. The cross-repression between TFs has been
widely identified during embryo development in animals. In
the early development stage of vertebrate spinal cord, homeo-
domain proteins convert a gradient of extracellular Shh sign-
aling activity into discrete progenitor domains through
selective cross-repressive interactions between the comple-
mentary pairs of class I and class II homeodomain TFs that
adjoin the same progenitor domain boundary [50]. In the
developing brain, cross-repressive interactions between Otx2
and Gbx2 define the midbrain-hindbrain boundary [51] and
interactions between the homeodomain TFs Pax6 and Pax2
help to delineate the diencephalic-midbrain boundary [52].

Cross-repression between transcription factors have also
been implicated in regionalization in the embryonic meso-
derm [53] and pituitary gland [54]. The same principle has
been described during the establishment of anteroposterior
polarity within the Drosophila embryo [55]. Thus, cross-reg-
ulatory interactions between transcription factors appear to
be a prevalent strategy for the regional allocation of cell fate.
It is possible that the cross-repression of the Neurod6 and
Hey2 pair in our network controls various functions related to
protein kinase activator activity, cellular morphogenesis and
morphogenesis of embryonic epithelium since they are the
regulators in those modules. However, the roles of Neurod6
and Hey2 in these biological processes, and how their interac-
tions regulate brain development and specify the different
function identities in different brain regions, require further
investigations.

Materials and methods
Data preparation
Special gene expression profiles in the brain tissues were pro-
vided by Su et al. [16]. The normalized gene expression data
were downloaded from NCBI's Gene Expression Omnibus
[56]. We chose the genes that were presented (AP call) in at

Downregulation of Olig2 and TCF4 expression in Olig1 mutantsFigure 5 (see previous page)
Downregulation of Olig2 and TCF4 expression in Olig1 mutants. Spinal cord sections from E18.5 (a) wild-type and (b) Olig1 mutant embryos were 
subjected to immunofluorescence labeling (in red) with anti-Olig2 antibody. The number of Olig2+ cells was significantly reduced in the mutants. (c) 
Statistical analysis of Olig2+ cells in the Olig1+/- and Olig1-/- spinal cords compared to the wild-type (wt). Values were presented as mean ± standard 
deviation. (d) Regulation of the largest module shows that the Olig1 regulates the expression of Olig2. (e, f) Spinal cord sections from E18.5 wild-type (e) 
and Olig1 mutant (f) embryos were subject to in situ RNA hybridization with TCF4 antisense riboprobe. Expression of TCF4 was not detected in the 
mutants at this stage.
Genome Biology 2007, 8:R244
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least one of the following tissues: cerebellum; substantia
nigra; hypothalamus; frontal cortex, cerebral cortex; dorsal
striatum; hippocampus; olfactory bulb; trigeminal; dorsal
root ganglia; and pituitary. All values less than 20 in microar-
rays were clipped to 20. Log-medium transforms on the data
were performed according to the function Y = log2(X/
median). To limit the number of gene expression profiles, 198
genes with the greatest variance in their levels of expression
between different tissues were identified as candidate genes.

Construction of network
The software Genomica for creating a module network was
downloaded from Weizmann's webpage [57]. A module
network was created with default parameters. The whole reg-
ulatory network was drawn with Pajek 1.15, which is available
from [58,59]. We also used mfinder, a software tool for the
detection of network motifs. Its application and source code
are available from [60].

Method to compare a real metabolic network with 
randomized ones
Following the scheme of Maslov and Sneppen [61], we
applied a Z-score to quantify the difference between a real
metabolic network and its randomized counterparts:

where P is the graph metric in the real network, and  and

ΔPr are the mean and standard deviation, respectively, of the

corresponding graph metric in the randomized ensemble.

Match of DNA-binding motif
The fasta sequences of the promoters, including 1,000 bp
upstream and 50 bp downstream of each transcription start
site, were extracted from the PromoSer database [62]. The
predicted binding sites of genes were obtained according to
the categories of TFs from groups A to F with the aid of the
existing nomenclature and phylogenetic analysis. Here, an
evolutionary tree was built using the neighbor-joining algo-
rithm with MEGA version 3.0 [63]; 1,000 bootstrap replicates
were made with the same program to test the statistical relia-
bility. The known DBMs were obtained from the database
TRANSFAC Professional 9.3 (updated on 2006.5.30) [64].
Multiple alignments of mouse bHLH protein sequences was
performed with Multalin using the default parameters
[30,65].

Enrichment for GO categories in modules
The enrichment for GO categories was analyzed using the tool
GOTM [66,67], which reports enrichment (hypergeometric P
value, Benjaminni correction) with respect to GO categories.

Literature data mining
Literature data mining was performed with the web-based
tool LitMiner [68]. LitMiner is a literature data mining tool
that is based on the annotation of key terms in article
abstracts present in PubMed [31]. This was followed by statis-
tical co-citation analysis of annotated key terms in order to
predict relationships between annotated key terms. Gene
names of bHLH TFs in the network were used as key words in
the literature data mining.

Reduced expression of Zic1 and Tbr1 in Olig1-/- brainsFigure 6
Reduced expression of Zic1 and Tbr1 in Olig1-/- brains. Coronal brain sections at forebrain level from E18.5 (a-d) Olig1+/- and (e-h) Olig1-/- embryos 
were subject to in situ hybridization with Olig1 riboprobe (a, e), Wnt10b riboprobe (b, f), Zic1 riboprobe (c, g), or immunostaining with anti-Tbr1 (d, h). 
The expression of Wnt10b was similar between Olig1+/- and Olig1-/- (b, f). The Zic1 expression level was significantly reduced in Olig1-/- thalamus 
compared to that in Olig1+/- (c, g). Expression of Tbr1 was also reduced in the cortex of Olig1-/- embryos (d, h).
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Target gene expression studies in Olig1 mutants
The Olig1 mutant mouse line was generously provided by Dr
Charles Stiles's Lab at Harvard Medical School. Spinal cord
tissues at the thoracic level and brain tissues were isolated
from E18.5 mouse embryos and then fixed in 4%
paraformaldehyde at 4°C overnight. Following fixation, tis-
sues were transferred to 20% sucrose in phosphate-buffered
saline overnight, embedded in Embedding Medium and then
sectioned (16 μm thickness) on a cryostat. Adjacent sections
from the wild-type and mutant embryos were subsequently
subjected to anti-Olig2 and anti-Tbr1 immunofluorescence
labeling, or in situ RNA hybridization with TCF4, Olig1,
Wnt10b and Zic1 riboprobes. In situ RNA hybridization and
immunofluorescent staining were performed as described
previously [69]. Three adjacent spinal cord sections from
three independent embryos were immunostained with anti-
bodies. Positive cells containing nuclei in the entire spinal
cord sections were counted. Values were presented as mean ±
standard deviation. The differences in values were considered
to be significant at P < 0.05 by Student's t-test.

Abbreviations
bHLH, basic/helix-loop-helix; BS, binding site; DBM, DNA-
binding motif; GO, Gene Ontology; MM, multiple module;
TF, transcription factors; TFBS, TF binding site.
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