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Abstract

We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene
expression, ChIP binding, and transcription factor motif data in a principled and robust fashion.
COGRIM was applied to both unicellular and mammalian organisms under different scenarios of
available data. In these applications, we demonstrate the ability to predict gene-transcription factor
interactions with reduced numbers of false-positive findings and to make predictions beyond what
is obtained when single types of data are considered.

Background

The interactions of transcriptional regulators of gene expres-
sion with each other and their target genes are often summa-
rized in the form of regulatory modules and networks, which
can be used as a basis for understanding cellular processes.
The computational procedures that are employed to identify
gene regulatory modules and networks have traditionally
used information from expression data, binding motifs, or
genome-wide location analysis of DNA-binding regulators
[1]. A typical approach has been to first use clustering algo-
rithms on expression data to find sets of co-expressed and
potentially co-regulated genes, and then the upstream regula-
tory regions of the genes in each cluster are analyzed for com-
mon cis-regulatory elements (motifs) or modules of several
cis-regulatory elements located in close proximity to each
other [2]. These cis-regulatory elements are the potential
binding sites of transcription factor (TF) proteins, which bind
directly to the DNA sequence in order to increase or decrease
transcription of specific target genes. This computational

strategy can also be employed using chromatin immunopre-
cipitation (ChIP) technology, which identifies genomic
sequences that are enriched for physical binding of a particu-
lar TF [3]. Although such approaches have proven to be use-
ful, their power is inherently limited by the fact that each data
source provides only partial information: expression data
provides only indirect evidence of regulation, upstream regu-
latory region searches provide only potential binding sites
that may not be bound by TFs, and ChIP binding data pro-
vides only physical binding information that may not be func-
tional in terms of controlling gene expression.

There has been substantial recent research into the integra-
tion of biological data sources for the discovery of regulatory
networks. Different approaches taken have included heuristic
algorithms [4,5], linear models [6-12], and probabilistic mod-
els [13,14]. The GRAM algorithm [4] employed exhaustive
search and arbitrary parameter thresholds on ChIP binding
and expression data to discover regulatory networks in Sac-
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charomyces cerevisiae. ReMoDiscovery [5] was developed to
combine all three data types - ChIP binding, expression, and
TF motif data - but the technique is heuristic with arbitrary
parameter thresholds and little systematic modeling. Multi-
variate regression analysis was presented by Bussemaker and
coworkers [7] to infer regulator networks from expression
and ChIP binding data, but their model required a stringent
binding P value threshold. In a 'network component analysis'
approach [10-12], ChIP binding data are used to form a con-
nectivity network between genes and TFs, but the network is
assumed to be known without error. Based on the assumption
that the expression levels of regulated genes depend on the
expression levels of regulators, Segal and coworkers [13,14]
constructed a probabilistic model that used binding motif fea-
tures and expression data to identify modules of co-regulated
genes and their regulators. This probabilistic model reflected
nonlinear properties but required prior clustering of the
expression data.

Although these approaches have achieved a certain degree of
integration, they have been limited in model extensibility and
require a priori knowledge of the contribution of each data
source in the form of TF binding sites, gene expression clus-
ters, and/or ChIP binding P values. We have developed a
novel Bayesian hierarchical approach that extends previous
linear models [6,7,10] to provide a flexible statistical frame-
work for incorporating different data sources. Building upon
this linear model foundation, our extended probabilistic
approach achieves a principled balance for the contributions
of each data source to the modeling process without requiring
predetermined thresholds or clusters. In addition, our model
allows us to estimate synergistic and antagonistic interactions
between TFs and permits genes to belong to multiple regu-
lons [15], which allows us to model multiple biologic path-
ways simultaneously.

Results

Application to Saccharomyces cerevisiae

The model was applied to genome-wide ChIP binding data [3]
and approximately 500 expression experiments on S. cerevi-
siae (Additional data file 1 [Supplementary Table 1]). From
106 TFs measured by Lee and coworkers [3], 39 were selected
as our validation set, which includes most cell cycle related
TFs and some stress response related factors. We used our
full estimated regulation matrix C to classify target genes for
each of our 39 TFs by applying a posterior probability cutoff
of 0.5 on each Cy- The 39 TFs and 1542 classified target genes
were used to construct a functional yeast transcriptional reg-
ulatory network consisting of 2,298 TF and gene interactions
(for regulatory networks, see Additional file 1 [Supplemen-
tary Figure 1]).

http://genomebiology.com/2007/8/ | /R4

Classification of target genes by COGRIM versus ChIP
binding data alone

For each TF, our model integrates both binding and gene
expression data to identify regulated C+ and unregulated C-
genes, based on our estimated indicator matrix C. Similarly,
for each TF, there are two gene sets classified by the binding
P value from ChIP-ChIP experiments by Lee and coworkers
[3]. The set B+ includes genes that appear regulated by the TF
based only on ChIP binding data (genes with binding P <
0.001). The remaining set B- includes nonregulated genes
according to ChIP binding data alone. Combining these two
classification sets gives us four different categories for each
TF: genes identified to be TF targets in both our model and
binding data alone (B+/C+); genes identified to be targets by
our model but not the binding data alone (B-/C+); genes pre-
dicted as targets by binding data alone but not our model
(B+/C-); and, finally, the least interesting set of genes, which
are not targets based on either method (B-/C-).

Table 1 gives the number of genes in each group for each of the
39 TFs we examined. Overall, 51% of predicted regulated
genes by binding data alone are also identified as regulated by
our model (B+/C+). In addition, our method identified an
additional 14% of probable target genes (B-/C+) that were not
considered by binding data alone using a stringent P value
threshold (P < 0.001).

MIPS functional category analysis

We used the MIPS database [16] to assign a functional cate-
gory to each gene in our dataset, and tabulated the over-rep-
resented functional categories in the set of target genes for
each TF. In Figure 1a, we see that for most TFs there was a
higher number of significantly over-represented MIPS func-
tional categories for our predicted target genes (B+/C+ and
B-/C+ sets) than for the set of target genes predicted by bind-
ing data alone but not our model (B+/C-). This same trend is
observed when we examine the percentage of genes with sig-
nificant MIPs categories (Figure 1b). This result validates the
assertion that genes found to be regulated in our model,
which integrates expression and binding data, are more likely
to be functionally related than genes classified by binding
data alone.

More detailed analysis also suggests that the functions of
genes predicted as regulated by our method are consistent
with the known regulatory roles of TFs. For instance, HAP4 is
a well characterized factor that is involved in respiration.
None of the 33 B+/C- genes considered as HAP4 targets by
binding data alone but not by our method were categorized
into MIPS respiration, whereas 9 out of 17 B-/C+ genes pre-
dicted by our method to be HAP4 targets (but not by binding
data alone) were categorized as respiration genes. These nine
genes would not be considered as HAP4 targets based on
binding data alone with a stringent binding P value threshold
[3,7]. Not surprisingly, a large portion (23 of the 34) of the
B+/C+ genes, which are predicted as regulatory targets by
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Table |

Gene classification from ChIP binding data and expression data

TF B+ B-

B+/C- B+/C+ B-/IC+ B-/C-
ACE2 46 22 9 5964
SWi4 25 99 36 588l
SWI5 54 40 22 5925
SWié 54 39 48 5900
MBPI 48 56 29 5908
STBI 6 17 I5 6003
SKN7 49 46 26 5920
FKHI 36 26 45 5934
FKH2 59 46 48 5888
NDDI 19 74 10 5938
MCMI 44 42 31 5924
ABFI 99 175 128 5639
BASI 34 8 17 5982
CADI 28 10 10 5993
CBFI 24 19 28 5970
GAL4 12 28 3 5998
GCN4 26 53 I 5951
GCRI 6 6 10 6019
GCR2 23 8 I5 5995
HAP2 4 14 23 6000
HAP3 I I 16 6003
HAP4 33 34 17 5957
HSFI 34 18 55 5934
INO2 5 6 14 6016
LEU3 15 6 22 5998
MET3I 21 6 31 5983
MSN4 24 6 13 5998
PDRI 22 44 19 5956
PHO4 36 23 19 5963
PUT3 3 6 0 6032
RAPI 113 87 64 5777
RCSI 16 15 19 5991
REBI 67 72 59 5843
RLMI 23 14 12 5992
RMEI 13 3 15 6010
ROXI 20 9 20 5992
SMPI 24 39 16 5962
STEI2 33 17 28 5963
YAPI| 27 17 21 5976

A total of 6041 ORFs are considered, based on availability of
expression data and binding data, and 1542 target genes are selected in
C+ (B+/C+ and B-/C+) by applying a posterior probability cutoff of 0.5
on each C; (see COGRIM website [32] for the lists of gene ORFs for
each TF). ORF, open reading frame; TF, transcription factor.

both methods, are categorized as respiration genes. Figure 2
shows the expression patterns of genes in each of these three
sets, and it can be clearly seen that the patterns for the genes
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predicted as functional targets by our method (B+/C+ and B-
/C+) are more coherent than the patterns for the genes pre-
dicted as targets by binding data alone but not our method
(B+/C-). These results indicate that our method has been
more effective at predicting regulated genes for HAP4.

Response to transcription factor deletion experiments
We also analyzed the gene expression response among our
three gene sets for the TF deletion experiments from the
Rosetta Yeast Compendium [17]. Table 2 shows the change in
expression between knockout and wild-type examined within
each gene set (B+/C+, B-/C+, B+/C-) for four TFs that have
been subjected to deletion experiments and for which expres-
sion and ChIP binding data are available. Negative mean val-
ues indicate that target genes were downregulated because of
TF deletion, which implies that the TF functions as an activa-
tor. Based on standard t-tests, genes predicted as functionally
regulated by our model (B+/C+ and B-/C+) exhibit a signifi-
cant change in mRNA expression, whereas the response of
genes that are classified as regulated by binding data alone
but not our method (B+/C-) did not exhibit a significant dif-
ference, indicating that our model identified more appropri-
ate TF targets.

Identifying significant transcription factor interactions

Our model was also used to identify 84 TF pairs as having sig-
nificant interactions, based on shared target genes and a pos-
terior interval for g;, which was significantly different from
zero (for details, see Additional data file 1 [Supplementary
methods]). A subset of these paired interactions are shown in
Figure 3. Most of the TFs (ACE2, SWI4, SWI5, SW16, MBP1,
FKH1, FKH2, NDD1 and MCM1) connected on the right side
of Figure 3 are known cell cycle TFs, whereas the TFs con-
nected in the upper left corner are known to be involved in
stress response, and the lower left HAP2-HAP3-HAP4 mod-
ule regulates respiratory gene expression. Many of these reg-
ulatory module relationships are experimentally confirmed
(Additional data file 1 [Supplementary Table 2]). For exam-
ple, MCM1 and FKHz2 form a regulatory module to control the
expression of cell cycle gene cluster CLB2 [18]. SKN7 was
reported to interact with HSF1 and is required for the induc-
tion of heat shock genes by oxidative stress [19]. Besides the
known SKN7-HSF1 module, we also identified ACE2-HSF1
and ACE2-SKN7 interactions; this supports speculation from
previous studies [20-22] that ACE2 may be a co-activator of
HSF1 and SKN7, which influences full induction of a subset of
the HSF1 and SKN7 target genes.

Application to serum response factor

Currently, ChIP-chip experiments have only been performed
on certain TFs in higher organisms because of limited availa-
bility of promoter chips and antibodies. However, in many
cases TF binding site predictions from a position weight
matrix (PWM) scanning procedure can provide some useful
information about potential gene targets, although it is well
accepted that ChIP-chip data are generally more reliable. We
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Figure |

Enrichment of MIPS functional annotations. The hypergeometric distribution was used to calculate P values to determine the enrichment of MIPS functional
categories, and P values smaller than 0.001 were considered to indicate significant over-represention. For each of the 39 TFs analyzed, (a) the number of
significantly over-represented MIPS categories in the functional targets (B+/C+ [red] and B-/C+ [yellow] clusters) and nonfunctional targets (B+/C- cluster
[blue]) are summarized. (b) The percentage of genes categorized into significantly over-represented MIPS categories in B+/C+ (red) and B-/C+(yellow)
clusters and B+/C- set (blue). TF, transcription factor.

demonstrate that our COGRIM model can effectively inte-
grate TF binding site data with expression data for target gene
prediction in the absence of ChIP binding data by applying
our model to serum response factor (SRF), which has a well
conserved binding PWM-CArG box [23] and primarily con-
trols expression of muscle and growth factor associated

genes. PWM-based sequence scanning data for SRF [24,25]
was used to construct prior probabilities for each gene in our
dataset (for details, see Additional data file 1 [Supplementary
Methods]). We used publicly available gene expression data
from the studies of Balza and Misra [26] and Selvaraj and

Prywes [27].

Figure 2 (see following page)

COGRIM improves gene classification in HAP4 case. For each of HAP4 gene clusters, genes are ordered by the ChlP binding P value obtained from Lee
and coworkers [3]. (@) The expression profile of HAP4, a well characterized factor that is involved in respiration, across approximately 500 experiments.
(b) The B+/C- gene cluster (33 genes). With ChIP binding data alone, these genes are considered HAP4 targets but they do not share similar expression
patterns (averaged centered pearson correlation is only 0.06) and none of them was assigned to the MIPS respiration category. COGRIM does not
consider these genes as HAP4 functional targets. (c) The B+/C+ gene cluster (34 genes). This gene cluster shows high expression correlation (the
averaged centered pearson correlation is 0.56), and 23 out of 34 genes were assigned to the MIPS respiration category. (d) The B-/C+ gene set (17 genes).
These |7 genes were not identified as HAP4 targets by using binding data alone (with P value threshold 0.001) but were predicted by COGRIM to be
functional targets. They exhibit coherent expression (the averaged centered pearson correlation is 0.60) and nine of them (ybl030c, ydl004w, yfr033c,

yjl 166w, yjr048w, yki14 1w, yki148c, yml120c, and ynl055c) are involved in respiration. ChlIP, chromatin immunoprecipitation.
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Figure 2 (see legend on previous page)
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Regulatory response to transcription factor deletion

Genome wide B+/C+ B+/C- B-/IC+

Mean SD Mean SD P value Mean SD P value Mean SD P value
Yapl 0.003 0.092 -0.174 0.23 33.24 xe  0.043 0.13 0.158 -0.104 0.16 33.3I X e
Swi5 0.004 0.06 -0.1 0.166 347I x e 0.006 0.042 0.668 -0.019 0.03 (!§OI X e
Swi4 0.015 0.17 -0.124 0.24 0I7.23 x e 0.058 0.178 0.242 -0.067 0.156 33.29 X e
Gen4 -0.007 0.07 -0.26 0.22 257 x e -0.002 0.032 0.421 -0.158 0.137 440 x e

03

By conducting standard t-tests, the significance of the change in expression between knockout and wild-type was examined within each gene set (B+/
C+, B-/C+, B+/C-) for four transcription factors for which expression, ChIP-ChlP, and deletion data are available. ChIP, chromatin

immunoprecipitation; SD, standard deviation.

Our COGRIM model based on the integration of SRF expres-
sion and PWM scan data resulted in 64 predicted SRF gene
targets (Additional data file 1 [Supplementary Table 3]).
These 64 predicted genes contain 50 that are experimentally
validated targets [25], which leaves 14 targets (21.9%) as pos-
sible false positives. Using binding site data alone, Sun and
coworkers [25] reported a 32.5% false positive rate, which is
substantially higher than that with our integrated method.
Our predictions also have a low false negative rate, because
only three experimentally validated SRF targets were missed.
Thus, our COGRIM approach has resulted in target gene pre-
dictions with a reduced false positive rate while maintaining
a low false negative rate.

The expression profiles of SRF targets are found to be highly
correlated with the SRF probe (average Pearson correlation of
0.62), which again supports the assumption that TF
expression can serve as a reasonable proxy for TF regulatory
activity. We also examined our predictions in the context of
several selected SRF cofactors. The SRF-cofactor regulatory
circuits (Figure 4) identified by our COGRIM are consistent
with current knowledge of SRF's modular regulatory role
[23,26,27]. For example, SRF is known to associate physically
with the TF Nkx2.5 and GATA4 to activate the cardiac a-actin
and atrial natruretic factor genes [23]. COGRIM also recog-
nized that SRF is the central component of a hierarchical cas-
cade model of muscle-specific gene transcriptional network,
and in which SRF both directly and indirectly regulates the
expression of genes required for contractile apparatus assem-
bly [25].

Application to C/EBP-3 enhancer

CCAAT/enhancer-binding protein (C/EBP)-B is a basic leu-
cine zipper TF with an important signaling role in the physi-
ology of growth and cancer. We applied COGRIM to identify
C/EBP-p target genes using all three available data sources:
ChIP binding data, TF binding data from PWM scanning, and
gene expression data [28]. The ChIP binding probabilities
were calculated from published P values [28], whereas the TF

binding site probabilities were computed using TESS [24].
Details are contained in Additional data file 1 (Supplementary
Methods). Our COGRIM model identified 14 out of 16 exper-
imentally validated C/EBP-p targets [28] and predicted an
additional 18 potential target genes. We examined in detail
the fold changes of these additional predicted genes, and we
found that COGRIM is able to select genes with balanced fold
changes between binding and expression data as C/EBP-B
targets (Additional data file 1 [Supplementary Table 4]),
whereas some of these targets were excluded in previous
approaches as a result of applying arbitrary cutoffs in orthog-
onal analysis [28].

Compared with predictions based on single data resource
alone, the number of predictions from COGRIM is substan-
tially smaller than the 72 potential targets based on expres-
sion data alone or 7779 potential targets based on ChIP-chip
binding data alone [28], which suggests that our model leads
to a substantial reduction in the number of false positives. As
illustrated in previous studies [28,29], the use of PWM scan-
ning to identify C/EBP-B regulatory elements has low dis-
criminative power because of substantial variation in the
optimal C/EBP binding motif. As a result, C/EBP-$ binding
site data alone can be used for detection of target genes but
leads to an unreasonable level of false positives. This phe-
nomenon is captured in our COGRIM model by the weight
variable w, which balances the relative quality of the ChIP
binding data versus the TF binding site data. For the C/EBP-
B application, our model estimated a weight of w = 0.92 for
the ChIP binding data, which confirms that the TF binding
site data are useful in some instances but generally have much
less discriminative power than do ChIP binding data. To fur-
ther examine the effect of our prior information on predic-
tion, we used a restricted COGRIM model that assigned fixed
weights w (ranging from o to 1) to the ChIP binding data. In
Figure 5, we see that target gene prediction becomes more
precise with increased weight on ChIP-chip binding data, and
we also see that our full COGRIM model estimates a weight w

Genome Biology 2007, 8:R4
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Figure 3

Significant TF pair interactions. Eighty-four TF pairs were identified to have significant synergistic effects on expression of target genes. Nodes represent
TFs and edges indicate that two connected TFs form a module to regulate a set of genes. The TF pair is determined to be significant if they share at least
four functional target genes and if the posterior interval for the interaction effect term g is significantly different from zero (details given in Additional data
file | [Supplementary methods]). The target genes of each regulator are not shown. Regulators without significant interaction with other TFs are not
shown. This network is illustrated with Cytoscape [33]. TF, transcription factor.

that is nearly optimal (as measured by prediction of experi-
mentally verified targets).

Moreover, to understand the contribution from expression
data, we designed COGRIM to update the indicator C; with-
out the ChIP binding and motif priors (Additional data file 1
[Supplementary Methods, section 3]). We conducted this
designed study with the same expression data on this C/EBP-
B case, and identified only 5 out of 15 targets that were
experimentally validated (Additional data file 1 [Supplemen-
tary Table 5]). As reported above, the full COGRIM, which
integrates all three data types, can identify 14 out of 15 vali-
dated C/EBP-p targets. Based on this, we may suggest that the
expression only contributed about 35% to the predication and
ChIP binding data actually contribute much. This better

performance of integrative approaches compared with
expression data alone is consistent with previous reports
[3,14,28]. This application demonstrates the flexibility of our
model to integrate several data types (ChIP binding, TF bind-
ing sites from PWM scanning and gene expression) simulta-
neously for the identification of target genes, as well as the
ability to achieve an appropriate balance between these dif-
ferent data resources.

Comparison with previous approaches

Although direct comparison with previous methods is com-
plicated by the diversity of models and limited availability of
software, we were able to evaluate our COGRIM model rela-
tive to several previous procedures: two heuristic methods
(ReMoDiscovery [5] and GRAM [4]), a multiple regression
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Figure 4

SRF regulatory circuits. Five known SRF co-factors are selected to study their modular regulatory roles. Based on shared target genes and significant
interaction effects y from the model, SRF regulatory circuits are identified as having significant effects on expression of target genes. SRF, serum response

factor.

method (MA-Networker) [7], and the linear model without
interaction terms (named Model I [Eqn 1] in Materials and
methods, below).

Using our yeast application, we compared the predicted gene
regulons obtained by each procedure by calculating the
within-regulon expression correlation as well as the within-
regulon MIPS category enrichment. Both of these measures
are averages across the regulons for all 39 TFs examined in
detail in our yeast application. Default parameter settings
were used for the previous procedures ReMoDiscovery,
GRAM, and MA-Networker. As shown in Table 3, COGRIM
shows superior average MIPS category enrichment (0.45)
and the average correlation of expression (0.37) compared
with Model I and the other three methods. The set of genes
(B-/C+) predicted by COGRIM but not ChIP binding data

alone share similar MIPS and expression measures to the
core regulons (B+/C+) predicted by both COGRIM and ChIP
binding data alone, which suggests that the 14% additional TF
targets predicted by COGRIM are likely to be functional.

We also compared our COGRIM results with Model I and the
three previous methods using the Rosetta Yeast Compendium
[17] data on gene expression response to TF deletion. For the
four TF deletion experiments for which expression and ChIP
binding data are also available, we observe lower P values for
differential expression from the predicted COGRIM regulons
compared with the regulons predicted by Model I and the
other methods (Table 4). The superior expression response to
TF deletion shown by our COGRIM predicted gene regulons
again suggests that our results are more functionally relevant
than the results from previous methods. The P values

Genome Biology 2007, 8:R4
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Number of validated C/EBP-beta targets in
predicted set by COGRIM

0 0.1 0.2 0.3 0.4
Weight on ChlIP-chip binding data

COGRIM performance with various weight on two priors

0.5 0.6 0.7 0.8 0.9 1

Figure 5

Prediction performance with various weights on two priors. To examine the effect of our prior information on prediction, we used a restricted COGRIM
model that assigned fixed weights w (ranging from 0 to |) to the ChIP binding data. The x-axis represents the assigned weights and the y-axis represents
the number of predicted true C/EBP-f targets in |6 validated ones (black square spots). The sampling procedure automatically assigned an appropriate
weight 0.92 (variance 0.006) to ChIP-chip binding data (red diamond spot). C-EBP, CCAAT/enhancer-binding protein; ChIP, chromatin

immunoprecipitation.

obtained by MA-Networker [7] are also generally small,
which suggests that this method is also effective at identifying
appropriate regulons, although the results from MA-Net-
worker are inferior to COGRIM on the MIPS and expression
correlation measures (Table 3).

We suspect that COGRIM's superior performance is, in part,
because we include a probabilistic model for each data source,
which addresses the inherent uncertainty within each data
type, and consider the TF interactions. In contrast, the
multiple regression method (MA-Networker) applies an arbi-
trary P value threshold to the binding data, and the heuristic
methods ReMoDiscovery and GRAM used several arbitrary
thresholds on both binding affinity and expression correla-
tion coefficients to select regulatory targets. It is also worth
noting that both COGRIM and each of these previous inte-
grated approaches performed better than the method based
on ChIP binding alone.

In addition to predicting sets of target genes, our COGRIM
model also allows us to infer whether each TF acts as an acti-
vator or repressor, which we can compare with findings using
previous methods. TFs that have significant positive effects b;
on gene expression were classified as activators, whereas TFs
that have significant negative b;s are defined as repressors.
Significant effects were determined by examining whether
the posterior interval for each b;overlapped with zero (details
are given in Additional data file 1 [Supplementary methods]).
In addition to agreement with the specific results of GRAM
[4], this analysis identified seven more activators as well as
one repressor RME1 (Additional data file 1 [Supplementary
Table 6]). Five of the seven activators and the RME1 repressor
discovered by our model were previously reported in the liter-
ature, which provides further evidence that our method is
rather effective at distinguishing appropriate TF-regulon
relationships when compared with GRAM. Moreover, the
consistent correlations between TF expression and target
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Comparison with previous approaches based on MIPS category enrichment and expression correlation coefficients

Average expression correlation coefficient

Method Average percentage genes in enriched MIPS categories
COGRIM (B+/C+) 0.450
COGRIM (B-/C+) 0.349

Model | (B+/C+) 0.401

Model | (B-/C+) 0.340
MA-Networker 0.338
GRAM 0.352
ReMoDiscovery 0.347
ChIP binding data alone (B+) 0.217

0.341
0.380
0.340
0.372
0.171
0.337
0.291
0.165

'Average percentage genes in enriched MIPS categories' is the percentage of genes with enriched MIPS categories, averaged over all the 39 yeast TFs.

Model I, COGRIM without interaction terms; TF, transcription factor.

gene expression support our assumption that the expression
profiles of TF genes can act as a proxy for TF regulatory activ-
ity in many cases.

Discussion

We have developed a statistical model to integrate different
types of biologic information (gene expression data, ChIP
binding data, and TF binding site data) in a flexible frame-
work that allows genes to belong to multiple regulatory clus-
ters. Our model was applied to available yeast data, resulting
in more refined gene clusters than those derived from a single
data source alone. We predict that roughly half of the TF
target genes (B+/C-) predicted from ChIP binding data alone
are not functional targets, and about 14% of genes (B-/C+)
that were not identified based on ChIP binding data alone
were predicted by our method to be functional target genes
regulated by TFs. Our validation analyses indicate that these
predicted novel targets are very likely to be functional TF tar-
get genes that are involved in relevant biologic pathways.
Comparisons with several previous methods suggest that
COGRIM is able to perform better on identifying appropriate

Table 4

functional regulatory targets. We also can use our model to
integrate TF binding site data (from PWM scanning) and
expression data when no ChIP binding data are available. For
example, our application to the transcription factor SRF led
to a reduced number of false-positive target gene predictions
compared to the use of the PWM scan data alone. Finally, our
study of C/EBP-f demonstrates that our model can integrate
all three data types to identify functional gene targets in a
principled way by estimating appropriate weights for the
different data sources. Moreover, our studies on SRF and C/
EBP-B demonstrate the effectiveness of our COGRIM model
for applications in higher eukaryotic organisms.

The key aspect of our approach is that we include a probabil-
istic model for each data source, which addresses the inherent
uncertainty within each data type. As a result, our model
includes additional sources of data, contains fewer arbitrary
thresholds, and does not require predefined gene clusters
from a particular data source as compared with some previ-
ous integrated approaches [4,14]. Our probabilistic model
also has advantages over the 'network component analysis'
(NCA) approach [10-12], which assumes that the connectivity

Comparison with previous approaches based on gene expression

response to TF deletion

Method YAPI SWIS SWi4 GCN4

COGRIM (B+/C+) 7.24 x 03 3.71 x e04 1.23 x 07 257 x el
COGRIM (B-/C+) 6.31 x 03 1.01 x 03 3.29 x 03 4.40 x 03
Model | (B+/C+) 0.018 4.00 x e04 7.31 x g 04 4.80 x e0?
Model | (B-/C+) 0.012 8.14 x 03 1.07 x 03 7.95 x 03
MA-Networker 0.021 1.81 x e-04 2.34 x g 06 2.17 x 10
GRAM 0.259 0.281 1.14 x e05 1.54 x 04
ReMoDiscovery 0.102 7.73 x 03 0.364 323 x el0
ChlP binding data alone (B+) 0.194 0.036 9.80 x e-04 1.96 x 04

Standard t-tests were conducted to indicate the significance of the change in expression between knockout and wild-type. Model I, COGRIM without

interaction terms; TF, transcription factor.
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Table 5

Linear model parameters

Parameter Details

Baseline gene i expression

TF linear effects

TF interaction effects

Residual gene expression variance

Prior distribution weights

a; ~ Normal(O, Té )
B = (B, - B) ~ MultivariateNormal(0,I- 1'123 )
1= (12 - ) ~ MultivariateNormal(0,} 7 )

o2~ Inv- ;(2 (inverse Chi-square)

w;~ Uniform(0,1)

TF, transcription factor.

graph derived from ChIP binding data is known without
error. Our results demonstrate that this assumption is often
unrealistic, especially when one considers that ChIP experi-
ments are typically limited to a single condition, but that TF
binding can vary across different conditions. The tenuous
assumption of a fixed connectivity graph allows the NCA
approach more freedom to model TF activity directly. In com-
parison, our model focuses on direct estimation of the con-
nectivity graph using multiple data sources (all with
uncertainty), but it relies on a simplifying assumption regard-
ing TF activity, namely that the activity of a TF depends on the
expression of the gene encoding that TF. We acknowledge
that this assumption will not hold in all cases, but our studies
show that it is usually reasonable, especially given the limited
amount of data on direct measurement of TF activities.

Our model and the NCA procedure can be regarded as com-
plementary approaches to the same problem of network
elucidation in the presence of both uncertain connectivity
links and uncertain TF activity. However, our model has the
additional advantage of utilizing both ChIP binding data and
TF binding site data simultaneously when both are available,
as well as estimating a weighting parameter that balances
these two sources of data according to their relative uncer-
tainty. The ability to weight these data sources optimally was
demonstrated in the case of C/EBP-f. ChIP binding data and
binding site predictions are intuitively related, and this is cap-
tured in Eqn 3. This methodology could also be used to bal-
ance the information from multiple ChIP experiments on the
same TF when these data are available.

Our Bayesian hierarchical model is more than a simple exten-
sion of previous linear models in that it provides a principled
mechanism for integrating ChIP binding and binding site
data with expression data for prediction of target genes. Our
model can be further extended in several interesting direc-
tions in the presence of additional data sources. If the availa-
ble gene expression data come from time-course
experiments, our model can be ameliorated with additional
linear terms that would capture time delayed regulatory

activities, such as modeling the expression of gene 7 at time m
as a function of TF gene expression at not only time m but also
at times m -1, m - 2, and so on.

It should also be noted that although we have focused on TF
proteins, our model would work equally well with regulatory
factors that are not proteins but whose levels can be measured
and whose binding sites can be identified (for example,
microRNAs). This current work represents an initial step
toward solving the problem of integrating available biological
information in a principled fashion. Our belief is that this goal
will best be accomplished by fitting large and flexible proba-
bility models that combine data from various experimental
and compiled sources in a structured or multi-level frame-
work. Despite the limitation due to the availability of expres-
sion profiles and the sensitivity of the various microarray
platforms, we anticipate that our model will become even
more valuable as the accuracy and coverage of expression and
ChIP binding data improve.

Materials and methods

The primary goal of our statistical model is to infer probable
gene-TF interactions through the integration of available bio-
logic data. Mathematically, we formulate our parameters of
interest as unknown indicator variables C;; = 1 if gene i is reg-
ulated by TF j or o otherwise. Collectively, the matrix C of
these indicator variables gives us our clusters of co-regulated
genes, because all genes 7, where C;;= 1, are estimated to be in
a cluster together regulated by TF j. These indicator variables
are the basis of a regulatory network, and can be visually rep-
resented as edges in a graph that connects TFs to the genes
that they regulate. An important aspect of this formulation is
that we are explicitly allowing genes to belong to multiple
clusters controlled by different transcription factors (for
instance, C;;=1and C; = 1 forj #J".

In order to infer likely values for C, our model incorporates up
to three general classes of biologic information: gene expres-
sion data, ChIP binding data, and sequence-level binding site
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data. We denote our expression data as g;,, the log-expression
of gene i (I = 1... N) in experiment ¢ (t =1 ... T). The set of T
experiments can be from different tissues, different time
course experiments, and different gene knockout experi-
ments, or any combination thereof. Within these expression
data, we give special focus on the expression of genes that
encode known TF proteins. For our J known TFs, we denote
Jir as the regulation activity currently estimated by log
expression of TF genej (j = 1...J) in experiment t. In addition
to expression data, we have available ChIP experiments,
which give information on the physical binding location of
specific TFd. We use b;; to denote the probability that TF j
physically binds in close proximity to gene 7, from a ChIP
binding experiment for TF j. Finally, we have available
sequence-level information in the form of known or putative
binding sites for specific TFs located in the upstream regions
of target genes. We denote m;;as the probability that TF j has
a binding site in the regulatory region of gene i. These binding
sites could be experimentally verified, or predicted by scan-
ning upstream sequences for similarity to an established
PWM for a particular TF. We outline our model in the most
general case, where all three of these data types are present,
but we also discuss the ramifications on our procedure when
only subsets of these data types are available.

Our model consists of multiple levels organized in a hierarchi-
cal fashion. The first level of our model incorporates our gene
expression data by specifying the observed gene log expres-
sion g;,as a linear function of TF gene log expression, f;:

J
Jit =04 + 2 ﬂJCU‘th +€it €it ~ Normal(o,crz) (1)
Jj=1

We are using the expression f;, of the gene that encodes TF j as
a proxy for the activity of TF j, in which case b;is the linear
effect of TF j on target gene expression. Note that only TFs
with probable connections to gene i (Cl-j = 1) are allowed to
influence the expression of gene i in the above equation. This
also means that g; can be interpreted as the baseline expres-
sion for gene i in the absence of regulation by known TFs (C;;
= o for all TFs j). However, Eqn 1 (above) and similar linear
models [6,10] are limited by not allowing for combinatorial
relationships between TFs. Each TF j has a single effect (bj) on
the expression of gene 7, which does not take into account the
biologic reality that expression is often the result of synergis-
tic or antagonistic binding of multiple TFs. We acknowledge
these combinatorial relationships by expanding our linear
model to include interaction terms:

J
g =i+ Y, BiCiifje + 2. 7 kCiiCacSjefia +€it €3 ~ Normal(o,0%) (2)
Jj=1 Jj#k

Where we now have additional coefficients gj, which can be
interpreted as the synergistic (or antagonistic) effect of both
TFs j and k binding together to the same upstream region (in
addition to the effects of TF j or k binding in isolation). Con-

http://genomebiology.com/2007/8/ /R4

sidering the large number of factors involved in these linear
equations, we should be cautious about over-interpretation of
individual b; or gj, coefficients, but these parameters can still
provide information about the partial effects of particular TFs
on gene expression. It should also be noted that the gene
expression data we use is on the log scale, and although this
same model could be used for measurements of absolute
expression levels (when available), the interpretation of the
linear and interaction terms would be quite different in that
situation. Our model could also be expanded to allow higher
order interaction terms, although at increased computational
cost.

As mentioned above, we may have two additional classes of
data for a particular gene-TF interaction Cj. We may have by,
the probability that TF j physically binds in proximity to gene
i in a ChIP binding experiment, and my;, the probability of a
binding site for TF j in the upstream region of gene i. The sec-
ond level of our model incorporates both b; and m;; into a
prior distribution for our unknown indicator variable C;;. For
a given value of the weight variable wj, the distribution of our
clustering indicators C;given b;;and m;;can be factored into a
product of two prior distributions, one based on b; and one

based on m;.

C; —c; Y C; -C; 1-w;
p(Cif|mii’bij’wj)°c[bijj(1_bli)l J] ‘[mzy‘](l""o’)l ’] (3)

The variable wjis the relative weight of the prior ChIP-bind-
ing information b; versus the TF binding site information m;;.
The weights w = (w, ... w;) are TF specific but not gene spe-
cific, and are designed to reflect potential global differences in
quality between the binding data and PWM scanning data for
TF j. However, because this relative quality is not necessarily
known a priori, we will treat each weight w; as an unknown
variable. Clearly, if only ChIP binding data for TF j are availa-
ble then w; = 1 and Eqn 3 reduces to a function of b only,
whereas if only TF binding site data for TF j is available then
w; = 0 and Eqn 3 reduces to a function of m; only. Our
weighted prior methodology could also be used to balance the
information from two different ChIP binding experiments, in
which case the variable weight would measure the relative
quality between the two ChIP datasets. It would also be easy
to extend our model to accommodate more than two sources
of data into our prior distribution, which would involve the
use of multiple weight variables between the different data
sources. Often, the available ChIP binding or TF binding site
data are not available directly as probabilities, but rather as P
values or scores from a previous statistical analysis. We con-
vert these P values or scores to probabilities with an EM
(expectation maximization) algorithm [30] based on a mix-
ture model, which is described in detail in the Additional data
file 1 (Supplementary Materials).

The Bayesian paradigm gives us a principled framework for
connecting these model levels into a single posterior distribu-
tion for all unknown parameters:
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p(Cw,0lg.f;m,b) « p(glf,C,0)-p(C|m,b,w)-p(0,w)

where © denotes the collection of linear model parameters (©
= a,B,y,62...). The term p(g|f,C,®) represents our first model
level with expression data g = (g;) and f = (f,), and
p(C|m,b,w) represents our second model level with ChIP
binding data b = (bij) and TF binding site data m = (mij). All
that remains is the specification p(®,w), the prior
distributions for our TF specific prior weights w = (w, ... w))
and our linear model parameters ® (summarized in Table 5).

In the absence of additional prior information about these
parameters, we can make these prior distributions 'non-
informative' (non-influential relative to the data) by setting

our prior variance parameters 7, 73 and 7 to be very large

(in this study, 10,000) and setting the degrees of freedom for
c2to be small (in this study, 2). This complicated model is
implemented using Gibbs sampling [31], which is an iterative
Markov Chain Monte Carlo algorithm that samples new
values for each set of unknown parameters conditional on the
current values of all other parameters. The COGRIM R pack-
age and supplementary materials are available for download
from our COGRIM website [32].

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 includes our
detailed model procedures, Gibbs sampling algorithm, data
processing procedures, predicted gene targets, and annota-
tion evidence. Additional data file 2 is the COGRIM R
program.
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