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Abstract

Background: The mesenchymal compartment plays a key role in organogenesis, and cells within
the mesenchyme/stroma are a source of potent molecules that control epithelia during
development and tumorigenesis. We used serial analysis of gene expression (SAGE) to profile a key
subset of prostatic mesenchyme that regulates prostate development and is enriched for growth-
regulatory molecules.

Results: SAGE libraries were constructed from prostatic inductive mesenchyme and from the
complete prostatic rudiment (including inductive mesenchyme, epithelium, and smooth muscle). By
comparing these two SAGE libraries, we generated a list of 219 transcripts that were enriched or
specific to inductive mesenchyme and that may act as mesenchymal regulators of organogenesis and
tumorigenesis. We identified Scubel as enriched in inductive mesenchyme from the list of 219
transcripts; also, quantitative RT-PCR and whole-mount in situ hybridization revealed Scubel to
exhibit a highly restricted expression pattern. The expression of Scube [ in a subset of mesenchymal
cells suggests a role in prostatic induction and branching morphogenesis. Additionally, Scubel
transcripts were expressed in prostate cancer stromal cells, and were less abundant in cancer
associated fibroblasts relative to matched normal prostate fibroblasts.

Conclusion: The use of a precisely defined subset of cells and a back-comparison approach
allowed us to identify rare mRNAs that could be overlooked using other approaches. We propose
that Scubel encodes a novel stromal molecule that is involved in prostate development and
tumorigenesis.
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Background

The mesenchymal compartment is involved in the induction
and organogenesis of various organs, including lung, limb,
kidney, pancreas, prostate, and mammary gland. In general,
the process of organ induction begins with the formation of a
specialized area of mesenchyme that acts upon adjacent epi-
thelia to specify organ identity and subsequently dictates epi-
thelial morphogenesis into the required form and function
within the organ. The role played by inductive mesenchyme
has been established using classical embryologic methods
such as tissue recombination and engraftment, which have
assayed the ability of spatially defined areas of mesenchyme
to control morphogenesis and organogenesis. During organo-
genesis reciprocal interactions and signaling occur between
the mesenchymal and epithelial compartments; in addition,
numerous paracrine and autocrine growth regulatory path-
ways such as Wnt, hedgehog, fibroblast growth factor (FGF),
Notch, and transforming growth factor-p are also active. The
inductive mesenchyme involved in organ induction goes on to
form signaling centers that are involved in growth and differ-
entiation as well as specialized functions such as branching
morphogenesis. At present, our knowledge of the pathways
that are active in inductive mesenchyme is limited; this may
be because of the inherently small size of these mesenchyma
and a lack of suitable markers. It is likely that the proportion
of inductive or specialized mesenchyme within a developing
organ is low, which will make it difficult to isolate sufficient
material for profiling studies.

The prostate develops from the embryonic urogenital sinus in
response to testicular androgens and as a result of reciprocal
mesenchymal epithelial interactions (for review [1]). Para-
crine signaling from the urogenital mesenchyme (UGM) to
the epithelium specifies prostatic epithelial identity, induces
epithelial bud formation and growth, and regulates ductal
branching morphogenesis (for review [2]). Androgen action
within the urogenital sinus mesenchyme was originally
defined as being necessary and sufficient for prostate organo-
genesis; androgen action in the epithelia is not required [3,4].
Within the mesenchyme a distinct area of mesenchyme has
been defined that regulates prostatic organogenesis [5]. This
mesenchyme has been termed the ventral mesenchymal pad
(VMP), based on its anatomic position. However, it appears
that the VMP is part of a structure that encircles the urethra
and may participate in the formation of all lobes of the pros-
tate. Additionally, it appears that the VMP is better anatomi-
cally defined in rat than in mouse, although it can be
distinguished by its restricted expression of molecules such as
FGF10 and bone morphogenetic protein (BMP)4 [6,7]. The
VMP is present in both males and females, suggesting that
androgens are not required for its formation [5,8], although
androgens are required for prostate induction and organo-
genesis. The activity of molecules produced in the VMP may
be indirectly regulated by androgens that control the forma-
tion of a layer of smooth muscle that is juxtaposed between
the VMP and urethral epithelium [8,9]. The VMP constitu-
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tively expresses key growth regulatory molecules such as
FGF10, which functions as a mesenchymal paracrine regula-
tor of prostatic epithelia and is essential for the formation of
the prostate [10].

Androgens are required for the formation of the prostate, and
there has been considerable interest in defining the pathways
that might be involved in mediating the effects of androgens.
Furthermore, because androgen receptor activity is required
in the mesenchyme/stroma, this has led to the idea that
androgens may act through paracrine factors produced in the
mesenchyme. At present there are no molecules that are
expressed in the mesenchyme which show clear upregulation
by androgens, despite a range of experimental approaches. It
is also possible that androgens may not directly control the
expression of paracrine acting factors but may act indirectly,
by controlling the interaction of inductive mesenchmye with
epithelia via the smooth muscle compartment. In the devel-
oping reproductive tract there is a sexually dimorphic layer of
smooth muscle that separates inductive prostatic mesen-
chyme (VMP) from the urethral epithelium (from which nas-
cent prostatic buds will form). In females this layer forms
rapidly and isolates the VMP, but in males the layer remains
discontinuous to permit interaction of the VMP with epithelia
[8]. It appears that the smooth muscle patterning is control-
led by androgens and estrogens [9]. The hypothesis that
androgens act via the smooth muscle compartment would
suggest that androgens may not directly regulate the expres-
sion of paracrine factors in the mesenchyme. This is sup-
ported by the observation that factors such as FGF10, which
are required for the formation of the prostate, are equally
abundant in males and females and do not appear to be regu-
lated by testosterone [7,11].

The question of which genes are involved in androgen-driven
growth of the prostate has led to several studies that have
used arrays to examine the gene expression profile of the
prostate and prostate cell lines. Such studies have used either
whole prostate [12-15], prostate tumor samples [16-19], or
prostate cell lines [20]. There is limited similarity between
these datasets, which probably reflects the different nature of
the tissues as well as the cellular heterogeneity in some of the
tissues and samples. It may be hoped that a few genes were
common to all studies, or within individual studies, that
might identify mediators of androgen action upon growth.
However, few or none appear to exhibit such a pattern. Addi-
tionally, it may be that only a subset of cells are the target of
androgen action, in which case the identification of the gene
expression signature of these cells within a complex tissue
may be difficult [21]. This will be particularly difficult for low-
abundance transcripts expressed in subsets of cells and in
rare cells such as progenitor/stem cells.

It has recently become apparent that the stroma is also
actively involved in neoplastic prostate growth (for review
[22]). Tumor-associated stroma or reactive stroma exhibits a
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variety of phenotypic and functional differences relative to
normal stroma (for review [23,24]). The tumor stroma is no
longer able to restrain prostatic epithelial proliferation, but
instead carcinoma-associated fibroblasts stimulate epithelial
tumor growth [25,26] and stimulate tumor angiogenesis [27].
The role of stroma in prostate tumor growth is highly reminis-
cent of the developmental growth of the prostate, and devel-
opmental pathways have been identified in prostate tumor
stromal cells [28]. This notion of developmental pathway
involvement in tumorigenesis was pioneered by Pierce sev-
eral years ago [29].

We have used an unbiased approach to identify new stromal
regulators of prostate growth. Our thesis was that mesenchy-
mal factors that are involved in prostatic induction would be
constitutively expressed in either males or females, as pre-
dicted by the 'smooth muscle' hypothesis described above.
Additionally, we speculated that our approach might identify
potential 'andromedin' molecules if they were expressed at
low levels in females, because females are exposed to low
(nonmasculinizing) levels of androgens in vivo. Similarly, we
thought that a highly sensitive approach would identify
androgen regulated molecules at their un-induced levels in
the female prostatic rudiment.

Using serial analysis of gene expression (SAGE) we profiled a
subset of urogenital mesenchymal cells that comprise the
VMP [30]. The VMP is a homogenous subset of mesenchymal
cells that initiates and regulates prostate organogenesis, and
which can be microdissected in sufficient quantity for SAGE
library construction. In addition, we constructed a SAGE
library of the whole prostatic precursor, comprising the VMP,
smooth muscle and urethral epithelium (VSU). By comparing
the two SAGE libraries, we hoped to identify molecules
enriched or restricted to the VMP while eliminating those
expressed throughout all tissues (such as housekeeping genes
and genes expressed in smooth muscle and epithelium). Our
SAGE library comparison yielded a list of 219 transcripts,
which exhibited a statistically significant enrichment in the
VMP compared with the whole precursor (VSU). Most of the
219 transcripts were identified by low frequency tags in the
SAGE libraries, suggesting that they were derived from low-
abundance transcripts. One of the molecules we identified
was Scubei [31]. We demonstrate that Scuber is expressed
during prostate induction and branching morphogenesis, and
that it is restricted to a subset of prostatic mesenchyme
including the VMP. Expression of Scube1 was not affected by
androgens and was observed in both males and females.
Additionally, Scuber mRNA was expressed in prostate cancer
stromal cells, and was downregulated in cancer-associated
fibroblasts relative to normal prostate fibroblasts. We pro-
pose that the list of 219 transcripts that we have identified
may contain several mesenchymal factors that are important
during organogenesis and tumorigenesis.
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Results

SAGE analysis of prostatic inductive mesenchyme

To determine the transcript profile of prostatic inductive
mesenchyme, we applied SAGE to a subset of the prostatic
mesenchyme, namely the VMP. We constructed two SAGE
libraries (Figure 1): one consisted purely of the VMP, whereas
the second library (VSU) was composed of the whole prostatic
precursor tissue containing VMP, smooth muscle, urethral
epithelium and mesenchyme.

The area of the urogenital tract (UGT) dissected for library
construction is shown in Figure 1a; the VMP can be seen as a
sub-area of the VSU and both are outlined to illustrate the
starting material for the libraries. The VSU library is made
from a more complex tissue than the VMP library, and as a
consequence, if both libraries are sequenced to a similar
depth, VMP-specific transcripts will exhibit greater abun-
dance in the VMP-only library. Our hypothesis was that tran-
scripts expressed in the VMP would be 'diluted’ in the VSU
library (because the VMP is included as a component of the
VSU). This effect would be most pronounced with regard to
transcripts that were present at low abundance in the VMP
and very low or absent in the VSU library. By comparing the
VSU and VMP libraries and selecting for the tags with a sig-
nificantly higher tag count in the VMP library (Figure 1a), we
enriched for low abundance VMP-specific transcripts, while
removing most housekeeping genes and broadly expressed
transcripts. The number and frequency of tags showing a sta-
tistically significant difference between the two libraries is
shown in Figure 1b. Datapoints colored red nearest to the
VMP axis represent VMP-enriched tags, and these are
described further below.

We sequenced about 70,000 tags for each library, translating
into 22,755 and 26,932 distinct tags for the VSU and VMP
libraries, respectively. About 68% of tags were found only
once in each SAGE library. A significant proportion of these
single tags will have resulted from sequence errors, and thus
we excluded them from most subsequent analyses. Analysis
of the VMP SAGE data revealed the presence of known mes-
enchymal regulatory factors in prostate growth, such as
FGF10, BMP4, Smoothened and androgen receptor (AR),
indicating an adequate sequencing depth to identify known
regulators of prostate organogenesis.

VMP-VSU SAGE library comparison to identify
inductive mesenchyme specific transcripts

Comparison of the VMP and VSU SAGE libraries yielded a list
of 219 tags that exhibited a significant enrichment in the VMP
library (see Additional data file 1). SAGEMAP and genomic
basiclocal alignment search tool (BLAST) were used to assign
SAGE tags to specific transcripts and genes. The smallest sta-
tistically significant difference between our two SAGE librar-
ies was 5:0 tags in VMP:VSU libraries [32]. Because an
important goal of our studies was to identify mesenchymal
paracrine factors, we examined our libraries for the presence
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SAGE analysis of prostatic inductive mesenchyme. (@) The strategy used in construction and comparison of serial analysis of gene expression (SAGE)
libraries to identify ventral mesenchymal pad (VMP) specific or enriched transcripts. PO female urogenital tracts (UGTs) were microdissected to provide
either pure VMP or the whole prostatic rudiment (VMP, smooth muscle, urethral epithelium [VSU]); the tissues dissected for library construction are
outlined in black. The VMP tissue comprised only the condensed inductive mesenchyme of the VMP, whereas the VSU library contained urethral
epithelium, smooth muscle, urethral mesenchyme and VMP. Both VMP and VSU SAGE libraries were sequenced to the indicated total number of tags. Pair-
wise comparison was performed and 219 tags exhibiting statistically significant enrichment in the VMP were identified. (b) Scatter plot showing the
comparison of the VMP and VSU SAGE libraries. Tag frequencies were plotted on a logarithmic scale and P values were calculated using the Z test; tags
showing a difference at P = 0.05 are shown in red. (c) Pie chart depicting functional classification of the 219 VMP identified transcripts; extracellular (EC)
signaling modulators and hypothetical proteins were highlighted for further analysis. Bl, bladder; TF, transcription factors; Ur, urethra; Ut, uterus; Vg,
vagina; VMP, ventral mesenchymal pad.
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of factors known to play a role in prostate development. We
detected FGF10 in our VMP library, but it had four tag counts.
As a consequence FGF10 was not identified as being VMP
enriched in our SAGE screen, which exemplifies a limitation
of our bioinformatic comparison. Although our approach
identified many low abundance VMP enriched molecules, it
inevitably will have missed some because of sampling error,
and rare transcripts are most susceptible to sampling error.
This is supported by estimation of the statistical power to

determine differential expression between the VMP and VSU
libraries, which indicates that at power of 0.9 differences of
greater than twofold in tags of 50 and above might be
detected [33,34]. The majority of transcripts in the VMP list
are below this level, and it is likely that we have not identified
all of the low abundance transcripts specific to the VMP.
Although our analysis identified novel mesenchymal mole-
cules that are involved in prostate organogenesis, it is possi-
ble that further such molecules remain to be identified.

Genome Biology 2007, 8:R213
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Putative secreted or cell surface signaling molecules that show significant enrichment in the VMP SAGE library

LONG-SAGE tag

VMP VSU Uni-gene Description (SAGEMAP)

Genomic BLAST

transforming growth factor-f3 binding

Latent transforming growth factor-f binding

Unique hit, 2 kb from mRIKEN
<DNA1200009022

Unique hit, close to novel transcript (h
Chemokine like superfamily factor 3)

Unique hit, 2 kb from SemaphorinéD locus

Unique hit, 2 kb from novel transcript with

Vanpoucke et al. R213.5

R. norvegicus similar to hypothetical protein,

similarity to mSorC2 precursor (VPSI0
domain containing receptor

Unique hit, ortholog of chicken Tsukushi

estradiol-induced (LOC308843), mRNA

Rat insulin-like growth factor | mRNA, 3'

Unique hit, 2 kb from Wnt4 locus

Unique hit, | kb from to mSlit2 homolog

CATTTTCTGGCAAAATC 124 34 964 Insulin-like growth factor 2
CCTAGCCCCTCCCACCA 49 15 7961 Rattus norvegicus similar to latent
protein 4S (LOC292734), mRNA
ATATAATGAATAATAAT 38 13 14547 Delta-like homolog (Drosophila)
GTTTGTACAATAAATAC 14 4 37338
protein 3
GATGAATGTTATATGTT 12 2
TGAATCCTCTCCCTAAA I 2 15332 R. norvegicus similar to RIKEN cDNA
9430096L06 (LOC291813), mRNA
TAAAGTCAAAATAAAAT Il | 8257 R. norvegicus transcribed sequences
TGGGCATAGCTGAGGTG 10 2 41133 R. norvegicus transcribed sequences
TAAGAGCTCTTTCCATC 10 | 8672
TCTGAATATAACATATC 8 | 22787 R. norvegicus similar to sprouty |
(LOC294981), mRNA
CCGCTTGAGACTCCTTC 6 0 25124
end of mMRNA
GCATAGTCTGAGATGCA 6 0 40510 R. norvegicus transcribed sequences
TTCCTGACTAAATGTAG 6 0 65930 Notch gene homolog 2 (Drosophila)
CCTTGGGGGAGGGTGGG 5 0
GGAGATACCTGTTCAAA 5 0 11567 Nel-like 2 homolog (chicken)
TAATTAAACACTTGTGA 5 0 103231

AGTGTGTACAAGCTTAG 5 0

R. norvegicus transcribed sequences

Unique hit, 4 kb from novel transcript with
homology to mScube |

Unique hit, close to novel transcript similar
to mEphB3 receptor

BLAST, basic local alignment search tool; kb, kilobases; SAGE, serial analysis of gene expression; VMP, ventral mesenchymal pad; VSU, VMP, smooth

muscle and urethral epithelium.

The list of 219 VMP enriched tags/transcripts was function-
ally classified according to their Gene Ontology (Figure 1c).
For approximately 11% of our list, we were unable to assign
transcripts to these tags, but a number of them could
represent anti-sense transcripts because they map to the 3'-
untranslated region of known transcripts but in the anti-
sense orientation (Additional data file 1; anti-sense tags are
identified within the 219 list). We chose to focus on tran-
scripts that encode potential growth regulatory molecules or
modulators. About 5% of our list is made up of extracellular
signaling molecules, whereas four tags mapped to known
transmembrane receptors. We analyzed the large group of
hypothetical proteins (25%) for the presence of signal pep-
tides, transmembrane domains, and functional domains that
suggested involvement in cellular signaling activity. As a
result we identified a list of 17 putative extracellular or trans-
membrane signaling molecules that exhibited a significant
enrichment in the VMP SAGE library (Table 1).

We examined several members of the VMP-enriched list by
quantitative RT-PCR, Northern blot, and whole-mount in situ

hybridization to determine whether they could be verified as
VMP enriched. The candidates that we chose to examine fur-
ther included secreted or membrane-bound molecules that
might be involved in cell-cell interactions. Of 30 candidates
tested, 11 were confirmed as being VMP enriched, 12 were not
confirmed, and seven were inconclusive. The transcripts that
were validated as VMP enriched were as follows: Igf2, MMP2,
DIk1, Notch 2, Nel-like2, decorin, EphB3 receptor, slit2,
sprouty1, mSorC2m, and sema6D. These candidates com-
prise 11 of the 17 extracellular or transmembrane molecules
listed in Table 1. We estimate that approximately one-third of
the transcripts in the VMP list may be confirmed as VMP spe-
cific by additional follow up, but this will require further
experimental validation. Members of the insulin-like growth
factor family have been implicated in prostate organogenesis
[35,36]. Also, Wnt4 was recently reported to be expressed in
developing prostates, but its precise localization was not
determined [37]. Our SAGE data revealed the expression of a
number of transcription factors that have been implicated in
organogenesis of other tissues (for example, PLAG1, Pbx3,
and SOX7). In addition to intracellular molecules, there was a

Genome Biology 2007, 8:R213
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considerable number of extracellular matrix proteins. The
VMP consists of mesenchyme that is morphologically distinct
from the surrounding mesenchyme. The higher expression of
some of these extracellular matrix components may be
responsible for the different morphology of the inductive
mesenchyme. In general, our VMP-enriched list gives an
overview of the transcriptional programs that are active in
mesenchyme during prostate organ induction.

Scubel: a new prostate inductive mesenchyme specific
gene

One of the extracellular signaling molecules identified as
being VMP enriched by SAGE analysis was Scube1 [31]. Five
Scubei tags were present in the VMP library, whereas none
were identified in the VSU library (Figure 2a). The enrich-
ment of Scuber in VMP RNA was confirmed by both quanti-
tative RT-PCR (Figure 2a; yellow bar) and Northern blot
(Figure 2b). Scuber mRNA was also identified in Po prostate
(Figure 2b). Whole-mount RNA in situ hybridization further
defined expression of the Scubei transcript only in the mes-
enchyme of a Po female UGT, whereas the peri-urethral mes-
enchyme and the urethral epithelium did not express Scubei
(Figure 2c). Levels of Scube1 expression in the UGT, prostate,
and inductive mesenchyme have not previously been
reported. Grimmond and coworkers [31] isolated the Scube1
transcript from a cDNA library of the mouse urogenital ridge
and reported expression in developing gonads, nervous sys-
tem, and mesenchyme of developing limb buds. Our North-
ern blot analysis in Po tissues identified the highest Scubei1
expression in testis and ovary, followed by high expression in
prostate and brain (Figure 3a). We could barely detect Scubei
in adult tissues (Figure 3b and data not shown). It must be
noted that there are significant developmental differences in
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the organs at Po; the prostate is rudimentary and undergoing
extensive branching morphogenesis, whereas organs such as
lung and kidney are more mature. The expression pattern in
rat Po tissues is somewhat different than the reported expres-
sion pattern in adult human tissues, which may be due to dif-
ferent developmental stages of organ development [38]. The
decrease in Scube1 transcript levels between embryonic and
adult stages may be a result of either gene downregulation or
loss of the subset of cells that express it, and we cannot be sure
which is the primary factor or whether the decrease is a result
of both downregulation and loss of cells.

To further examine Scube1 expression in the prostate, we
compared Scube1 transcript levels in early UGTs, developing
prostate undergoing branching morphogenesis, and mature
adult prostate (Figure 3b). Scuber mRNA levels were most
abundant during prostate induction at E17.5 (before bud
development), and were high during prostate branching and
growth (Po and P4). By P10 there was significant decrease in
Scube1 mRNA levels, with very low or undetectable levels by
puberty (P28) and in the adult rat. This temporal distribution
suggested a role for Scuber in prostate organogenesis. How-
ever, we observed similar levels of Scuber mRNA in both
males and females at E17.5, which suggested that there was
no sexually dimorphic difference in Scubei transcript expres-
sion. The Scuber mRNA encodes a secreted glycoprotein with
epidermal growth factor repeats and a CUB domain (a
domain first found in complement Cir, Cis, uEGF, and bone
morphogenetic protein 1). No function has yet been described
for mammalian Scubei, but its domain structure suggests a
possible role in growth factor modulation [31]. Studies in
zebrafish have suggested that Scube family members may be
involved in sonic hedgehog (Shh) signal transduction, and it

(a) (b)

5 Anti-sense
J W mse g & Y
) [ Lighteycler QQ QQ QQ
2 3- __
Qo
seuvot [ 57
14 ' Sense

0—
Tag counts ~ ScubeT Gapdh .
VMP 5
VSU 0

(c)

Vanpoucke et al. R213.6

69% 100% 50%

Figure 2

Localization of Scube! to the inductive mesenchyme (VMP) of female UGT. (a) Comparison of Scubel transcript levels in ventral mesenchymal pad (VMP)
and VSU (VMP, smooth muscle and urethral epithelium) using serial analysis of gene expression (SAGE) and quantitative RT-PCR. Red bars represent the
SAGE data, and yellow bars represent the quantitative RT-PCR data (normalized to TBP levels). Scube/ mRNA was found to be enriched in the VMP by
both SAGE and quantitative RT-PCR analyses. (b) Northern analysis showing a twofold enrichment of Scube| mRNA levels in the VMP compared with the
VSU. (c) RNA whole-mount in situ hybridization of Scube! in PO female UGT; anti-sense probe is at top of panel and sense is at the bottom of the panel.
Scube| transcripts localized to the VMP, and were not observed in smooth muscle (SM) and urethral epithelium (URE).
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Figure 3

Expression of Scube| mRNA in rat PO tissues and during prostate
development. (a) Northern blot analysis of Scube/ mRNA levels in PO
tissues; highest levels of Scube! transcripts were observed in testis and
ovary. Brain, ventral prostate (VP), bladder, and kidney showed moderate
Scube | expression. Kidney and lung showed very low expression, and liver
was negative. (b) Expression of Scube! in male and female urogenital tract
(UGT) at EI7.5, and subsequent expression the VP at PO, P4, P10, P28, and
adult.

is possible that Scube may control other extracellular signal-
ing pathways [39,40].

Spatial localization of Scube| mRNA during prostate
development

Some insight into the role played by Scuber in prostate
growth was obtained by defining the cell and tissue compart-
ment expression pattern. Whole-mount in situ hybridization
was used to determine the spatial expression pattern of
Scuber at different stages of prostate development. There was
robust Scuber mRNA expression in the urogenital sinus
(UGS) during early prostate organogenesis in rat, at fetal day
E17.5 (Figure 3b). Shortly after this time point prostatic bud-
ding is initiated, when developing epithelial buds penetrate
into the surrounding UGM in the dorsal, lateral, and ventral
directions. In E18.5 UGTs, Scube1 mRNA was present in the
VMP of both males and females (Figure 4a,b), and the pat-
terns of Scube1 expression around the urethra of male and
female were very similar. In males, Scubei transcripts were
present in the mesenchyme overlying the position where dor-
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sal and lateral prostates formed (Figure 4a,b), whereas in
females it was also present in the Mullerian duct. The devel-
oping seminal vesicles and Wolffian duct structures of male
E18.5 UGTs exhibited very little or no Scube1 expression (Fig-
ure 4b). In Po male UGTs a similar expression pattern was
seen; robust Scuber mRNA levels were observed in the mes-
enchyme, whereas the emerging prostatic epithelial ducts
were negative for Scube1 (Figure 4c,d). In the dorsolateral
prostate the Scube1 signal was strongest in the mesenchyme
directly adjacent to the ducts (Figure 4d). Scube1 transcripts
were also observed in the mesenchyme of the ventral prostate
(VP; Figure 4c¢,d). Taken together, it appeared that Scubei
was expressed in a specific subset of the mesenchyme, con-
sistent with the VMP tissue used in the construction of the
SAGE libraries.

Scubel expression is not regulated by testosterone

The spatiotemporal localization of Scuber suggested that it
might function as a regulator of prostate growth. To deter-
mine whether Scube1 expression was regulated by androgens,
we examined whether Scuber mRNA expression and localiza-

Figure 4

Spatial distribution of Scube/ mRNA in male and female UGT. (a,b)
Whole-mount in situ hybridization showing Scube | transcript expression in
E18.5 male (M) and female (F) urogenital tract (panel a shows lateral view
and panel b shows dorsal view). Scube/ mRNA was present in a subset of
the urogenital mesenchyme including the VMP (marked by arrows in male
and female). In females there was staining in the mesenchyme of the
Mullerian duct (MD). In males, the seminal vesicle (SV) mesenchyme
showed little or no staining. In both sexes the urethra (Ur) and urethral
mesenchyme were negative for Scube/ mRNA. (c,d) PO male urogential
tract. The mesenchyme of the dorsal prostate (DP), dorsolateral prostate
(DLP), and ventral prostate (VP) showed Scube! transcript expression. In
panel d, DLP is shown on the left hand side and epithelial buds (arrows;
negative for Scubel) can be seen entering the DLP mesenchyme. On the
right hand side of panel d ventral prostate is shown, and Scube | transcripts
are abundant in the mesenchyme and show enrichment in the peripheral
mesenchyme.
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tion were affected by testosterone using male or female UGT
rudiments grown in vitro.

Whole-mount RNA in situ hybridization of male VPs grown in
the absence or presence of testosterone exhibited little or no
change in transcript distribution; Scube1 localized to the
inductive mesenchyme surrounding the distal duct tips under
both conditions (Figure 5a) and was absent from epithelia.
Scuber mRNA showed slightly increased expression in the
mesenchyme at the periphery of the organ, where epithelial
proliferation is highest [41]. To quantify changes in Scubei1
transcripts we grew VPs in the presence or absence of testo-
sterone and measured transcript levels by quantitative RT-
PCR (Figure 5b). Treatment of VPs with testosterone had no
significant effect on Scube:r or FGF10 mRNAs. To rule out
potential carry over of testosterone in cultures of male VPs,
we used cultures of Po female UGTSs grown in vitro. The rudi-
ments used correspond to the VSU used for SAGE library con-
struction. Treatment of Po female UGTs for 6 or 24 hours
with testosterone did not change Scubei transcript levels, as
shown by Northern analysis (Figure 5c¢). In addition, we
examined Scuber mRNA levels in primary VMP mesenchy-
mal cells grown in vitro [42], and no changes were observed
following short-term or long-term treatment with testoster-
one (data not shown).

Taken together, it appears that androgens do not alter the dis-
tribution of Scuber mRNA in males, or the amount of Scube1
mRNA in either males or females. Furthermore, we did not
observe a difference in Scubei1 levels between E17.5 male and
female embryonic UGTs in vivo (Figure 3b), and we conclude
that Scube1 is unlikely to be regulated by androgens.

Scubel expression is downregulated in prostatic
cancer-associated fibroblasts compared with normal
prostate fibroblasts

Because Scube1r was specifically expressed in the mesen-
chyme during development, we examined whether it was
present in prostate cancer stroma and whether it was differ-
entially expressed between cancer-associated fibroblasts
(CAFs) and normal prostate fibroblasts (NPFs). Scubei
mRNA was examined in five pairs of functionally tested NPF
and CAF samples by both Northern analysis and quantitiative
RT-CPR. All CAFs had been shown to produce tumors when
recombined with an epithelial cell line, whereas all NPF sam-
ples did not [26] (and data not shown). Four pairs of CAFs/
NPFs were matched from the same patient, whereas one pair
was not.

Scube1 transcripts were identified in all CAFs and NPFs, dem-
onstrating that Scube1 was expressed in prostate cancer stro-
mal cells (Figure 6). Furthermore, in four out of five samples
Scube1 was found to be downregulated in the CAFs compared
with the NPFs, by both Northern blotting and quantitative
RT-PCR (Figure 6). Scubei downregulation was between 2-
fold and 20-fold. This decreased expression in CAFs com-
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Figure 5

Testosterone does not alter Scube/ mRNA levels or expression pattern.
(a) Whole-mount RNA in situ hybridization of ventral prostates (VPs)
grown in vitro for 6 days in the absence (-T) or presence (+T) of
testosterone. (b) Quantitative RT-PCR for Scube! and FGF/0 mRNAs in
VPs grown in vitro with/without testosterone. VPs were cultured in the
absence of testosterone for 3 days followed by an incubation of 24 hours
in the presence or absence of testosterone. (c) Northern analysis for
Scubel mRNA on PO female urogenital tracts treated in vitro with
testosterone for 6 hours and 24 hours. VSU, ventral mesenchymal pad,
smooth muscle, urethra.

pared with NPFs could have been caused by loss of a specific
subset of cells in the CAF culture versus the NPF culture.
However, because these cell populations are stable in culture
and this effect is observed in different sets of patient matched
NPFs/CAFs, we propose that the difference in expression
between the cell populations is most likely caused by specific
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Figure 6

Expression of Scube| mRNA in prostate tumor stromal cells using CAFs and NPFs. (a) Northern analysis of Scube/ mRNA in five pairs (a to e) of cancer-
associated fibroblasts (CAFs)/normal prostate fibroblasts (NPFs). Embryonic human brain, liver, and prostate are included as control tissues, and RNA
loading is illustrated by hybridization with Gapdh. Scube| mRNA was lower in CAFs in four out of five CAF/NPF pairs. (b) The downregulation of Scube |
mRNA in CAFs was confirmed by quantitative RT-PCR; Scube| mRNA levels were normalized to TBP mRNA levels. Br, brain; Lv, liver; Pr, prostate.

loss of Scube1 expression in CAFs either by downregulation or
by loss of the chromosomal region. The same samples were
also checked for CXC chemokine ligand (CXCL)12 mRNA lev-
els; CXCL12 has been identified as a stromal molecule that
stimulates tumorigenesis [43]. In four of five samples,
CXCL12 was found to be upregulated in the CAFs (data not
shown), similar to reported findings in breast tumor stroma
[44].

Discussion

In this study we provide a detailed molecular profile of a sub-
set of the mesenchymal cell compartment, the VMP, which
controls prostatic organ induction and development. The
UGM/urogenital stroma is a very potent tissue during both
development and disease, which has been demonstrated by
tissue recombination experiments. Androgen action in the
UGM has been shown to be necessary and sufficient for pros-
tatic development (for review [1]). When recombined with
human embryonic stem cells, the UGM directs differentiation
into mature human prostate tissue expressing prostate-spe-
cific antigen [45]. Furthermore, embryonic UGM has the
ability to re-differentiate prostate cancer cells and to reduce
tumor growth [46]. It has recently emerged that the stroma
can initiate and stimulate prostate tumorigenesis [25-27,47],
and profiling of tumor stroma has identified developmental
molecules such as secreted frizzled-related protein 2 [28].
Because of the restricted expression of Scube1 in a small sub-
set of cells, it would be very difficult to identify Scuber in a
profiling screen of heterogeneous tissue samples such as
tumors unless it was significantly upregulated during tumor-

igenesis. Hence, a transcript profile of a potent tissue such as
the VMP not only provides us with potential new regulators of
prostate growth, but it may also highlight some that could
regulate neoplastic growth.

For our analysis we used the inductive mesenchyme of a
female UGT and assumed that key prostatic regulators may
not be induced by testosterone [48]. We also reasoned that a
highly sensitive gene profiling approach might detect andro-
gen-regulated molecules at their 'un-induced' levels, in the
event that some stromal mediators might be upregulated by
androgens. Most profiling studies have focused on pathways
activated by androgens to find new regulators of prostate
growth [12-15]. However, none of these studies has success-
fully identified molecules that satisfy the criteria of being
'andromedins'. At present no growth factors expressed in the
UGM have been shown to be directly regulated by androgens.
We hypothesized that key prostatic inducers are constitu-
tively expressed in the inductive mesenchyme, regardless of
testosterone levels, and that by profiling the VMP novel
growth regulatory signaling pathways would be identified.
We have previously suggested that molecules produced by, or
in, the VMP may be indirectly regulated by an androgen sen-
sitive layer of smooth muscle that forms a separating layer
between the VMP and the urethral epithelia [8,9].

To identify VMP-specific transcripts from our VMP SAGE
data, we employed a novel strategy. We compared the VMP-
only SAGE library with a more complex SAGE library of the
complete female prostatic precursor (termed VSU). By doing
so we specifically focused on low abundance VMP-enriched
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or VMP-restricted transcripts. Additionally, the ability to iso-
late enough inductive mesenchyme for direct SAGE library
construction (without amplification or dilution with other cell
types) indicates that our VMP library may contain a number
of important and potent molecules that are absent or poorly
represented in current datasets, because these are typically
made from tissues composed of many cell types. Profiling of
the VMP, which is highly enriched for growth regulatory pro-
teins such as FGFs, yielded a number of extracellular and
transmembrane proteins with putative growth regulatory or
modulatory functions. The expression of many of these fac-
tors in the prostate has not been revealed by other profiling
studies, which may be because of their greater cellular com-
plexity or the use of adult tissues in which growth regulatory
pathways are less active. We estimate that 30% to 50% of the
molecules in the VMP list will be experimentally confirmed as
being VMP enriched, based on our follow up of 30 candidate
molecules. This ratio compares favorably with other profiling
studies, but it is inevitable that transcripts will have been
missed and that others will not be experimentally confirmed.
This is likely because our studies have focused upon low
abundance transcripts, which are the most susceptible to
sampling error when measured using SAGE.

We identified Scube1 as a prostatic inductive mesenchyme
specific molecule. The temporal and spatial expression pat-
tern of Scubeir during prostate organogenesis is coincident
with prostate induction and subsequent branching morpho-
genesis. In developing ventral prostates the highest concen-
tration of Scube1 transcript was localized to the mesenchymal
cells adjacent to the distal duct tips. This localization to the
distal mesenchyme mirrors the localization of Fgf1o and sug-
gests an involvement of Scubez in ductal growth. Interestingly
the Shh receptor Ptc also localizes to this inductive mesen-
chyme [11]. Although no function has yet been described for
Scubei, its family member Scube2, is reported to be involved
in Shh signal transduction [39,40,49]. Studies in zebrafish
highlighted Scube2 as an essential mediator of hedgehog
(Hh) signaling with a role in stabilization or transport of the
Hh protein, or a role in the endocytotic uptake of Shh [40,49].
During prostate development, Shh signaling regulates ductal
growth and branching, although it is not essential for prostate
induction [50,51]. Shh is composed of prostatic epithelium
and acts as a mitogen for the prostatic mesenchyme. Scubei
expression in the target mesenchyme may be required for the
mitogenic effects of Shh. Because several components of the
Hh pathway are regulated by Shh, we examined whether
Scubet levels in Po UGTs and VPs were affected by Shh treat-
ment. We could not detect any regulation of Scubez transcript
expression by recombinant Shh or inhibition of Hh signaling
with cyclopamine (data not shown). It is possible that Scube
may regulate other signaling pathways because it is expressed
in areas where Hh signaling is not thought to be important.
Studies in zebrafish also suggested that Scube family
members may modulate BMP activity [39]. To determine the
function of SCUBE1 protein, we have attempted to purify
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recombinant SCUBE1, but in our studies it appeared that
SCUBE1 became insoluble when purified and we were unable
to assess the action of the protein in cell and organ culture
studies. Scube1r has been detected in vascular endothelial
cells, and the protein can form oligomers that are associated
with the cell surface [38]. Gene targeting studies or mis-
expression approaches will be needed to assess the role of
Scubei in prostate organogenesis.

We did not observe any regulation of Scuber mRNA by andro-
gens in vivo or in vitro, and therefore it is unlikely that Scube1
functions as an andromedin. Both Fgfio and Fgf7 are impor-
tant regulators of prostate growth and neither is androgen
regulated in vivo. It is likely that there is a group of molecules
important in prostate growth that are not regulated by
androgens. Scube1 has not been identified in profiling studies
looking for androgen regulated mediators of prostate growth,
and it seems probable that Scubez is not a direct mediator of
androgen action. Scube1 specific tags are present in SAGE
libraries made from mouse E16.5 UGM [37]. In the study con-
ducted by Zhang and coworkers [37] the tag count for Scubez
was lower than that in our study, and Scube1 would not have
been identified as inductive mesenchyme specific, because
those authors did not profile subsets of the mesencyhmal
compartment. Because of the restricted expression of Scubei1
in a small subset of cells and the low abundance of this tran-
script, it would be very difficult to identify Scuber in a
profiling screen using whole prostate organs or a complex tis-
sue such as tumors.

We showed that Scubet is expressed in both prostate develop-
ment and prostate cancer stromal cells, which concurs with
the observation that many developmental pathways are
involved in tumorigenesis. The downregulation of Scuber in
CAFs compared with NPFs suggests that it may function as a
tumor suppressor, although this remains to be experimen-
tally confirmed. Scuber is located on human chromosome
22(13, and this region is reported to be deleted in some pros-
tate cancer samples [52,53], which supports the notion that
Scube1 may function as a tumor suppressor. The region 22q13
contains approximately 242 genes, and thus genes other than
Scube1 may be acting as tumor suppressors. Also, it is not
known whether the deletion of 22q13 is present in stroma or
epithelia within the tumor samples. Although we do not know
whether Scubei is expressed in epithelia, there is no indica-
tion that it is expressed in epithelia during development and
it appears to be absent from some prostate epithelial cell lines
(Vanpoucke G, Thomson AA, unpublished data). Scube1 has
not been observed in prostate cancer using whole tumor pro-
filing studies [54,55], perhaps because it is expressed in a
small subset of cells within the tumor that are not well repre-
sented in whole tumor gene signatures. The only way to iden-
tify molecules in small subsets of tumor will be to increase the
efficiency of whole tumor profiles (by increasing the sampling
level) or to isolate subsets of the tumors for profiling [44]. We
have identified tumor expression of Scube1 using a candidate-
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based approach, based upon its expression in a subset of mes-
enchyme that is known to be important in prostate
development.

Our study identified several additional signaling molecules
that were expressed in the inductive mesenchyme, which
have the potential to act either as paracrine regulators of the
prostatic epithelium or as mediators of reciprocal epithelial-
mesenchymal signaling during prostate organogenesis.
Estradiol-induced gene 4 (E21G4) was originally identified in
a screen for estrogen responsive genes [56]. Furthermore, it is
the mammalian ortholog of chicken Tsukushi, which is a BMP
inhibitor that is involved in organizer induction [57]. Dlk-1 is
known as a de-differentiation factor from studies of adipo-
genesis [58]. Its expression in prostate mesenchyme has not
previously been reported, but it was observed in a SAGE
screen for stromal changes in breast cancer [44]. Nell2 is a
secreted epidermal growth factor family member; no function
has been described for this protein, but it was shown to be
over-expressed in benign prostatic hyperplasia [59]. Sprouty
is a negative regulator of FGFs and its expression is reported
to be decreased in prostate cancer [60]. Members of the Slit,
Semaphorin, and Ephrin families of proteins are best known
for their role as guidance cues for axons (for review [61]), but
recent studies show that they contribute to the development
of a variety of organs. Slit2 plays a key role during kidney
development in positioning the site of kidney induction [62].

Conclusion

We identified Scube1 as a novel prostatic inductive mesen-
chyme specific molecule with potential roles in prostate
development and disease. Furthermore, our VMP-specific
SAGE list gives an overview of the transcriptional programs
active in a key subset of the mesenchyme during prostate
induction. This detailed analysis of the developmental
pathways that control normal prostate morphogenesis can
also provide insights into the regulatory pathways that con-
trol neoplastic growth.

Materials and methods

RNA isolation and SAGE library construction

Whole prostatic precursors (VSUs) and VMPs were microdis-
sected from female postnatal day o (Po) outbred Wistar rats.
RNA was extracted from 100 pooled VSUs and 90 VMPs
using the RNeasy Mini kit (Qiagen, Crawley, UK). RNA qual-
ity and concentration was measured using an Agilent (Santa
Clara, CA, USA) 2100 Bioanalyser; 50 ug VSU total RNA and
20 pg of VMP total RNA were used. Long-SAGE libraries were
constructed using the I-SAGE kit (Invitrogen, Carlsbad, CA,
USA) protocol adapted for LongSAGE according to the Long-
SAGE protocol (released by Genzyme, Cambridge, MA, USA,
January 2003). NlaIIl and Mmel were used as the anchoring
and tagging restriction enzymes, respectively. Before ligation
into the pZERO-1 vector, concatemers were digested with

Genome Biology 2007,

Volume 8, Issue 10, Article R213

SphI to improve their cloning efficiency. The VMP and VSU
SAGE libraries contained 80,790 and 70,395 tags (respec-
tively) and are shown in Additional data files 2 and 3 (Gene
Expression Omnibus accession number GSE7899).

Bioinformatic analysis of SAGE data

Long-SAGE tags were extracted from the raw sequence files,
filtered, and tabulated using SAGE2000 software (version
4.5) [63]. During this process linker sequences and duplicate
dimers were removed from the sequence data. For the VMP
and Po UGT pair-wise library comparison, a tag was tested for
significance using the Audic and Claverie [32,64] and the Z-
test (Statview software package, Letchworth, UK). A 95% con-
fidence interval was applied (P < 0.05). Both statistical tests
gave similar results. Tag to gene annotations were done using
the rat Long-SAGE map reference database [65]. When no
gene was assigned with a tag, a genomic BLAST was
performed with the complete 21 base pair tag sequence
(CATG-17bp tag) using the ENSEMBL rat genome browser to
aid in gene assignment [66]. When a tag gave a unique hit in
the rat genome within 5 kilobases from an assigned locus, we
hypothesized that the tag originated from this transcript. This
manual tag mapping was verified for a number of transcripts
by performing rapid amplifications of ¢cDNA 3' ends (3'-
RACE) experiments [67]. The assignment of molecular func-
tion of the genes was done using the Gene Ontology database
and Genecards [68,69].

Quantitative RT-PCR and Northern analyses
Quantitative RT-PCR and Northern analysis were performed
to validate the SAGE data, using several independent isolates
of VMP and VSU RNA. PCRs were performed on the Lightcy-
cler using the Lightcycler FastStart DNA master SYBRGreen
kit (Roche, Burgess Hill, UK). Primer pairs were designed to
amplify the genes summarized in Table 2.

The amplified PCR products were used as template for DNA
probe synthesis for Northern hybridization. DNA probes were
labeled using the Radprime DNA labeling kit (Invitrogen) in
the presence of a32P dCTP. Transcript abundances were nor-
malized to either TBP or Gapdh housekeeping gene.

Whole-mount RNA in situ hybridization

A 739 base pair fragment corresponding to nucleotides 2,258
to 2,996 from rScuber (XM_235529) was amplified and
cloned into the pCR4-TOPO vector (Invitrogen). Sense and
anti-sense probes were transcribed and labeled with digoxi-
genin using T7 and T3 RNA polymerase. Dissected tissues
were fixed in 4% paraformaldehyde at 4°C overnight,
dehydrated through graded methanol, and stored in 100%
methanol at -20°C. RNA in situ hybridization on embryonic
and Po UGTs and cultured ventral prostates were performed
using the InsituPro VS robot (Intavis, Bioanalytical Instru-
ments AG, Cologne, Germany). After rehydration tissues
were bleached in 6% hydrogen peroxide, treated with 20 ug/
ml proteinase K for up to 1 hour and refixed in 4% parafor-
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Table 2
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Primer pairs used in the present study

Gene Forward primer Reverse primer

rScubel GTTCTCCAGGCTTCTTCTCAGAG TACAGTGGGCAGAGCATTGG
rFGF10 CAGTGGAAATCGGAGTTGTTG ATGACGCAATGACACAGAGCT
rTBP GCGGTTTGGCTAGGTTTCTG CCTAGAGCATCCTCTTATCTCCT
hSCUBE| ATTTGTAGGGCCGCAGGAAC CGAGTCTGGCACGAAGAGTG
hGapdh TTAGCACCCCTGGCCAAGG CTTACTCCTTGGAGGCCATG

maldehyde/0.2% glutaraldehyde. Hybridization with digoxi-
genin-labeled probes was performed at 65°C for 16 hours,
followed by high stringency washes. For detection tissues
were incubated with anti-digoxigenin antibody conjugated to
alkaline phosphatase (Roche, Burgess Hill, UK; 1/2,000) at
18°C for 6 hours. After washing, the color was developed
using NBT/BCIP solution. Typical development times were
around 8 hours.

Organ culture and in vitro testosterone treatments

Po VPs were cultured for 6 days in presence or absence of 10
8 mol/] testosterone, as previously described [7], before
whole-mount in situ hybridization. Additionally, Po VPs were
cultured in the absence of testosterone for 3 days, followed by
24 hours of treatment with testosterone and subsequent RNA
preparation. Po female UGTs were cultured under similar
conditions and treated with testosterone for 6 or 24 hours,
followed by RNA isolation.

Culture of CAFs and NPFs

Cells were isolated and grown as described by Olumi and cow-
orkers [26]. Prostate tissue was cut into 1 to 2 mms3 pieces and
treated with collagenase type I (225 units/ml; Sigma) and
hyaluronidase (125 units/ml; Sigma) in RPMI 1640 (with 10%
fetal calf serum) overnight at 37°C. Cells were washed twice
with media, plated, and grown until approximately 50% con-
fluence. Stromal cells were selected using differential
trypsinization, with 0.05% Trypsin, to remove only the stro-
mal cells, which were subsequently passaged two or three
times. Immunohistochemistry for vimentin and smooth
muscle o-actin were used as stromal markers, and epithelial
contamination was excluded using pan-cytokeratin staining.
CAF and NPF cells were recombined with BPH1 cells to deter-
mine tumorigenic activity [26].

Abbreviations

BLAST, basic local alignment search tool; BMP, bone mor-
phogenetic protein; CAF, cancer-associated fibroblast; CXCL,
CXC chemokine ligand; FGF, fibroblast growth factor; Hh,
hedgehog; NPF, normal prostate fibroblast; RT-PCR, reverse
transcription polymerase chain reaction; SAGE, serial analy-
sis of gene expression; Shh, sonic hedgehog; UGM, urogenital
mesenchyme; UGS, urogenital sinus; UGT, urogenital tract;

VMP, ventral mesenchymal pad; VP, ventral prostate; VSU,
VMP, smooth muscle and urethral epithelium.
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